actions.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. /*
  2. * Copyright (c) 2007-2014 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19. #include <linux/skbuff.h>
  20. #include <linux/in.h>
  21. #include <linux/ip.h>
  22. #include <linux/openvswitch.h>
  23. #include <linux/sctp.h>
  24. #include <linux/tcp.h>
  25. #include <linux/udp.h>
  26. #include <linux/in6.h>
  27. #include <linux/if_arp.h>
  28. #include <linux/if_vlan.h>
  29. #include <net/ip.h>
  30. #include <net/ipv6.h>
  31. #include <net/checksum.h>
  32. #include <net/dsfield.h>
  33. #include <net/mpls.h>
  34. #include <net/sctp/checksum.h>
  35. #include "datapath.h"
  36. #include "flow.h"
  37. #include "vport.h"
  38. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  39. struct sw_flow_key *key,
  40. const struct nlattr *attr, int len);
  41. struct deferred_action {
  42. struct sk_buff *skb;
  43. const struct nlattr *actions;
  44. /* Store pkt_key clone when creating deferred action. */
  45. struct sw_flow_key pkt_key;
  46. };
  47. #define DEFERRED_ACTION_FIFO_SIZE 10
  48. struct action_fifo {
  49. int head;
  50. int tail;
  51. /* Deferred action fifo queue storage. */
  52. struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  53. };
  54. static struct action_fifo __percpu *action_fifos;
  55. static DEFINE_PER_CPU(int, exec_actions_level);
  56. static void action_fifo_init(struct action_fifo *fifo)
  57. {
  58. fifo->head = 0;
  59. fifo->tail = 0;
  60. }
  61. static bool action_fifo_is_empty(const struct action_fifo *fifo)
  62. {
  63. return (fifo->head == fifo->tail);
  64. }
  65. static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  66. {
  67. if (action_fifo_is_empty(fifo))
  68. return NULL;
  69. return &fifo->fifo[fifo->tail++];
  70. }
  71. static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
  72. {
  73. if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
  74. return NULL;
  75. return &fifo->fifo[fifo->head++];
  76. }
  77. /* Return true if fifo is not full */
  78. static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
  79. const struct sw_flow_key *key,
  80. const struct nlattr *attr)
  81. {
  82. struct action_fifo *fifo;
  83. struct deferred_action *da;
  84. fifo = this_cpu_ptr(action_fifos);
  85. da = action_fifo_put(fifo);
  86. if (da) {
  87. da->skb = skb;
  88. da->actions = attr;
  89. da->pkt_key = *key;
  90. }
  91. return da;
  92. }
  93. static void invalidate_flow_key(struct sw_flow_key *key)
  94. {
  95. key->eth.type = htons(0);
  96. }
  97. static bool is_flow_key_valid(const struct sw_flow_key *key)
  98. {
  99. return !!key->eth.type;
  100. }
  101. static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  102. const struct ovs_action_push_mpls *mpls)
  103. {
  104. __be32 *new_mpls_lse;
  105. struct ethhdr *hdr;
  106. /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
  107. if (skb->encapsulation)
  108. return -ENOTSUPP;
  109. if (skb_cow_head(skb, MPLS_HLEN) < 0)
  110. return -ENOMEM;
  111. skb_push(skb, MPLS_HLEN);
  112. memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
  113. skb->mac_len);
  114. skb_reset_mac_header(skb);
  115. new_mpls_lse = (__be32 *)skb_mpls_header(skb);
  116. *new_mpls_lse = mpls->mpls_lse;
  117. if (skb->ip_summed == CHECKSUM_COMPLETE)
  118. skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
  119. MPLS_HLEN, 0));
  120. hdr = eth_hdr(skb);
  121. hdr->h_proto = mpls->mpls_ethertype;
  122. if (!skb->inner_protocol)
  123. skb_set_inner_protocol(skb, skb->protocol);
  124. skb->protocol = mpls->mpls_ethertype;
  125. invalidate_flow_key(key);
  126. return 0;
  127. }
  128. static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  129. const __be16 ethertype)
  130. {
  131. struct ethhdr *hdr;
  132. int err;
  133. err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
  134. if (unlikely(err))
  135. return err;
  136. skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
  137. memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
  138. skb->mac_len);
  139. __skb_pull(skb, MPLS_HLEN);
  140. skb_reset_mac_header(skb);
  141. /* skb_mpls_header() is used to locate the ethertype
  142. * field correctly in the presence of VLAN tags.
  143. */
  144. hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
  145. hdr->h_proto = ethertype;
  146. if (eth_p_mpls(skb->protocol))
  147. skb->protocol = ethertype;
  148. invalidate_flow_key(key);
  149. return 0;
  150. }
  151. /* 'KEY' must not have any bits set outside of the 'MASK' */
  152. #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
  153. #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
  154. static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
  155. const __be32 *mpls_lse, const __be32 *mask)
  156. {
  157. __be32 *stack;
  158. __be32 lse;
  159. int err;
  160. err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
  161. if (unlikely(err))
  162. return err;
  163. stack = (__be32 *)skb_mpls_header(skb);
  164. lse = MASKED(*stack, *mpls_lse, *mask);
  165. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  166. __be32 diff[] = { ~(*stack), lse };
  167. skb->csum = ~csum_partial((char *)diff, sizeof(diff),
  168. ~skb->csum);
  169. }
  170. *stack = lse;
  171. flow_key->mpls.top_lse = lse;
  172. return 0;
  173. }
  174. static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
  175. {
  176. int err;
  177. err = skb_vlan_pop(skb);
  178. if (skb_vlan_tag_present(skb))
  179. invalidate_flow_key(key);
  180. else
  181. key->eth.tci = 0;
  182. return err;
  183. }
  184. static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
  185. const struct ovs_action_push_vlan *vlan)
  186. {
  187. if (skb_vlan_tag_present(skb))
  188. invalidate_flow_key(key);
  189. else
  190. key->eth.tci = vlan->vlan_tci;
  191. return skb_vlan_push(skb, vlan->vlan_tpid,
  192. ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
  193. }
  194. /* 'src' is already properly masked. */
  195. static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
  196. {
  197. u16 *dst = (u16 *)dst_;
  198. const u16 *src = (const u16 *)src_;
  199. const u16 *mask = (const u16 *)mask_;
  200. SET_MASKED(dst[0], src[0], mask[0]);
  201. SET_MASKED(dst[1], src[1], mask[1]);
  202. SET_MASKED(dst[2], src[2], mask[2]);
  203. }
  204. static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
  205. const struct ovs_key_ethernet *key,
  206. const struct ovs_key_ethernet *mask)
  207. {
  208. int err;
  209. err = skb_ensure_writable(skb, ETH_HLEN);
  210. if (unlikely(err))
  211. return err;
  212. skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  213. ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
  214. mask->eth_src);
  215. ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
  216. mask->eth_dst);
  217. ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  218. ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
  219. ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
  220. return 0;
  221. }
  222. static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
  223. __be32 *addr, __be32 new_addr)
  224. {
  225. int transport_len = skb->len - skb_transport_offset(skb);
  226. if (nh->protocol == IPPROTO_TCP) {
  227. if (likely(transport_len >= sizeof(struct tcphdr)))
  228. inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
  229. *addr, new_addr, 1);
  230. } else if (nh->protocol == IPPROTO_UDP) {
  231. if (likely(transport_len >= sizeof(struct udphdr))) {
  232. struct udphdr *uh = udp_hdr(skb);
  233. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  234. inet_proto_csum_replace4(&uh->check, skb,
  235. *addr, new_addr, 1);
  236. if (!uh->check)
  237. uh->check = CSUM_MANGLED_0;
  238. }
  239. }
  240. }
  241. csum_replace4(&nh->check, *addr, new_addr);
  242. skb_clear_hash(skb);
  243. *addr = new_addr;
  244. }
  245. static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
  246. __be32 addr[4], const __be32 new_addr[4])
  247. {
  248. int transport_len = skb->len - skb_transport_offset(skb);
  249. if (l4_proto == NEXTHDR_TCP) {
  250. if (likely(transport_len >= sizeof(struct tcphdr)))
  251. inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
  252. addr, new_addr, 1);
  253. } else if (l4_proto == NEXTHDR_UDP) {
  254. if (likely(transport_len >= sizeof(struct udphdr))) {
  255. struct udphdr *uh = udp_hdr(skb);
  256. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  257. inet_proto_csum_replace16(&uh->check, skb,
  258. addr, new_addr, 1);
  259. if (!uh->check)
  260. uh->check = CSUM_MANGLED_0;
  261. }
  262. }
  263. } else if (l4_proto == NEXTHDR_ICMP) {
  264. if (likely(transport_len >= sizeof(struct icmp6hdr)))
  265. inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
  266. skb, addr, new_addr, 1);
  267. }
  268. }
  269. static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
  270. const __be32 mask[4], __be32 masked[4])
  271. {
  272. masked[0] = MASKED(old[0], addr[0], mask[0]);
  273. masked[1] = MASKED(old[1], addr[1], mask[1]);
  274. masked[2] = MASKED(old[2], addr[2], mask[2]);
  275. masked[3] = MASKED(old[3], addr[3], mask[3]);
  276. }
  277. static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
  278. __be32 addr[4], const __be32 new_addr[4],
  279. bool recalculate_csum)
  280. {
  281. if (recalculate_csum)
  282. update_ipv6_checksum(skb, l4_proto, addr, new_addr);
  283. skb_clear_hash(skb);
  284. memcpy(addr, new_addr, sizeof(__be32[4]));
  285. }
  286. static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
  287. {
  288. /* Bits 21-24 are always unmasked, so this retains their values. */
  289. SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
  290. SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
  291. SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
  292. }
  293. static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
  294. u8 mask)
  295. {
  296. new_ttl = MASKED(nh->ttl, new_ttl, mask);
  297. csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
  298. nh->ttl = new_ttl;
  299. }
  300. static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
  301. const struct ovs_key_ipv4 *key,
  302. const struct ovs_key_ipv4 *mask)
  303. {
  304. struct iphdr *nh;
  305. __be32 new_addr;
  306. int err;
  307. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  308. sizeof(struct iphdr));
  309. if (unlikely(err))
  310. return err;
  311. nh = ip_hdr(skb);
  312. /* Setting an IP addresses is typically only a side effect of
  313. * matching on them in the current userspace implementation, so it
  314. * makes sense to check if the value actually changed.
  315. */
  316. if (mask->ipv4_src) {
  317. new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
  318. if (unlikely(new_addr != nh->saddr)) {
  319. set_ip_addr(skb, nh, &nh->saddr, new_addr);
  320. flow_key->ipv4.addr.src = new_addr;
  321. }
  322. }
  323. if (mask->ipv4_dst) {
  324. new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
  325. if (unlikely(new_addr != nh->daddr)) {
  326. set_ip_addr(skb, nh, &nh->daddr, new_addr);
  327. flow_key->ipv4.addr.dst = new_addr;
  328. }
  329. }
  330. if (mask->ipv4_tos) {
  331. ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
  332. flow_key->ip.tos = nh->tos;
  333. }
  334. if (mask->ipv4_ttl) {
  335. set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
  336. flow_key->ip.ttl = nh->ttl;
  337. }
  338. return 0;
  339. }
  340. static bool is_ipv6_mask_nonzero(const __be32 addr[4])
  341. {
  342. return !!(addr[0] | addr[1] | addr[2] | addr[3]);
  343. }
  344. static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
  345. const struct ovs_key_ipv6 *key,
  346. const struct ovs_key_ipv6 *mask)
  347. {
  348. struct ipv6hdr *nh;
  349. int err;
  350. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  351. sizeof(struct ipv6hdr));
  352. if (unlikely(err))
  353. return err;
  354. nh = ipv6_hdr(skb);
  355. /* Setting an IP addresses is typically only a side effect of
  356. * matching on them in the current userspace implementation, so it
  357. * makes sense to check if the value actually changed.
  358. */
  359. if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
  360. __be32 *saddr = (__be32 *)&nh->saddr;
  361. __be32 masked[4];
  362. mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
  363. if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
  364. set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
  365. true);
  366. memcpy(&flow_key->ipv6.addr.src, masked,
  367. sizeof(flow_key->ipv6.addr.src));
  368. }
  369. }
  370. if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
  371. unsigned int offset = 0;
  372. int flags = IP6_FH_F_SKIP_RH;
  373. bool recalc_csum = true;
  374. __be32 *daddr = (__be32 *)&nh->daddr;
  375. __be32 masked[4];
  376. mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
  377. if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
  378. if (ipv6_ext_hdr(nh->nexthdr))
  379. recalc_csum = (ipv6_find_hdr(skb, &offset,
  380. NEXTHDR_ROUTING,
  381. NULL, &flags)
  382. != NEXTHDR_ROUTING);
  383. set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
  384. recalc_csum);
  385. memcpy(&flow_key->ipv6.addr.dst, masked,
  386. sizeof(flow_key->ipv6.addr.dst));
  387. }
  388. }
  389. if (mask->ipv6_tclass) {
  390. ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
  391. flow_key->ip.tos = ipv6_get_dsfield(nh);
  392. }
  393. if (mask->ipv6_label) {
  394. set_ipv6_fl(nh, ntohl(key->ipv6_label),
  395. ntohl(mask->ipv6_label));
  396. flow_key->ipv6.label =
  397. *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
  398. }
  399. if (mask->ipv6_hlimit) {
  400. SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
  401. flow_key->ip.ttl = nh->hop_limit;
  402. }
  403. return 0;
  404. }
  405. /* Must follow skb_ensure_writable() since that can move the skb data. */
  406. static void set_tp_port(struct sk_buff *skb, __be16 *port,
  407. __be16 new_port, __sum16 *check)
  408. {
  409. inet_proto_csum_replace2(check, skb, *port, new_port, 0);
  410. *port = new_port;
  411. }
  412. static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  413. const struct ovs_key_udp *key,
  414. const struct ovs_key_udp *mask)
  415. {
  416. struct udphdr *uh;
  417. __be16 src, dst;
  418. int err;
  419. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  420. sizeof(struct udphdr));
  421. if (unlikely(err))
  422. return err;
  423. uh = udp_hdr(skb);
  424. /* Either of the masks is non-zero, so do not bother checking them. */
  425. src = MASKED(uh->source, key->udp_src, mask->udp_src);
  426. dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
  427. if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
  428. if (likely(src != uh->source)) {
  429. set_tp_port(skb, &uh->source, src, &uh->check);
  430. flow_key->tp.src = src;
  431. }
  432. if (likely(dst != uh->dest)) {
  433. set_tp_port(skb, &uh->dest, dst, &uh->check);
  434. flow_key->tp.dst = dst;
  435. }
  436. if (unlikely(!uh->check))
  437. uh->check = CSUM_MANGLED_0;
  438. } else {
  439. uh->source = src;
  440. uh->dest = dst;
  441. flow_key->tp.src = src;
  442. flow_key->tp.dst = dst;
  443. }
  444. skb_clear_hash(skb);
  445. return 0;
  446. }
  447. static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  448. const struct ovs_key_tcp *key,
  449. const struct ovs_key_tcp *mask)
  450. {
  451. struct tcphdr *th;
  452. __be16 src, dst;
  453. int err;
  454. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  455. sizeof(struct tcphdr));
  456. if (unlikely(err))
  457. return err;
  458. th = tcp_hdr(skb);
  459. src = MASKED(th->source, key->tcp_src, mask->tcp_src);
  460. if (likely(src != th->source)) {
  461. set_tp_port(skb, &th->source, src, &th->check);
  462. flow_key->tp.src = src;
  463. }
  464. dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
  465. if (likely(dst != th->dest)) {
  466. set_tp_port(skb, &th->dest, dst, &th->check);
  467. flow_key->tp.dst = dst;
  468. }
  469. skb_clear_hash(skb);
  470. return 0;
  471. }
  472. static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  473. const struct ovs_key_sctp *key,
  474. const struct ovs_key_sctp *mask)
  475. {
  476. unsigned int sctphoff = skb_transport_offset(skb);
  477. struct sctphdr *sh;
  478. __le32 old_correct_csum, new_csum, old_csum;
  479. int err;
  480. err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
  481. if (unlikely(err))
  482. return err;
  483. sh = sctp_hdr(skb);
  484. old_csum = sh->checksum;
  485. old_correct_csum = sctp_compute_cksum(skb, sctphoff);
  486. sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
  487. sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
  488. new_csum = sctp_compute_cksum(skb, sctphoff);
  489. /* Carry any checksum errors through. */
  490. sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
  491. skb_clear_hash(skb);
  492. flow_key->tp.src = sh->source;
  493. flow_key->tp.dst = sh->dest;
  494. return 0;
  495. }
  496. static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
  497. {
  498. struct vport *vport = ovs_vport_rcu(dp, out_port);
  499. if (likely(vport))
  500. ovs_vport_send(vport, skb);
  501. else
  502. kfree_skb(skb);
  503. }
  504. static int output_userspace(struct datapath *dp, struct sk_buff *skb,
  505. struct sw_flow_key *key, const struct nlattr *attr,
  506. const struct nlattr *actions, int actions_len)
  507. {
  508. struct ovs_tunnel_info info;
  509. struct dp_upcall_info upcall;
  510. const struct nlattr *a;
  511. int rem;
  512. memset(&upcall, 0, sizeof(upcall));
  513. upcall.cmd = OVS_PACKET_CMD_ACTION;
  514. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  515. a = nla_next(a, &rem)) {
  516. switch (nla_type(a)) {
  517. case OVS_USERSPACE_ATTR_USERDATA:
  518. upcall.userdata = a;
  519. break;
  520. case OVS_USERSPACE_ATTR_PID:
  521. upcall.portid = nla_get_u32(a);
  522. break;
  523. case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
  524. /* Get out tunnel info. */
  525. struct vport *vport;
  526. vport = ovs_vport_rcu(dp, nla_get_u32(a));
  527. if (vport) {
  528. int err;
  529. err = ovs_vport_get_egress_tun_info(vport, skb,
  530. &info);
  531. if (!err)
  532. upcall.egress_tun_info = &info;
  533. }
  534. break;
  535. }
  536. case OVS_USERSPACE_ATTR_ACTIONS: {
  537. /* Include actions. */
  538. upcall.actions = actions;
  539. upcall.actions_len = actions_len;
  540. break;
  541. }
  542. } /* End of switch. */
  543. }
  544. return ovs_dp_upcall(dp, skb, key, &upcall);
  545. }
  546. static int sample(struct datapath *dp, struct sk_buff *skb,
  547. struct sw_flow_key *key, const struct nlattr *attr,
  548. const struct nlattr *actions, int actions_len)
  549. {
  550. const struct nlattr *acts_list = NULL;
  551. const struct nlattr *a;
  552. int rem;
  553. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  554. a = nla_next(a, &rem)) {
  555. switch (nla_type(a)) {
  556. case OVS_SAMPLE_ATTR_PROBABILITY:
  557. if (prandom_u32() >= nla_get_u32(a))
  558. return 0;
  559. break;
  560. case OVS_SAMPLE_ATTR_ACTIONS:
  561. acts_list = a;
  562. break;
  563. }
  564. }
  565. rem = nla_len(acts_list);
  566. a = nla_data(acts_list);
  567. /* Actions list is empty, do nothing */
  568. if (unlikely(!rem))
  569. return 0;
  570. /* The only known usage of sample action is having a single user-space
  571. * action. Treat this usage as a special case.
  572. * The output_userspace() should clone the skb to be sent to the
  573. * user space. This skb will be consumed by its caller.
  574. */
  575. if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
  576. nla_is_last(a, rem)))
  577. return output_userspace(dp, skb, key, a, actions, actions_len);
  578. skb = skb_clone(skb, GFP_ATOMIC);
  579. if (!skb)
  580. /* Skip the sample action when out of memory. */
  581. return 0;
  582. if (!add_deferred_actions(skb, key, a)) {
  583. if (net_ratelimit())
  584. pr_warn("%s: deferred actions limit reached, dropping sample action\n",
  585. ovs_dp_name(dp));
  586. kfree_skb(skb);
  587. }
  588. return 0;
  589. }
  590. static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
  591. const struct nlattr *attr)
  592. {
  593. struct ovs_action_hash *hash_act = nla_data(attr);
  594. u32 hash = 0;
  595. /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
  596. hash = skb_get_hash(skb);
  597. hash = jhash_1word(hash, hash_act->hash_basis);
  598. if (!hash)
  599. hash = 0x1;
  600. key->ovs_flow_hash = hash;
  601. }
  602. static int execute_set_action(struct sk_buff *skb,
  603. struct sw_flow_key *flow_key,
  604. const struct nlattr *a)
  605. {
  606. /* Only tunnel set execution is supported without a mask. */
  607. if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
  608. OVS_CB(skb)->egress_tun_info = nla_data(a);
  609. return 0;
  610. }
  611. return -EINVAL;
  612. }
  613. /* Mask is at the midpoint of the data. */
  614. #define get_mask(a, type) ((const type)nla_data(a) + 1)
  615. static int execute_masked_set_action(struct sk_buff *skb,
  616. struct sw_flow_key *flow_key,
  617. const struct nlattr *a)
  618. {
  619. int err = 0;
  620. switch (nla_type(a)) {
  621. case OVS_KEY_ATTR_PRIORITY:
  622. SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
  623. flow_key->phy.priority = skb->priority;
  624. break;
  625. case OVS_KEY_ATTR_SKB_MARK:
  626. SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
  627. flow_key->phy.skb_mark = skb->mark;
  628. break;
  629. case OVS_KEY_ATTR_TUNNEL_INFO:
  630. /* Masked data not supported for tunnel. */
  631. err = -EINVAL;
  632. break;
  633. case OVS_KEY_ATTR_ETHERNET:
  634. err = set_eth_addr(skb, flow_key, nla_data(a),
  635. get_mask(a, struct ovs_key_ethernet *));
  636. break;
  637. case OVS_KEY_ATTR_IPV4:
  638. err = set_ipv4(skb, flow_key, nla_data(a),
  639. get_mask(a, struct ovs_key_ipv4 *));
  640. break;
  641. case OVS_KEY_ATTR_IPV6:
  642. err = set_ipv6(skb, flow_key, nla_data(a),
  643. get_mask(a, struct ovs_key_ipv6 *));
  644. break;
  645. case OVS_KEY_ATTR_TCP:
  646. err = set_tcp(skb, flow_key, nla_data(a),
  647. get_mask(a, struct ovs_key_tcp *));
  648. break;
  649. case OVS_KEY_ATTR_UDP:
  650. err = set_udp(skb, flow_key, nla_data(a),
  651. get_mask(a, struct ovs_key_udp *));
  652. break;
  653. case OVS_KEY_ATTR_SCTP:
  654. err = set_sctp(skb, flow_key, nla_data(a),
  655. get_mask(a, struct ovs_key_sctp *));
  656. break;
  657. case OVS_KEY_ATTR_MPLS:
  658. err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
  659. __be32 *));
  660. break;
  661. }
  662. return err;
  663. }
  664. static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
  665. struct sw_flow_key *key,
  666. const struct nlattr *a, int rem)
  667. {
  668. struct deferred_action *da;
  669. if (!is_flow_key_valid(key)) {
  670. int err;
  671. err = ovs_flow_key_update(skb, key);
  672. if (err)
  673. return err;
  674. }
  675. BUG_ON(!is_flow_key_valid(key));
  676. if (!nla_is_last(a, rem)) {
  677. /* Recirc action is the not the last action
  678. * of the action list, need to clone the skb.
  679. */
  680. skb = skb_clone(skb, GFP_ATOMIC);
  681. /* Skip the recirc action when out of memory, but
  682. * continue on with the rest of the action list.
  683. */
  684. if (!skb)
  685. return 0;
  686. }
  687. da = add_deferred_actions(skb, key, NULL);
  688. if (da) {
  689. da->pkt_key.recirc_id = nla_get_u32(a);
  690. } else {
  691. kfree_skb(skb);
  692. if (net_ratelimit())
  693. pr_warn("%s: deferred action limit reached, drop recirc action\n",
  694. ovs_dp_name(dp));
  695. }
  696. return 0;
  697. }
  698. /* Execute a list of actions against 'skb'. */
  699. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  700. struct sw_flow_key *key,
  701. const struct nlattr *attr, int len)
  702. {
  703. /* Every output action needs a separate clone of 'skb', but the common
  704. * case is just a single output action, so that doing a clone and
  705. * then freeing the original skbuff is wasteful. So the following code
  706. * is slightly obscure just to avoid that.
  707. */
  708. int prev_port = -1;
  709. const struct nlattr *a;
  710. int rem;
  711. for (a = attr, rem = len; rem > 0;
  712. a = nla_next(a, &rem)) {
  713. int err = 0;
  714. if (unlikely(prev_port != -1)) {
  715. struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
  716. if (out_skb)
  717. do_output(dp, out_skb, prev_port);
  718. prev_port = -1;
  719. }
  720. switch (nla_type(a)) {
  721. case OVS_ACTION_ATTR_OUTPUT:
  722. prev_port = nla_get_u32(a);
  723. break;
  724. case OVS_ACTION_ATTR_USERSPACE:
  725. output_userspace(dp, skb, key, a, attr, len);
  726. break;
  727. case OVS_ACTION_ATTR_HASH:
  728. execute_hash(skb, key, a);
  729. break;
  730. case OVS_ACTION_ATTR_PUSH_MPLS:
  731. err = push_mpls(skb, key, nla_data(a));
  732. break;
  733. case OVS_ACTION_ATTR_POP_MPLS:
  734. err = pop_mpls(skb, key, nla_get_be16(a));
  735. break;
  736. case OVS_ACTION_ATTR_PUSH_VLAN:
  737. err = push_vlan(skb, key, nla_data(a));
  738. break;
  739. case OVS_ACTION_ATTR_POP_VLAN:
  740. err = pop_vlan(skb, key);
  741. break;
  742. case OVS_ACTION_ATTR_RECIRC:
  743. err = execute_recirc(dp, skb, key, a, rem);
  744. if (nla_is_last(a, rem)) {
  745. /* If this is the last action, the skb has
  746. * been consumed or freed.
  747. * Return immediately.
  748. */
  749. return err;
  750. }
  751. break;
  752. case OVS_ACTION_ATTR_SET:
  753. err = execute_set_action(skb, key, nla_data(a));
  754. break;
  755. case OVS_ACTION_ATTR_SET_MASKED:
  756. case OVS_ACTION_ATTR_SET_TO_MASKED:
  757. err = execute_masked_set_action(skb, key, nla_data(a));
  758. break;
  759. case OVS_ACTION_ATTR_SAMPLE:
  760. err = sample(dp, skb, key, a, attr, len);
  761. break;
  762. }
  763. if (unlikely(err)) {
  764. kfree_skb(skb);
  765. return err;
  766. }
  767. }
  768. if (prev_port != -1)
  769. do_output(dp, skb, prev_port);
  770. else
  771. consume_skb(skb);
  772. return 0;
  773. }
  774. static void process_deferred_actions(struct datapath *dp)
  775. {
  776. struct action_fifo *fifo = this_cpu_ptr(action_fifos);
  777. /* Do not touch the FIFO in case there is no deferred actions. */
  778. if (action_fifo_is_empty(fifo))
  779. return;
  780. /* Finishing executing all deferred actions. */
  781. do {
  782. struct deferred_action *da = action_fifo_get(fifo);
  783. struct sk_buff *skb = da->skb;
  784. struct sw_flow_key *key = &da->pkt_key;
  785. const struct nlattr *actions = da->actions;
  786. if (actions)
  787. do_execute_actions(dp, skb, key, actions,
  788. nla_len(actions));
  789. else
  790. ovs_dp_process_packet(skb, key);
  791. } while (!action_fifo_is_empty(fifo));
  792. /* Reset FIFO for the next packet. */
  793. action_fifo_init(fifo);
  794. }
  795. /* Execute a list of actions against 'skb'. */
  796. int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
  797. const struct sw_flow_actions *acts,
  798. struct sw_flow_key *key)
  799. {
  800. int level = this_cpu_read(exec_actions_level);
  801. int err;
  802. this_cpu_inc(exec_actions_level);
  803. OVS_CB(skb)->egress_tun_info = NULL;
  804. err = do_execute_actions(dp, skb, key,
  805. acts->actions, acts->actions_len);
  806. if (!level)
  807. process_deferred_actions(dp);
  808. this_cpu_dec(exec_actions_level);
  809. return err;
  810. }
  811. int action_fifos_init(void)
  812. {
  813. action_fifos = alloc_percpu(struct action_fifo);
  814. if (!action_fifos)
  815. return -ENOMEM;
  816. return 0;
  817. }
  818. void action_fifos_exit(void)
  819. {
  820. free_percpu(action_fifos);
  821. }