setup.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/export.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/memblock.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/initrd.h>
  20. #include <linux/root_dev.h>
  21. #include <linux/highmem.h>
  22. #include <linux/console.h>
  23. #include <linux/pfn.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/kexec.h>
  26. #include <linux/sizes.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-contiguous.h>
  29. #include <asm/addrspace.h>
  30. #include <asm/bootinfo.h>
  31. #include <asm/bugs.h>
  32. #include <asm/cache.h>
  33. #include <asm/cdmm.h>
  34. #include <asm/cpu.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include <asm/smp-ops.h>
  38. #include <asm/prom.h>
  39. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  40. EXPORT_SYMBOL(cpu_data);
  41. #ifdef CONFIG_VT
  42. struct screen_info screen_info;
  43. #endif
  44. /*
  45. * Despite it's name this variable is even if we don't have PCI
  46. */
  47. unsigned int PCI_DMA_BUS_IS_PHYS;
  48. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  49. /*
  50. * Setup information
  51. *
  52. * These are initialized so they are in the .data section
  53. */
  54. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  55. EXPORT_SYMBOL(mips_machtype);
  56. struct boot_mem_map boot_mem_map;
  57. static char __initdata command_line[COMMAND_LINE_SIZE];
  58. char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  59. #ifdef CONFIG_CMDLINE_BOOL
  60. static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  61. #endif
  62. /*
  63. * mips_io_port_base is the begin of the address space to which x86 style
  64. * I/O ports are mapped.
  65. */
  66. const unsigned long mips_io_port_base = -1;
  67. EXPORT_SYMBOL(mips_io_port_base);
  68. static struct resource code_resource = { .name = "Kernel code", };
  69. static struct resource data_resource = { .name = "Kernel data", };
  70. static void *detect_magic __initdata = detect_memory_region;
  71. void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
  72. {
  73. int x = boot_mem_map.nr_map;
  74. int i;
  75. /* Sanity check */
  76. if (start + size < start) {
  77. pr_warn("Trying to add an invalid memory region, skipped\n");
  78. return;
  79. }
  80. /*
  81. * Try to merge with existing entry, if any.
  82. */
  83. for (i = 0; i < boot_mem_map.nr_map; i++) {
  84. struct boot_mem_map_entry *entry = boot_mem_map.map + i;
  85. unsigned long top;
  86. if (entry->type != type)
  87. continue;
  88. if (start + size < entry->addr)
  89. continue; /* no overlap */
  90. if (entry->addr + entry->size < start)
  91. continue; /* no overlap */
  92. top = max(entry->addr + entry->size, start + size);
  93. entry->addr = min(entry->addr, start);
  94. entry->size = top - entry->addr;
  95. return;
  96. }
  97. if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
  98. pr_err("Ooops! Too many entries in the memory map!\n");
  99. return;
  100. }
  101. boot_mem_map.map[x].addr = start;
  102. boot_mem_map.map[x].size = size;
  103. boot_mem_map.map[x].type = type;
  104. boot_mem_map.nr_map++;
  105. }
  106. void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
  107. {
  108. void *dm = &detect_magic;
  109. phys_addr_t size;
  110. for (size = sz_min; size < sz_max; size <<= 1) {
  111. if (!memcmp(dm, dm + size, sizeof(detect_magic)))
  112. break;
  113. }
  114. pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
  115. ((unsigned long long) size) / SZ_1M,
  116. (unsigned long long) start,
  117. ((unsigned long long) sz_min) / SZ_1M,
  118. ((unsigned long long) sz_max) / SZ_1M);
  119. add_memory_region(start, size, BOOT_MEM_RAM);
  120. }
  121. static void __init print_memory_map(void)
  122. {
  123. int i;
  124. const int field = 2 * sizeof(unsigned long);
  125. for (i = 0; i < boot_mem_map.nr_map; i++) {
  126. printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
  127. field, (unsigned long long) boot_mem_map.map[i].size,
  128. field, (unsigned long long) boot_mem_map.map[i].addr);
  129. switch (boot_mem_map.map[i].type) {
  130. case BOOT_MEM_RAM:
  131. printk(KERN_CONT "(usable)\n");
  132. break;
  133. case BOOT_MEM_INIT_RAM:
  134. printk(KERN_CONT "(usable after init)\n");
  135. break;
  136. case BOOT_MEM_ROM_DATA:
  137. printk(KERN_CONT "(ROM data)\n");
  138. break;
  139. case BOOT_MEM_RESERVED:
  140. printk(KERN_CONT "(reserved)\n");
  141. break;
  142. default:
  143. printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
  144. break;
  145. }
  146. }
  147. }
  148. /*
  149. * Manage initrd
  150. */
  151. #ifdef CONFIG_BLK_DEV_INITRD
  152. static int __init rd_start_early(char *p)
  153. {
  154. unsigned long start = memparse(p, &p);
  155. #ifdef CONFIG_64BIT
  156. /* Guess if the sign extension was forgotten by bootloader */
  157. if (start < XKPHYS)
  158. start = (int)start;
  159. #endif
  160. initrd_start = start;
  161. initrd_end += start;
  162. return 0;
  163. }
  164. early_param("rd_start", rd_start_early);
  165. static int __init rd_size_early(char *p)
  166. {
  167. initrd_end += memparse(p, &p);
  168. return 0;
  169. }
  170. early_param("rd_size", rd_size_early);
  171. /* it returns the next free pfn after initrd */
  172. static unsigned long __init init_initrd(void)
  173. {
  174. unsigned long end;
  175. /*
  176. * Board specific code or command line parser should have
  177. * already set up initrd_start and initrd_end. In these cases
  178. * perfom sanity checks and use them if all looks good.
  179. */
  180. if (!initrd_start || initrd_end <= initrd_start)
  181. goto disable;
  182. if (initrd_start & ~PAGE_MASK) {
  183. pr_err("initrd start must be page aligned\n");
  184. goto disable;
  185. }
  186. if (initrd_start < PAGE_OFFSET) {
  187. pr_err("initrd start < PAGE_OFFSET\n");
  188. goto disable;
  189. }
  190. /*
  191. * Sanitize initrd addresses. For example firmware
  192. * can't guess if they need to pass them through
  193. * 64-bits values if the kernel has been built in pure
  194. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  195. * addresses now, so the code can now safely use __pa().
  196. */
  197. end = __pa(initrd_end);
  198. initrd_end = (unsigned long)__va(end);
  199. initrd_start = (unsigned long)__va(__pa(initrd_start));
  200. ROOT_DEV = Root_RAM0;
  201. return PFN_UP(end);
  202. disable:
  203. initrd_start = 0;
  204. initrd_end = 0;
  205. return 0;
  206. }
  207. static void __init finalize_initrd(void)
  208. {
  209. unsigned long size = initrd_end - initrd_start;
  210. if (size == 0) {
  211. printk(KERN_INFO "Initrd not found or empty");
  212. goto disable;
  213. }
  214. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  215. printk(KERN_ERR "Initrd extends beyond end of memory");
  216. goto disable;
  217. }
  218. reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
  219. initrd_below_start_ok = 1;
  220. pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
  221. initrd_start, size);
  222. return;
  223. disable:
  224. printk(KERN_CONT " - disabling initrd\n");
  225. initrd_start = 0;
  226. initrd_end = 0;
  227. }
  228. #else /* !CONFIG_BLK_DEV_INITRD */
  229. static unsigned long __init init_initrd(void)
  230. {
  231. return 0;
  232. }
  233. #define finalize_initrd() do {} while (0)
  234. #endif
  235. /*
  236. * Initialize the bootmem allocator. It also setup initrd related data
  237. * if needed.
  238. */
  239. #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
  240. static void __init bootmem_init(void)
  241. {
  242. init_initrd();
  243. finalize_initrd();
  244. }
  245. #else /* !CONFIG_SGI_IP27 */
  246. static void __init bootmem_init(void)
  247. {
  248. unsigned long reserved_end;
  249. unsigned long mapstart = ~0UL;
  250. unsigned long bootmap_size;
  251. int i;
  252. /*
  253. * Sanity check any INITRD first. We don't take it into account
  254. * for bootmem setup initially, rely on the end-of-kernel-code
  255. * as our memory range starting point. Once bootmem is inited we
  256. * will reserve the area used for the initrd.
  257. */
  258. init_initrd();
  259. reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
  260. /*
  261. * max_low_pfn is not a number of pages. The number of pages
  262. * of the system is given by 'max_low_pfn - min_low_pfn'.
  263. */
  264. min_low_pfn = ~0UL;
  265. max_low_pfn = 0;
  266. /*
  267. * Find the highest page frame number we have available.
  268. */
  269. for (i = 0; i < boot_mem_map.nr_map; i++) {
  270. unsigned long start, end;
  271. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  272. continue;
  273. start = PFN_UP(boot_mem_map.map[i].addr);
  274. end = PFN_DOWN(boot_mem_map.map[i].addr
  275. + boot_mem_map.map[i].size);
  276. if (end > max_low_pfn)
  277. max_low_pfn = end;
  278. if (start < min_low_pfn)
  279. min_low_pfn = start;
  280. if (end <= reserved_end)
  281. continue;
  282. if (start >= mapstart)
  283. continue;
  284. mapstart = max(reserved_end, start);
  285. }
  286. if (min_low_pfn >= max_low_pfn)
  287. panic("Incorrect memory mapping !!!");
  288. if (min_low_pfn > ARCH_PFN_OFFSET) {
  289. pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
  290. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  291. min_low_pfn - ARCH_PFN_OFFSET);
  292. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  293. pr_info("%lu free pages won't be used\n",
  294. ARCH_PFN_OFFSET - min_low_pfn);
  295. }
  296. min_low_pfn = ARCH_PFN_OFFSET;
  297. /*
  298. * Determine low and high memory ranges
  299. */
  300. max_pfn = max_low_pfn;
  301. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  302. #ifdef CONFIG_HIGHMEM
  303. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  304. highend_pfn = max_low_pfn;
  305. #endif
  306. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  307. }
  308. #ifdef CONFIG_BLK_DEV_INITRD
  309. /*
  310. * mapstart should be after initrd_end
  311. */
  312. if (initrd_end)
  313. mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
  314. #endif
  315. /*
  316. * Initialize the boot-time allocator with low memory only.
  317. */
  318. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  319. min_low_pfn, max_low_pfn);
  320. for (i = 0; i < boot_mem_map.nr_map; i++) {
  321. unsigned long start, end;
  322. start = PFN_UP(boot_mem_map.map[i].addr);
  323. end = PFN_DOWN(boot_mem_map.map[i].addr
  324. + boot_mem_map.map[i].size);
  325. if (start <= min_low_pfn)
  326. start = min_low_pfn;
  327. if (start >= end)
  328. continue;
  329. #ifndef CONFIG_HIGHMEM
  330. if (end > max_low_pfn)
  331. end = max_low_pfn;
  332. /*
  333. * ... finally, is the area going away?
  334. */
  335. if (end <= start)
  336. continue;
  337. #endif
  338. memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
  339. }
  340. /*
  341. * Register fully available low RAM pages with the bootmem allocator.
  342. */
  343. for (i = 0; i < boot_mem_map.nr_map; i++) {
  344. unsigned long start, end, size;
  345. start = PFN_UP(boot_mem_map.map[i].addr);
  346. end = PFN_DOWN(boot_mem_map.map[i].addr
  347. + boot_mem_map.map[i].size);
  348. /*
  349. * Reserve usable memory.
  350. */
  351. switch (boot_mem_map.map[i].type) {
  352. case BOOT_MEM_RAM:
  353. break;
  354. case BOOT_MEM_INIT_RAM:
  355. memory_present(0, start, end);
  356. continue;
  357. default:
  358. /* Not usable memory */
  359. continue;
  360. }
  361. /*
  362. * We are rounding up the start address of usable memory
  363. * and at the end of the usable range downwards.
  364. */
  365. if (start >= max_low_pfn)
  366. continue;
  367. if (start < reserved_end)
  368. start = reserved_end;
  369. if (end > max_low_pfn)
  370. end = max_low_pfn;
  371. /*
  372. * ... finally, is the area going away?
  373. */
  374. if (end <= start)
  375. continue;
  376. size = end - start;
  377. /* Register lowmem ranges */
  378. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  379. memory_present(0, start, end);
  380. }
  381. /*
  382. * Reserve the bootmap memory.
  383. */
  384. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
  385. /*
  386. * Reserve initrd memory if needed.
  387. */
  388. finalize_initrd();
  389. }
  390. #endif /* CONFIG_SGI_IP27 */
  391. /*
  392. * arch_mem_init - initialize memory management subsystem
  393. *
  394. * o plat_mem_setup() detects the memory configuration and will record detected
  395. * memory areas using add_memory_region.
  396. *
  397. * At this stage the memory configuration of the system is known to the
  398. * kernel but generic memory management system is still entirely uninitialized.
  399. *
  400. * o bootmem_init()
  401. * o sparse_init()
  402. * o paging_init()
  403. * o dma_continguous_reserve()
  404. *
  405. * At this stage the bootmem allocator is ready to use.
  406. *
  407. * NOTE: historically plat_mem_setup did the entire platform initialization.
  408. * This was rather impractical because it meant plat_mem_setup had to
  409. * get away without any kind of memory allocator. To keep old code from
  410. * breaking plat_setup was just renamed to plat_mem_setup and a second platform
  411. * initialization hook for anything else was introduced.
  412. */
  413. static int usermem __initdata;
  414. static int __init early_parse_mem(char *p)
  415. {
  416. phys_addr_t start, size;
  417. /*
  418. * If a user specifies memory size, we
  419. * blow away any automatically generated
  420. * size.
  421. */
  422. if (usermem == 0) {
  423. boot_mem_map.nr_map = 0;
  424. usermem = 1;
  425. }
  426. start = 0;
  427. size = memparse(p, &p);
  428. if (*p == '@')
  429. start = memparse(p + 1, &p);
  430. add_memory_region(start, size, BOOT_MEM_RAM);
  431. return 0;
  432. }
  433. early_param("mem", early_parse_mem);
  434. #ifdef CONFIG_PROC_VMCORE
  435. unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
  436. static int __init early_parse_elfcorehdr(char *p)
  437. {
  438. int i;
  439. setup_elfcorehdr = memparse(p, &p);
  440. for (i = 0; i < boot_mem_map.nr_map; i++) {
  441. unsigned long start = boot_mem_map.map[i].addr;
  442. unsigned long end = (boot_mem_map.map[i].addr +
  443. boot_mem_map.map[i].size);
  444. if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
  445. /*
  446. * Reserve from the elf core header to the end of
  447. * the memory segment, that should all be kdump
  448. * reserved memory.
  449. */
  450. setup_elfcorehdr_size = end - setup_elfcorehdr;
  451. break;
  452. }
  453. }
  454. /*
  455. * If we don't find it in the memory map, then we shouldn't
  456. * have to worry about it, as the new kernel won't use it.
  457. */
  458. return 0;
  459. }
  460. early_param("elfcorehdr", early_parse_elfcorehdr);
  461. #endif
  462. static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
  463. {
  464. phys_addr_t size;
  465. int i;
  466. size = end - mem;
  467. if (!size)
  468. return;
  469. /* Make sure it is in the boot_mem_map */
  470. for (i = 0; i < boot_mem_map.nr_map; i++) {
  471. if (mem >= boot_mem_map.map[i].addr &&
  472. mem < (boot_mem_map.map[i].addr +
  473. boot_mem_map.map[i].size))
  474. return;
  475. }
  476. add_memory_region(mem, size, type);
  477. }
  478. #ifdef CONFIG_KEXEC
  479. static inline unsigned long long get_total_mem(void)
  480. {
  481. unsigned long long total;
  482. total = max_pfn - min_low_pfn;
  483. return total << PAGE_SHIFT;
  484. }
  485. static void __init mips_parse_crashkernel(void)
  486. {
  487. unsigned long long total_mem;
  488. unsigned long long crash_size, crash_base;
  489. int ret;
  490. total_mem = get_total_mem();
  491. ret = parse_crashkernel(boot_command_line, total_mem,
  492. &crash_size, &crash_base);
  493. if (ret != 0 || crash_size <= 0)
  494. return;
  495. crashk_res.start = crash_base;
  496. crashk_res.end = crash_base + crash_size - 1;
  497. }
  498. static void __init request_crashkernel(struct resource *res)
  499. {
  500. int ret;
  501. ret = request_resource(res, &crashk_res);
  502. if (!ret)
  503. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
  504. (unsigned long)((crashk_res.end -
  505. crashk_res.start + 1) >> 20),
  506. (unsigned long)(crashk_res.start >> 20));
  507. }
  508. #else /* !defined(CONFIG_KEXEC) */
  509. static void __init mips_parse_crashkernel(void)
  510. {
  511. }
  512. static void __init request_crashkernel(struct resource *res)
  513. {
  514. }
  515. #endif /* !defined(CONFIG_KEXEC) */
  516. static void __init arch_mem_init(char **cmdline_p)
  517. {
  518. struct memblock_region *reg;
  519. extern void plat_mem_setup(void);
  520. /* call board setup routine */
  521. plat_mem_setup();
  522. /*
  523. * Make sure all kernel memory is in the maps. The "UP" and
  524. * "DOWN" are opposite for initdata since if it crosses over
  525. * into another memory section you don't want that to be
  526. * freed when the initdata is freed.
  527. */
  528. arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
  529. PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
  530. BOOT_MEM_RAM);
  531. arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
  532. PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
  533. BOOT_MEM_INIT_RAM);
  534. pr_info("Determined physical RAM map:\n");
  535. print_memory_map();
  536. #ifdef CONFIG_CMDLINE_BOOL
  537. #ifdef CONFIG_CMDLINE_OVERRIDE
  538. strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
  539. #else
  540. if (builtin_cmdline[0]) {
  541. strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
  542. strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
  543. }
  544. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  545. #endif
  546. #else
  547. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  548. #endif
  549. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  550. *cmdline_p = command_line;
  551. parse_early_param();
  552. if (usermem) {
  553. pr_info("User-defined physical RAM map:\n");
  554. print_memory_map();
  555. }
  556. bootmem_init();
  557. #ifdef CONFIG_PROC_VMCORE
  558. if (setup_elfcorehdr && setup_elfcorehdr_size) {
  559. printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
  560. setup_elfcorehdr, setup_elfcorehdr_size);
  561. reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
  562. BOOTMEM_DEFAULT);
  563. }
  564. #endif
  565. mips_parse_crashkernel();
  566. #ifdef CONFIG_KEXEC
  567. if (crashk_res.start != crashk_res.end)
  568. reserve_bootmem(crashk_res.start,
  569. crashk_res.end - crashk_res.start + 1,
  570. BOOTMEM_DEFAULT);
  571. #endif
  572. device_tree_init();
  573. sparse_init();
  574. plat_swiotlb_setup();
  575. paging_init();
  576. dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
  577. /* Tell bootmem about cma reserved memblock section */
  578. for_each_memblock(reserved, reg)
  579. if (reg->size != 0)
  580. reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
  581. }
  582. static void __init resource_init(void)
  583. {
  584. int i;
  585. if (UNCAC_BASE != IO_BASE)
  586. return;
  587. code_resource.start = __pa_symbol(&_text);
  588. code_resource.end = __pa_symbol(&_etext) - 1;
  589. data_resource.start = __pa_symbol(&_etext);
  590. data_resource.end = __pa_symbol(&_edata) - 1;
  591. for (i = 0; i < boot_mem_map.nr_map; i++) {
  592. struct resource *res;
  593. unsigned long start, end;
  594. start = boot_mem_map.map[i].addr;
  595. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  596. if (start >= HIGHMEM_START)
  597. continue;
  598. if (end >= HIGHMEM_START)
  599. end = HIGHMEM_START - 1;
  600. res = alloc_bootmem(sizeof(struct resource));
  601. switch (boot_mem_map.map[i].type) {
  602. case BOOT_MEM_RAM:
  603. case BOOT_MEM_INIT_RAM:
  604. case BOOT_MEM_ROM_DATA:
  605. res->name = "System RAM";
  606. break;
  607. case BOOT_MEM_RESERVED:
  608. default:
  609. res->name = "reserved";
  610. }
  611. res->start = start;
  612. res->end = end;
  613. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  614. request_resource(&iomem_resource, res);
  615. /*
  616. * We don't know which RAM region contains kernel data,
  617. * so we try it repeatedly and let the resource manager
  618. * test it.
  619. */
  620. request_resource(res, &code_resource);
  621. request_resource(res, &data_resource);
  622. request_crashkernel(res);
  623. }
  624. }
  625. #ifdef CONFIG_SMP
  626. static void __init prefill_possible_map(void)
  627. {
  628. int i, possible = num_possible_cpus();
  629. if (possible > nr_cpu_ids)
  630. possible = nr_cpu_ids;
  631. for (i = 0; i < possible; i++)
  632. set_cpu_possible(i, true);
  633. for (; i < NR_CPUS; i++)
  634. set_cpu_possible(i, false);
  635. nr_cpu_ids = possible;
  636. }
  637. #else
  638. static inline void prefill_possible_map(void) {}
  639. #endif
  640. void __init setup_arch(char **cmdline_p)
  641. {
  642. cpu_probe();
  643. prom_init();
  644. setup_early_fdc_console();
  645. #ifdef CONFIG_EARLY_PRINTK
  646. setup_early_printk();
  647. #endif
  648. cpu_report();
  649. check_bugs_early();
  650. #if defined(CONFIG_VT)
  651. #if defined(CONFIG_VGA_CONSOLE)
  652. conswitchp = &vga_con;
  653. #elif defined(CONFIG_DUMMY_CONSOLE)
  654. conswitchp = &dummy_con;
  655. #endif
  656. #endif
  657. arch_mem_init(cmdline_p);
  658. resource_init();
  659. plat_smp_setup();
  660. prefill_possible_map();
  661. cpu_cache_init();
  662. }
  663. unsigned long kernelsp[NR_CPUS];
  664. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
  665. #ifdef CONFIG_DEBUG_FS
  666. struct dentry *mips_debugfs_dir;
  667. static int __init debugfs_mips(void)
  668. {
  669. struct dentry *d;
  670. d = debugfs_create_dir("mips", NULL);
  671. if (!d)
  672. return -ENOMEM;
  673. mips_debugfs_dir = d;
  674. return 0;
  675. }
  676. arch_initcall(debugfs_mips);
  677. #endif