ib_recv.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  44. {
  45. struct rds_ib_recv_work *recv;
  46. u32 i;
  47. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  48. struct ib_sge *sge;
  49. recv->r_ibinc = NULL;
  50. recv->r_frag = NULL;
  51. recv->r_wr.next = NULL;
  52. recv->r_wr.wr_id = i;
  53. recv->r_wr.sg_list = recv->r_sge;
  54. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  55. sge = &recv->r_sge[0];
  56. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  57. sge->length = sizeof(struct rds_header);
  58. sge->lkey = ic->i_mr->lkey;
  59. sge = &recv->r_sge[1];
  60. sge->addr = 0;
  61. sge->length = RDS_FRAG_SIZE;
  62. sge->lkey = ic->i_mr->lkey;
  63. }
  64. }
  65. /*
  66. * The entire 'from' list, including the from element itself, is put on
  67. * to the tail of the 'to' list.
  68. */
  69. static void list_splice_entire_tail(struct list_head *from,
  70. struct list_head *to)
  71. {
  72. struct list_head *from_last = from->prev;
  73. list_splice_tail(from_last, to);
  74. list_add_tail(from_last, to);
  75. }
  76. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  77. {
  78. struct list_head *tmp;
  79. tmp = xchg(&cache->xfer, NULL);
  80. if (tmp) {
  81. if (cache->ready)
  82. list_splice_entire_tail(tmp, cache->ready);
  83. else
  84. cache->ready = tmp;
  85. }
  86. }
  87. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
  88. {
  89. struct rds_ib_cache_head *head;
  90. int cpu;
  91. cache->percpu = alloc_percpu(struct rds_ib_cache_head);
  92. if (!cache->percpu)
  93. return -ENOMEM;
  94. for_each_possible_cpu(cpu) {
  95. head = per_cpu_ptr(cache->percpu, cpu);
  96. head->first = NULL;
  97. head->count = 0;
  98. }
  99. cache->xfer = NULL;
  100. cache->ready = NULL;
  101. return 0;
  102. }
  103. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
  104. {
  105. int ret;
  106. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
  107. if (!ret) {
  108. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
  109. if (ret)
  110. free_percpu(ic->i_cache_incs.percpu);
  111. }
  112. return ret;
  113. }
  114. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  115. struct list_head *caller_list)
  116. {
  117. struct rds_ib_cache_head *head;
  118. int cpu;
  119. for_each_possible_cpu(cpu) {
  120. head = per_cpu_ptr(cache->percpu, cpu);
  121. if (head->first) {
  122. list_splice_entire_tail(head->first, caller_list);
  123. head->first = NULL;
  124. }
  125. }
  126. if (cache->ready) {
  127. list_splice_entire_tail(cache->ready, caller_list);
  128. cache->ready = NULL;
  129. }
  130. }
  131. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  132. {
  133. struct rds_ib_incoming *inc;
  134. struct rds_ib_incoming *inc_tmp;
  135. struct rds_page_frag *frag;
  136. struct rds_page_frag *frag_tmp;
  137. LIST_HEAD(list);
  138. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  139. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  140. free_percpu(ic->i_cache_incs.percpu);
  141. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  142. list_del(&inc->ii_cache_entry);
  143. WARN_ON(!list_empty(&inc->ii_frags));
  144. kmem_cache_free(rds_ib_incoming_slab, inc);
  145. }
  146. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  147. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  148. free_percpu(ic->i_cache_frags.percpu);
  149. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  150. list_del(&frag->f_cache_entry);
  151. WARN_ON(!list_empty(&frag->f_item));
  152. kmem_cache_free(rds_ib_frag_slab, frag);
  153. }
  154. }
  155. /* fwd decl */
  156. static void rds_ib_recv_cache_put(struct list_head *new_item,
  157. struct rds_ib_refill_cache *cache);
  158. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  159. /* Recycle frag and attached recv buffer f_sg */
  160. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  161. struct rds_page_frag *frag)
  162. {
  163. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  164. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  165. }
  166. /* Recycle inc after freeing attached frags */
  167. void rds_ib_inc_free(struct rds_incoming *inc)
  168. {
  169. struct rds_ib_incoming *ibinc;
  170. struct rds_page_frag *frag;
  171. struct rds_page_frag *pos;
  172. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  173. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  174. /* Free attached frags */
  175. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  176. list_del_init(&frag->f_item);
  177. rds_ib_frag_free(ic, frag);
  178. }
  179. BUG_ON(!list_empty(&ibinc->ii_frags));
  180. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  181. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  182. }
  183. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  184. struct rds_ib_recv_work *recv)
  185. {
  186. if (recv->r_ibinc) {
  187. rds_inc_put(&recv->r_ibinc->ii_inc);
  188. recv->r_ibinc = NULL;
  189. }
  190. if (recv->r_frag) {
  191. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  192. rds_ib_frag_free(ic, recv->r_frag);
  193. recv->r_frag = NULL;
  194. }
  195. }
  196. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  197. {
  198. u32 i;
  199. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  200. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  201. }
  202. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  203. gfp_t slab_mask)
  204. {
  205. struct rds_ib_incoming *ibinc;
  206. struct list_head *cache_item;
  207. int avail_allocs;
  208. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  209. if (cache_item) {
  210. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  211. } else {
  212. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  213. 1, rds_ib_sysctl_max_recv_allocation);
  214. if (!avail_allocs) {
  215. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  216. return NULL;
  217. }
  218. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  219. if (!ibinc) {
  220. atomic_dec(&rds_ib_allocation);
  221. return NULL;
  222. }
  223. }
  224. INIT_LIST_HEAD(&ibinc->ii_frags);
  225. rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
  226. return ibinc;
  227. }
  228. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  229. gfp_t slab_mask, gfp_t page_mask)
  230. {
  231. struct rds_page_frag *frag;
  232. struct list_head *cache_item;
  233. int ret;
  234. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  235. if (cache_item) {
  236. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  237. } else {
  238. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  239. if (!frag)
  240. return NULL;
  241. sg_init_table(&frag->f_sg, 1);
  242. ret = rds_page_remainder_alloc(&frag->f_sg,
  243. RDS_FRAG_SIZE, page_mask);
  244. if (ret) {
  245. kmem_cache_free(rds_ib_frag_slab, frag);
  246. return NULL;
  247. }
  248. }
  249. INIT_LIST_HEAD(&frag->f_item);
  250. return frag;
  251. }
  252. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  253. struct rds_ib_recv_work *recv, int prefill)
  254. {
  255. struct rds_ib_connection *ic = conn->c_transport_data;
  256. struct ib_sge *sge;
  257. int ret = -ENOMEM;
  258. gfp_t slab_mask = GFP_NOWAIT;
  259. gfp_t page_mask = GFP_NOWAIT;
  260. if (prefill) {
  261. slab_mask = GFP_KERNEL;
  262. page_mask = GFP_HIGHUSER;
  263. }
  264. if (!ic->i_cache_incs.ready)
  265. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  266. if (!ic->i_cache_frags.ready)
  267. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  268. /*
  269. * ibinc was taken from recv if recv contained the start of a message.
  270. * recvs that were continuations will still have this allocated.
  271. */
  272. if (!recv->r_ibinc) {
  273. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  274. if (!recv->r_ibinc)
  275. goto out;
  276. }
  277. WARN_ON(recv->r_frag); /* leak! */
  278. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  279. if (!recv->r_frag)
  280. goto out;
  281. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  282. 1, DMA_FROM_DEVICE);
  283. WARN_ON(ret != 1);
  284. sge = &recv->r_sge[0];
  285. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  286. sge->length = sizeof(struct rds_header);
  287. sge = &recv->r_sge[1];
  288. sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
  289. sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
  290. ret = 0;
  291. out:
  292. return ret;
  293. }
  294. /*
  295. * This tries to allocate and post unused work requests after making sure that
  296. * they have all the allocations they need to queue received fragments into
  297. * sockets.
  298. *
  299. * -1 is returned if posting fails due to temporary resource exhaustion.
  300. */
  301. void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
  302. {
  303. struct rds_ib_connection *ic = conn->c_transport_data;
  304. struct rds_ib_recv_work *recv;
  305. struct ib_recv_wr *failed_wr;
  306. unsigned int posted = 0;
  307. int ret = 0;
  308. u32 pos;
  309. while ((prefill || rds_conn_up(conn)) &&
  310. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  311. if (pos >= ic->i_recv_ring.w_nr) {
  312. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  313. pos);
  314. break;
  315. }
  316. recv = &ic->i_recvs[pos];
  317. ret = rds_ib_recv_refill_one(conn, recv, prefill);
  318. if (ret) {
  319. break;
  320. }
  321. /* XXX when can this fail? */
  322. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  323. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  324. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  325. (long) ib_sg_dma_address(
  326. ic->i_cm_id->device,
  327. &recv->r_frag->f_sg),
  328. ret);
  329. if (ret) {
  330. rds_ib_conn_error(conn, "recv post on "
  331. "%pI4 returned %d, disconnecting and "
  332. "reconnecting\n", &conn->c_faddr,
  333. ret);
  334. break;
  335. }
  336. posted++;
  337. }
  338. /* We're doing flow control - update the window. */
  339. if (ic->i_flowctl && posted)
  340. rds_ib_advertise_credits(conn, posted);
  341. if (ret)
  342. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  343. }
  344. /*
  345. * We want to recycle several types of recv allocations, like incs and frags.
  346. * To use this, the *_free() function passes in the ptr to a list_head within
  347. * the recyclee, as well as the cache to put it on.
  348. *
  349. * First, we put the memory on a percpu list. When this reaches a certain size,
  350. * We move it to an intermediate non-percpu list in a lockless manner, with some
  351. * xchg/compxchg wizardry.
  352. *
  353. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  354. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  355. * list_empty() will return true with one element is actually present.
  356. */
  357. static void rds_ib_recv_cache_put(struct list_head *new_item,
  358. struct rds_ib_refill_cache *cache)
  359. {
  360. unsigned long flags;
  361. struct list_head *old, *chpfirst;
  362. local_irq_save(flags);
  363. chpfirst = __this_cpu_read(cache->percpu->first);
  364. if (!chpfirst)
  365. INIT_LIST_HEAD(new_item);
  366. else /* put on front */
  367. list_add_tail(new_item, chpfirst);
  368. __this_cpu_write(cache->percpu->first, new_item);
  369. __this_cpu_inc(cache->percpu->count);
  370. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  371. goto end;
  372. /*
  373. * Return our per-cpu first list to the cache's xfer by atomically
  374. * grabbing the current xfer list, appending it to our per-cpu list,
  375. * and then atomically returning that entire list back to the
  376. * cache's xfer list as long as it's still empty.
  377. */
  378. do {
  379. old = xchg(&cache->xfer, NULL);
  380. if (old)
  381. list_splice_entire_tail(old, chpfirst);
  382. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  383. } while (old);
  384. __this_cpu_write(cache->percpu->first, NULL);
  385. __this_cpu_write(cache->percpu->count, 0);
  386. end:
  387. local_irq_restore(flags);
  388. }
  389. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  390. {
  391. struct list_head *head = cache->ready;
  392. if (head) {
  393. if (!list_empty(head)) {
  394. cache->ready = head->next;
  395. list_del_init(head);
  396. } else
  397. cache->ready = NULL;
  398. }
  399. return head;
  400. }
  401. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
  402. {
  403. struct rds_ib_incoming *ibinc;
  404. struct rds_page_frag *frag;
  405. unsigned long to_copy;
  406. unsigned long frag_off = 0;
  407. int copied = 0;
  408. int ret;
  409. u32 len;
  410. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  411. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  412. len = be32_to_cpu(inc->i_hdr.h_len);
  413. while (iov_iter_count(to) && copied < len) {
  414. if (frag_off == RDS_FRAG_SIZE) {
  415. frag = list_entry(frag->f_item.next,
  416. struct rds_page_frag, f_item);
  417. frag_off = 0;
  418. }
  419. to_copy = min_t(unsigned long, iov_iter_count(to),
  420. RDS_FRAG_SIZE - frag_off);
  421. to_copy = min_t(unsigned long, to_copy, len - copied);
  422. /* XXX needs + offset for multiple recvs per page */
  423. rds_stats_add(s_copy_to_user, to_copy);
  424. ret = copy_page_to_iter(sg_page(&frag->f_sg),
  425. frag->f_sg.offset + frag_off,
  426. to_copy,
  427. to);
  428. if (ret != to_copy)
  429. return -EFAULT;
  430. frag_off += to_copy;
  431. copied += to_copy;
  432. }
  433. return copied;
  434. }
  435. /* ic starts out kzalloc()ed */
  436. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  437. {
  438. struct ib_send_wr *wr = &ic->i_ack_wr;
  439. struct ib_sge *sge = &ic->i_ack_sge;
  440. sge->addr = ic->i_ack_dma;
  441. sge->length = sizeof(struct rds_header);
  442. sge->lkey = ic->i_mr->lkey;
  443. wr->sg_list = sge;
  444. wr->num_sge = 1;
  445. wr->opcode = IB_WR_SEND;
  446. wr->wr_id = RDS_IB_ACK_WR_ID;
  447. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  448. }
  449. /*
  450. * You'd think that with reliable IB connections you wouldn't need to ack
  451. * messages that have been received. The problem is that IB hardware generates
  452. * an ack message before it has DMAed the message into memory. This creates a
  453. * potential message loss if the HCA is disabled for any reason between when it
  454. * sends the ack and before the message is DMAed and processed. This is only a
  455. * potential issue if another HCA is available for fail-over.
  456. *
  457. * When the remote host receives our ack they'll free the sent message from
  458. * their send queue. To decrease the latency of this we always send an ack
  459. * immediately after we've received messages.
  460. *
  461. * For simplicity, we only have one ack in flight at a time. This puts
  462. * pressure on senders to have deep enough send queues to absorb the latency of
  463. * a single ack frame being in flight. This might not be good enough.
  464. *
  465. * This is implemented by have a long-lived send_wr and sge which point to a
  466. * statically allocated ack frame. This ack wr does not fall under the ring
  467. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  468. * room for it beyond the ring size. Send completion notices its special
  469. * wr_id and avoids working with the ring in that case.
  470. */
  471. #ifndef KERNEL_HAS_ATOMIC64
  472. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  473. int ack_required)
  474. {
  475. unsigned long flags;
  476. spin_lock_irqsave(&ic->i_ack_lock, flags);
  477. ic->i_ack_next = seq;
  478. if (ack_required)
  479. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  480. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  481. }
  482. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  483. {
  484. unsigned long flags;
  485. u64 seq;
  486. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  487. spin_lock_irqsave(&ic->i_ack_lock, flags);
  488. seq = ic->i_ack_next;
  489. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  490. return seq;
  491. }
  492. #else
  493. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  494. int ack_required)
  495. {
  496. atomic64_set(&ic->i_ack_next, seq);
  497. if (ack_required) {
  498. smp_mb__before_atomic();
  499. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  500. }
  501. }
  502. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  503. {
  504. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  505. smp_mb__after_atomic();
  506. return atomic64_read(&ic->i_ack_next);
  507. }
  508. #endif
  509. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  510. {
  511. struct rds_header *hdr = ic->i_ack;
  512. struct ib_send_wr *failed_wr;
  513. u64 seq;
  514. int ret;
  515. seq = rds_ib_get_ack(ic);
  516. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  517. rds_message_populate_header(hdr, 0, 0, 0);
  518. hdr->h_ack = cpu_to_be64(seq);
  519. hdr->h_credit = adv_credits;
  520. rds_message_make_checksum(hdr);
  521. ic->i_ack_queued = jiffies;
  522. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  523. if (unlikely(ret)) {
  524. /* Failed to send. Release the WR, and
  525. * force another ACK.
  526. */
  527. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  528. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  529. rds_ib_stats_inc(s_ib_ack_send_failure);
  530. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  531. } else
  532. rds_ib_stats_inc(s_ib_ack_sent);
  533. }
  534. /*
  535. * There are 3 ways of getting acknowledgements to the peer:
  536. * 1. We call rds_ib_attempt_ack from the recv completion handler
  537. * to send an ACK-only frame.
  538. * However, there can be only one such frame in the send queue
  539. * at any time, so we may have to postpone it.
  540. * 2. When another (data) packet is transmitted while there's
  541. * an ACK in the queue, we piggyback the ACK sequence number
  542. * on the data packet.
  543. * 3. If the ACK WR is done sending, we get called from the
  544. * send queue completion handler, and check whether there's
  545. * another ACK pending (postponed because the WR was on the
  546. * queue). If so, we transmit it.
  547. *
  548. * We maintain 2 variables:
  549. * - i_ack_flags, which keeps track of whether the ACK WR
  550. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  551. * - i_ack_next, which is the last sequence number we received
  552. *
  553. * Potentially, send queue and receive queue handlers can run concurrently.
  554. * It would be nice to not have to use a spinlock to synchronize things,
  555. * but the one problem that rules this out is that 64bit updates are
  556. * not atomic on all platforms. Things would be a lot simpler if
  557. * we had atomic64 or maybe cmpxchg64 everywhere.
  558. *
  559. * Reconnecting complicates this picture just slightly. When we
  560. * reconnect, we may be seeing duplicate packets. The peer
  561. * is retransmitting them, because it hasn't seen an ACK for
  562. * them. It is important that we ACK these.
  563. *
  564. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  565. * this flag set *MUST* be acknowledged immediately.
  566. */
  567. /*
  568. * When we get here, we're called from the recv queue handler.
  569. * Check whether we ought to transmit an ACK.
  570. */
  571. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  572. {
  573. unsigned int adv_credits;
  574. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  575. return;
  576. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  577. rds_ib_stats_inc(s_ib_ack_send_delayed);
  578. return;
  579. }
  580. /* Can we get a send credit? */
  581. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  582. rds_ib_stats_inc(s_ib_tx_throttle);
  583. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  584. return;
  585. }
  586. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  587. rds_ib_send_ack(ic, adv_credits);
  588. }
  589. /*
  590. * We get here from the send completion handler, when the
  591. * adapter tells us the ACK frame was sent.
  592. */
  593. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  594. {
  595. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  596. rds_ib_attempt_ack(ic);
  597. }
  598. /*
  599. * This is called by the regular xmit code when it wants to piggyback
  600. * an ACK on an outgoing frame.
  601. */
  602. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  603. {
  604. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  605. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  606. return rds_ib_get_ack(ic);
  607. }
  608. /*
  609. * It's kind of lame that we're copying from the posted receive pages into
  610. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  611. * them. But receiving new congestion bitmaps should be a *rare* event, so
  612. * hopefully we won't need to invest that complexity in making it more
  613. * efficient. By copying we can share a simpler core with TCP which has to
  614. * copy.
  615. */
  616. static void rds_ib_cong_recv(struct rds_connection *conn,
  617. struct rds_ib_incoming *ibinc)
  618. {
  619. struct rds_cong_map *map;
  620. unsigned int map_off;
  621. unsigned int map_page;
  622. struct rds_page_frag *frag;
  623. unsigned long frag_off;
  624. unsigned long to_copy;
  625. unsigned long copied;
  626. uint64_t uncongested = 0;
  627. void *addr;
  628. /* catch completely corrupt packets */
  629. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  630. return;
  631. map = conn->c_fcong;
  632. map_page = 0;
  633. map_off = 0;
  634. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  635. frag_off = 0;
  636. copied = 0;
  637. while (copied < RDS_CONG_MAP_BYTES) {
  638. uint64_t *src, *dst;
  639. unsigned int k;
  640. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  641. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  642. addr = kmap_atomic(sg_page(&frag->f_sg));
  643. src = addr + frag_off;
  644. dst = (void *)map->m_page_addrs[map_page] + map_off;
  645. for (k = 0; k < to_copy; k += 8) {
  646. /* Record ports that became uncongested, ie
  647. * bits that changed from 0 to 1. */
  648. uncongested |= ~(*src) & *dst;
  649. *dst++ = *src++;
  650. }
  651. kunmap_atomic(addr);
  652. copied += to_copy;
  653. map_off += to_copy;
  654. if (map_off == PAGE_SIZE) {
  655. map_off = 0;
  656. map_page++;
  657. }
  658. frag_off += to_copy;
  659. if (frag_off == RDS_FRAG_SIZE) {
  660. frag = list_entry(frag->f_item.next,
  661. struct rds_page_frag, f_item);
  662. frag_off = 0;
  663. }
  664. }
  665. /* the congestion map is in little endian order */
  666. uncongested = le64_to_cpu(uncongested);
  667. rds_cong_map_updated(map, uncongested);
  668. }
  669. /*
  670. * Rings are posted with all the allocations they'll need to queue the
  671. * incoming message to the receiving socket so this can't fail.
  672. * All fragments start with a header, so we can make sure we're not receiving
  673. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  674. */
  675. struct rds_ib_ack_state {
  676. u64 ack_next;
  677. u64 ack_recv;
  678. unsigned int ack_required:1;
  679. unsigned int ack_next_valid:1;
  680. unsigned int ack_recv_valid:1;
  681. };
  682. static void rds_ib_process_recv(struct rds_connection *conn,
  683. struct rds_ib_recv_work *recv, u32 data_len,
  684. struct rds_ib_ack_state *state)
  685. {
  686. struct rds_ib_connection *ic = conn->c_transport_data;
  687. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  688. struct rds_header *ihdr, *hdr;
  689. /* XXX shut down the connection if port 0,0 are seen? */
  690. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  691. data_len);
  692. if (data_len < sizeof(struct rds_header)) {
  693. rds_ib_conn_error(conn, "incoming message "
  694. "from %pI4 didn't include a "
  695. "header, disconnecting and "
  696. "reconnecting\n",
  697. &conn->c_faddr);
  698. return;
  699. }
  700. data_len -= sizeof(struct rds_header);
  701. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  702. /* Validate the checksum. */
  703. if (!rds_message_verify_checksum(ihdr)) {
  704. rds_ib_conn_error(conn, "incoming message "
  705. "from %pI4 has corrupted header - "
  706. "forcing a reconnect\n",
  707. &conn->c_faddr);
  708. rds_stats_inc(s_recv_drop_bad_checksum);
  709. return;
  710. }
  711. /* Process the ACK sequence which comes with every packet */
  712. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  713. state->ack_recv_valid = 1;
  714. /* Process the credits update if there was one */
  715. if (ihdr->h_credit)
  716. rds_ib_send_add_credits(conn, ihdr->h_credit);
  717. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  718. /* This is an ACK-only packet. The fact that it gets
  719. * special treatment here is that historically, ACKs
  720. * were rather special beasts.
  721. */
  722. rds_ib_stats_inc(s_ib_ack_received);
  723. /*
  724. * Usually the frags make their way on to incs and are then freed as
  725. * the inc is freed. We don't go that route, so we have to drop the
  726. * page ref ourselves. We can't just leave the page on the recv
  727. * because that confuses the dma mapping of pages and each recv's use
  728. * of a partial page.
  729. *
  730. * FIXME: Fold this into the code path below.
  731. */
  732. rds_ib_frag_free(ic, recv->r_frag);
  733. recv->r_frag = NULL;
  734. return;
  735. }
  736. /*
  737. * If we don't already have an inc on the connection then this
  738. * fragment has a header and starts a message.. copy its header
  739. * into the inc and save the inc so we can hang upcoming fragments
  740. * off its list.
  741. */
  742. if (!ibinc) {
  743. ibinc = recv->r_ibinc;
  744. recv->r_ibinc = NULL;
  745. ic->i_ibinc = ibinc;
  746. hdr = &ibinc->ii_inc.i_hdr;
  747. memcpy(hdr, ihdr, sizeof(*hdr));
  748. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  749. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  750. ic->i_recv_data_rem, hdr->h_flags);
  751. } else {
  752. hdr = &ibinc->ii_inc.i_hdr;
  753. /* We can't just use memcmp here; fragments of a
  754. * single message may carry different ACKs */
  755. if (hdr->h_sequence != ihdr->h_sequence ||
  756. hdr->h_len != ihdr->h_len ||
  757. hdr->h_sport != ihdr->h_sport ||
  758. hdr->h_dport != ihdr->h_dport) {
  759. rds_ib_conn_error(conn,
  760. "fragment header mismatch; forcing reconnect\n");
  761. return;
  762. }
  763. }
  764. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  765. recv->r_frag = NULL;
  766. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  767. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  768. else {
  769. ic->i_recv_data_rem = 0;
  770. ic->i_ibinc = NULL;
  771. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  772. rds_ib_cong_recv(conn, ibinc);
  773. else {
  774. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  775. &ibinc->ii_inc, GFP_ATOMIC);
  776. state->ack_next = be64_to_cpu(hdr->h_sequence);
  777. state->ack_next_valid = 1;
  778. }
  779. /* Evaluate the ACK_REQUIRED flag *after* we received
  780. * the complete frame, and after bumping the next_rx
  781. * sequence. */
  782. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  783. rds_stats_inc(s_recv_ack_required);
  784. state->ack_required = 1;
  785. }
  786. rds_inc_put(&ibinc->ii_inc);
  787. }
  788. }
  789. /*
  790. * Plucking the oldest entry from the ring can be done concurrently with
  791. * the thread refilling the ring. Each ring operation is protected by
  792. * spinlocks and the transient state of refilling doesn't change the
  793. * recording of which entry is oldest.
  794. *
  795. * This relies on IB only calling one cq comp_handler for each cq so that
  796. * there will only be one caller of rds_recv_incoming() per RDS connection.
  797. */
  798. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  799. {
  800. struct rds_connection *conn = context;
  801. struct rds_ib_connection *ic = conn->c_transport_data;
  802. rdsdebug("conn %p cq %p\n", conn, cq);
  803. rds_ib_stats_inc(s_ib_rx_cq_call);
  804. tasklet_schedule(&ic->i_recv_tasklet);
  805. }
  806. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  807. struct rds_ib_ack_state *state)
  808. {
  809. struct rds_connection *conn = ic->conn;
  810. struct ib_wc wc;
  811. struct rds_ib_recv_work *recv;
  812. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  813. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  814. (unsigned long long)wc.wr_id, wc.status,
  815. ib_wc_status_msg(wc.status), wc.byte_len,
  816. be32_to_cpu(wc.ex.imm_data));
  817. rds_ib_stats_inc(s_ib_rx_cq_event);
  818. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  819. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  820. /*
  821. * Also process recvs in connecting state because it is possible
  822. * to get a recv completion _before_ the rdmacm ESTABLISHED
  823. * event is processed.
  824. */
  825. if (wc.status == IB_WC_SUCCESS) {
  826. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  827. } else {
  828. /* We expect errors as the qp is drained during shutdown */
  829. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  830. rds_ib_conn_error(conn, "recv completion on %pI4 had "
  831. "status %u (%s), disconnecting and "
  832. "reconnecting\n", &conn->c_faddr,
  833. wc.status,
  834. ib_wc_status_msg(wc.status));
  835. }
  836. /*
  837. * It's very important that we only free this ring entry if we've truly
  838. * freed the resources allocated to the entry. The refilling path can
  839. * leak if we don't.
  840. */
  841. rds_ib_ring_free(&ic->i_recv_ring, 1);
  842. }
  843. }
  844. void rds_ib_recv_tasklet_fn(unsigned long data)
  845. {
  846. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  847. struct rds_connection *conn = ic->conn;
  848. struct rds_ib_ack_state state = { 0, };
  849. rds_poll_cq(ic, &state);
  850. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  851. rds_poll_cq(ic, &state);
  852. if (state.ack_next_valid)
  853. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  854. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  855. rds_send_drop_acked(conn, state.ack_recv, NULL);
  856. ic->i_ack_recv = state.ack_recv;
  857. }
  858. if (rds_conn_up(conn))
  859. rds_ib_attempt_ack(ic);
  860. /* If we ever end up with a really empty receive ring, we're
  861. * in deep trouble, as the sender will definitely see RNR
  862. * timeouts. */
  863. if (rds_ib_ring_empty(&ic->i_recv_ring))
  864. rds_ib_stats_inc(s_ib_rx_ring_empty);
  865. if (rds_ib_ring_low(&ic->i_recv_ring))
  866. rds_ib_recv_refill(conn, 0);
  867. }
  868. int rds_ib_recv(struct rds_connection *conn)
  869. {
  870. struct rds_ib_connection *ic = conn->c_transport_data;
  871. int ret = 0;
  872. rdsdebug("conn %p\n", conn);
  873. if (rds_conn_up(conn))
  874. rds_ib_attempt_ack(ic);
  875. return ret;
  876. }
  877. int rds_ib_recv_init(void)
  878. {
  879. struct sysinfo si;
  880. int ret = -ENOMEM;
  881. /* Default to 30% of all available RAM for recv memory */
  882. si_meminfo(&si);
  883. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  884. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  885. sizeof(struct rds_ib_incoming),
  886. 0, SLAB_HWCACHE_ALIGN, NULL);
  887. if (!rds_ib_incoming_slab)
  888. goto out;
  889. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  890. sizeof(struct rds_page_frag),
  891. 0, SLAB_HWCACHE_ALIGN, NULL);
  892. if (!rds_ib_frag_slab)
  893. kmem_cache_destroy(rds_ib_incoming_slab);
  894. else
  895. ret = 0;
  896. out:
  897. return ret;
  898. }
  899. void rds_ib_recv_exit(void)
  900. {
  901. kmem_cache_destroy(rds_ib_incoming_slab);
  902. kmem_cache_destroy(rds_ib_frag_slab);
  903. }