smp.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/atomic.h>
  37. #include <asm/cpu.h>
  38. #include <asm/processor.h>
  39. #include <asm/idle.h>
  40. #include <asm/r4k-timer.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/time.h>
  43. #include <asm/setup.h>
  44. cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  45. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  46. EXPORT_SYMBOL(__cpu_number_map);
  47. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  48. EXPORT_SYMBOL(__cpu_logical_map);
  49. /* Number of TCs (or siblings in Intel speak) per CPU core */
  50. int smp_num_siblings = 1;
  51. EXPORT_SYMBOL(smp_num_siblings);
  52. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  53. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  54. EXPORT_SYMBOL(cpu_sibling_map);
  55. /* representing the core map of multi-core chips of each logical CPU */
  56. cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  57. EXPORT_SYMBOL(cpu_core_map);
  58. /* representing cpus for which sibling maps can be computed */
  59. static cpumask_t cpu_sibling_setup_map;
  60. /* representing cpus for which core maps can be computed */
  61. static cpumask_t cpu_core_setup_map;
  62. cpumask_t cpu_coherent_mask;
  63. static inline void set_cpu_sibling_map(int cpu)
  64. {
  65. int i;
  66. cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  67. if (smp_num_siblings > 1) {
  68. for_each_cpu(i, &cpu_sibling_setup_map) {
  69. if (cpu_data[cpu].package == cpu_data[i].package &&
  70. cpu_data[cpu].core == cpu_data[i].core) {
  71. cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  72. cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  73. }
  74. }
  75. } else
  76. cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  77. }
  78. static inline void set_cpu_core_map(int cpu)
  79. {
  80. int i;
  81. cpumask_set_cpu(cpu, &cpu_core_setup_map);
  82. for_each_cpu(i, &cpu_core_setup_map) {
  83. if (cpu_data[cpu].package == cpu_data[i].package) {
  84. cpumask_set_cpu(i, &cpu_core_map[cpu]);
  85. cpumask_set_cpu(cpu, &cpu_core_map[i]);
  86. }
  87. }
  88. }
  89. struct plat_smp_ops *mp_ops;
  90. EXPORT_SYMBOL(mp_ops);
  91. void register_smp_ops(struct plat_smp_ops *ops)
  92. {
  93. if (mp_ops)
  94. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  95. mp_ops = ops;
  96. }
  97. /*
  98. * First C code run on the secondary CPUs after being started up by
  99. * the master.
  100. */
  101. asmlinkage void start_secondary(void)
  102. {
  103. unsigned int cpu;
  104. cpu_probe();
  105. per_cpu_trap_init(false);
  106. mips_clockevent_init();
  107. mp_ops->init_secondary();
  108. cpu_report();
  109. /*
  110. * XXX parity protection should be folded in here when it's converted
  111. * to an option instead of something based on .cputype
  112. */
  113. calibrate_delay();
  114. preempt_disable();
  115. cpu = smp_processor_id();
  116. cpu_data[cpu].udelay_val = loops_per_jiffy;
  117. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  118. notify_cpu_starting(cpu);
  119. set_cpu_online(cpu, true);
  120. set_cpu_sibling_map(cpu);
  121. set_cpu_core_map(cpu);
  122. cpumask_set_cpu(cpu, &cpu_callin_map);
  123. synchronise_count_slave(cpu);
  124. /*
  125. * irq will be enabled in ->smp_finish(), enabling it too early
  126. * is dangerous.
  127. */
  128. WARN_ON_ONCE(!irqs_disabled());
  129. mp_ops->smp_finish();
  130. cpu_startup_entry(CPUHP_ONLINE);
  131. }
  132. /*
  133. * Call into both interrupt handlers, as we share the IPI for them
  134. */
  135. void __irq_entry smp_call_function_interrupt(void)
  136. {
  137. irq_enter();
  138. generic_smp_call_function_interrupt();
  139. irq_exit();
  140. }
  141. static void stop_this_cpu(void *dummy)
  142. {
  143. /*
  144. * Remove this CPU:
  145. */
  146. set_cpu_online(smp_processor_id(), false);
  147. local_irq_disable();
  148. while (1);
  149. }
  150. void smp_send_stop(void)
  151. {
  152. smp_call_function(stop_this_cpu, NULL, 0);
  153. }
  154. void __init smp_cpus_done(unsigned int max_cpus)
  155. {
  156. }
  157. /* called from main before smp_init() */
  158. void __init smp_prepare_cpus(unsigned int max_cpus)
  159. {
  160. init_new_context(current, &init_mm);
  161. current_thread_info()->cpu = 0;
  162. mp_ops->prepare_cpus(max_cpus);
  163. set_cpu_sibling_map(0);
  164. set_cpu_core_map(0);
  165. #ifndef CONFIG_HOTPLUG_CPU
  166. init_cpu_present(cpu_possible_mask);
  167. #endif
  168. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  169. }
  170. /* preload SMP state for boot cpu */
  171. void smp_prepare_boot_cpu(void)
  172. {
  173. set_cpu_possible(0, true);
  174. set_cpu_online(0, true);
  175. cpumask_set_cpu(0, &cpu_callin_map);
  176. }
  177. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  178. {
  179. mp_ops->boot_secondary(cpu, tidle);
  180. /*
  181. * Trust is futile. We should really have timeouts ...
  182. */
  183. while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
  184. udelay(100);
  185. schedule();
  186. }
  187. synchronise_count_master(cpu);
  188. return 0;
  189. }
  190. /* Not really SMP stuff ... */
  191. int setup_profiling_timer(unsigned int multiplier)
  192. {
  193. return 0;
  194. }
  195. static void flush_tlb_all_ipi(void *info)
  196. {
  197. local_flush_tlb_all();
  198. }
  199. void flush_tlb_all(void)
  200. {
  201. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  202. }
  203. static void flush_tlb_mm_ipi(void *mm)
  204. {
  205. local_flush_tlb_mm((struct mm_struct *)mm);
  206. }
  207. /*
  208. * Special Variant of smp_call_function for use by TLB functions:
  209. *
  210. * o No return value
  211. * o collapses to normal function call on UP kernels
  212. * o collapses to normal function call on systems with a single shared
  213. * primary cache.
  214. */
  215. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  216. {
  217. smp_call_function(func, info, 1);
  218. }
  219. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  220. {
  221. preempt_disable();
  222. smp_on_other_tlbs(func, info);
  223. func(info);
  224. preempt_enable();
  225. }
  226. /*
  227. * The following tlb flush calls are invoked when old translations are
  228. * being torn down, or pte attributes are changing. For single threaded
  229. * address spaces, a new context is obtained on the current cpu, and tlb
  230. * context on other cpus are invalidated to force a new context allocation
  231. * at switch_mm time, should the mm ever be used on other cpus. For
  232. * multithreaded address spaces, intercpu interrupts have to be sent.
  233. * Another case where intercpu interrupts are required is when the target
  234. * mm might be active on another cpu (eg debuggers doing the flushes on
  235. * behalf of debugees, kswapd stealing pages from another process etc).
  236. * Kanoj 07/00.
  237. */
  238. void flush_tlb_mm(struct mm_struct *mm)
  239. {
  240. preempt_disable();
  241. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  242. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  243. } else {
  244. unsigned int cpu;
  245. for_each_online_cpu(cpu) {
  246. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  247. cpu_context(cpu, mm) = 0;
  248. }
  249. }
  250. local_flush_tlb_mm(mm);
  251. preempt_enable();
  252. }
  253. struct flush_tlb_data {
  254. struct vm_area_struct *vma;
  255. unsigned long addr1;
  256. unsigned long addr2;
  257. };
  258. static void flush_tlb_range_ipi(void *info)
  259. {
  260. struct flush_tlb_data *fd = info;
  261. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  262. }
  263. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  264. {
  265. struct mm_struct *mm = vma->vm_mm;
  266. preempt_disable();
  267. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  268. struct flush_tlb_data fd = {
  269. .vma = vma,
  270. .addr1 = start,
  271. .addr2 = end,
  272. };
  273. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  274. } else {
  275. unsigned int cpu;
  276. for_each_online_cpu(cpu) {
  277. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  278. cpu_context(cpu, mm) = 0;
  279. }
  280. }
  281. local_flush_tlb_range(vma, start, end);
  282. preempt_enable();
  283. }
  284. static void flush_tlb_kernel_range_ipi(void *info)
  285. {
  286. struct flush_tlb_data *fd = info;
  287. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  288. }
  289. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  290. {
  291. struct flush_tlb_data fd = {
  292. .addr1 = start,
  293. .addr2 = end,
  294. };
  295. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  296. }
  297. static void flush_tlb_page_ipi(void *info)
  298. {
  299. struct flush_tlb_data *fd = info;
  300. local_flush_tlb_page(fd->vma, fd->addr1);
  301. }
  302. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  303. {
  304. preempt_disable();
  305. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  306. struct flush_tlb_data fd = {
  307. .vma = vma,
  308. .addr1 = page,
  309. };
  310. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  311. } else {
  312. unsigned int cpu;
  313. for_each_online_cpu(cpu) {
  314. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  315. cpu_context(cpu, vma->vm_mm) = 0;
  316. }
  317. }
  318. local_flush_tlb_page(vma, page);
  319. preempt_enable();
  320. }
  321. static void flush_tlb_one_ipi(void *info)
  322. {
  323. unsigned long vaddr = (unsigned long) info;
  324. local_flush_tlb_one(vaddr);
  325. }
  326. void flush_tlb_one(unsigned long vaddr)
  327. {
  328. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  329. }
  330. EXPORT_SYMBOL(flush_tlb_page);
  331. EXPORT_SYMBOL(flush_tlb_one);
  332. #if defined(CONFIG_KEXEC)
  333. void (*dump_ipi_function_ptr)(void *) = NULL;
  334. void dump_send_ipi(void (*dump_ipi_callback)(void *))
  335. {
  336. int i;
  337. int cpu = smp_processor_id();
  338. dump_ipi_function_ptr = dump_ipi_callback;
  339. smp_mb();
  340. for_each_online_cpu(i)
  341. if (i != cpu)
  342. mp_ops->send_ipi_single(i, SMP_DUMP);
  343. }
  344. EXPORT_SYMBOL(dump_send_ipi);
  345. #endif
  346. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  347. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  348. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  349. void tick_broadcast(const struct cpumask *mask)
  350. {
  351. atomic_t *count;
  352. struct call_single_data *csd;
  353. int cpu;
  354. for_each_cpu(cpu, mask) {
  355. count = &per_cpu(tick_broadcast_count, cpu);
  356. csd = &per_cpu(tick_broadcast_csd, cpu);
  357. if (atomic_inc_return(count) == 1)
  358. smp_call_function_single_async(cpu, csd);
  359. }
  360. }
  361. static void tick_broadcast_callee(void *info)
  362. {
  363. int cpu = smp_processor_id();
  364. tick_receive_broadcast();
  365. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  366. }
  367. static int __init tick_broadcast_init(void)
  368. {
  369. struct call_single_data *csd;
  370. int cpu;
  371. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  372. csd = &per_cpu(tick_broadcast_csd, cpu);
  373. csd->func = tick_broadcast_callee;
  374. }
  375. return 0;
  376. }
  377. early_initcall(tick_broadcast_init);
  378. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */