syncookies.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. /*
  2. * IPv6 Syncookies implementation for the Linux kernel
  3. *
  4. * Authors:
  5. * Glenn Griffin <ggriffin.kernel@gmail.com>
  6. *
  7. * Based on IPv4 implementation by Andi Kleen
  8. * linux/net/ipv4/syncookies.c
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. */
  16. #include <linux/tcp.h>
  17. #include <linux/random.h>
  18. #include <linux/cryptohash.h>
  19. #include <linux/kernel.h>
  20. #include <net/ipv6.h>
  21. #include <net/tcp.h>
  22. #define COOKIEBITS 24 /* Upper bits store count */
  23. #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
  24. static u32 syncookie6_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
  25. /* RFC 2460, Section 8.3:
  26. * [ipv6 tcp] MSS must be computed as the maximum packet size minus 60 [..]
  27. *
  28. * Due to IPV6_MIN_MTU=1280 the lowest possible MSS is 1220, which allows
  29. * using higher values than ipv4 tcp syncookies.
  30. * The other values are chosen based on ethernet (1500 and 9k MTU), plus
  31. * one that accounts for common encap (PPPoe) overhead. Table must be sorted.
  32. */
  33. static __u16 const msstab[] = {
  34. 1280 - 60, /* IPV6_MIN_MTU - 60 */
  35. 1480 - 60,
  36. 1500 - 60,
  37. 9000 - 60,
  38. };
  39. static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
  40. ipv6_cookie_scratch);
  41. static u32 cookie_hash(const struct in6_addr *saddr, const struct in6_addr *daddr,
  42. __be16 sport, __be16 dport, u32 count, int c)
  43. {
  44. __u32 *tmp;
  45. net_get_random_once(syncookie6_secret, sizeof(syncookie6_secret));
  46. tmp = this_cpu_ptr(ipv6_cookie_scratch);
  47. /*
  48. * we have 320 bits of information to hash, copy in the remaining
  49. * 192 bits required for sha_transform, from the syncookie6_secret
  50. * and overwrite the digest with the secret
  51. */
  52. memcpy(tmp + 10, syncookie6_secret[c], 44);
  53. memcpy(tmp, saddr, 16);
  54. memcpy(tmp + 4, daddr, 16);
  55. tmp[8] = ((__force u32)sport << 16) + (__force u32)dport;
  56. tmp[9] = count;
  57. sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
  58. return tmp[17];
  59. }
  60. static __u32 secure_tcp_syn_cookie(const struct in6_addr *saddr,
  61. const struct in6_addr *daddr,
  62. __be16 sport, __be16 dport, __u32 sseq,
  63. __u32 data)
  64. {
  65. u32 count = tcp_cookie_time();
  66. return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
  67. sseq + (count << COOKIEBITS) +
  68. ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
  69. & COOKIEMASK));
  70. }
  71. static __u32 check_tcp_syn_cookie(__u32 cookie, const struct in6_addr *saddr,
  72. const struct in6_addr *daddr, __be16 sport,
  73. __be16 dport, __u32 sseq)
  74. {
  75. __u32 diff, count = tcp_cookie_time();
  76. cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
  77. diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
  78. if (diff >= MAX_SYNCOOKIE_AGE)
  79. return (__u32)-1;
  80. return (cookie -
  81. cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
  82. & COOKIEMASK;
  83. }
  84. u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
  85. const struct tcphdr *th, __u16 *mssp)
  86. {
  87. int mssind;
  88. const __u16 mss = *mssp;
  89. for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
  90. if (mss >= msstab[mssind])
  91. break;
  92. *mssp = msstab[mssind];
  93. return secure_tcp_syn_cookie(&iph->saddr, &iph->daddr, th->source,
  94. th->dest, ntohl(th->seq), mssind);
  95. }
  96. EXPORT_SYMBOL_GPL(__cookie_v6_init_sequence);
  97. __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb, __u16 *mssp)
  98. {
  99. const struct ipv6hdr *iph = ipv6_hdr(skb);
  100. const struct tcphdr *th = tcp_hdr(skb);
  101. tcp_synq_overflow(sk);
  102. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
  103. return __cookie_v6_init_sequence(iph, th, mssp);
  104. }
  105. int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
  106. __u32 cookie)
  107. {
  108. __u32 seq = ntohl(th->seq) - 1;
  109. __u32 mssind = check_tcp_syn_cookie(cookie, &iph->saddr, &iph->daddr,
  110. th->source, th->dest, seq);
  111. return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
  112. }
  113. EXPORT_SYMBOL_GPL(__cookie_v6_check);
  114. struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
  115. {
  116. struct tcp_options_received tcp_opt;
  117. struct inet_request_sock *ireq;
  118. struct tcp_request_sock *treq;
  119. struct ipv6_pinfo *np = inet6_sk(sk);
  120. struct tcp_sock *tp = tcp_sk(sk);
  121. const struct tcphdr *th = tcp_hdr(skb);
  122. __u32 cookie = ntohl(th->ack_seq) - 1;
  123. struct sock *ret = sk;
  124. struct request_sock *req;
  125. int mss;
  126. struct dst_entry *dst;
  127. __u8 rcv_wscale;
  128. if (!sysctl_tcp_syncookies || !th->ack || th->rst)
  129. goto out;
  130. if (tcp_synq_no_recent_overflow(sk))
  131. goto out;
  132. mss = __cookie_v6_check(ipv6_hdr(skb), th, cookie);
  133. if (mss == 0) {
  134. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
  135. goto out;
  136. }
  137. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
  138. /* check for timestamp cookie support */
  139. memset(&tcp_opt, 0, sizeof(tcp_opt));
  140. tcp_parse_options(skb, &tcp_opt, 0, NULL);
  141. if (!cookie_timestamp_decode(&tcp_opt))
  142. goto out;
  143. ret = NULL;
  144. req = inet_reqsk_alloc(&tcp6_request_sock_ops, sk);
  145. if (!req)
  146. goto out;
  147. ireq = inet_rsk(req);
  148. treq = tcp_rsk(req);
  149. treq->tfo_listener = false;
  150. if (security_inet_conn_request(sk, skb, req))
  151. goto out_free;
  152. req->mss = mss;
  153. ireq->ir_rmt_port = th->source;
  154. ireq->ir_num = ntohs(th->dest);
  155. ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr;
  156. ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr;
  157. if (ipv6_opt_accepted(sk, skb, &TCP_SKB_CB(skb)->header.h6) ||
  158. np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo ||
  159. np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) {
  160. atomic_inc(&skb->users);
  161. ireq->pktopts = skb;
  162. }
  163. ireq->ir_iif = sk->sk_bound_dev_if;
  164. /* So that link locals have meaning */
  165. if (!sk->sk_bound_dev_if &&
  166. ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL)
  167. ireq->ir_iif = tcp_v6_iif(skb);
  168. ireq->ir_mark = inet_request_mark(sk, skb);
  169. req->num_retrans = 0;
  170. ireq->snd_wscale = tcp_opt.snd_wscale;
  171. ireq->sack_ok = tcp_opt.sack_ok;
  172. ireq->wscale_ok = tcp_opt.wscale_ok;
  173. ireq->tstamp_ok = tcp_opt.saw_tstamp;
  174. req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
  175. treq->snt_synack = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsecr : 0;
  176. treq->rcv_isn = ntohl(th->seq) - 1;
  177. treq->snt_isn = cookie;
  178. /*
  179. * We need to lookup the dst_entry to get the correct window size.
  180. * This is taken from tcp_v6_syn_recv_sock. Somebody please enlighten
  181. * me if there is a preferred way.
  182. */
  183. {
  184. struct in6_addr *final_p, final;
  185. struct flowi6 fl6;
  186. memset(&fl6, 0, sizeof(fl6));
  187. fl6.flowi6_proto = IPPROTO_TCP;
  188. fl6.daddr = ireq->ir_v6_rmt_addr;
  189. final_p = fl6_update_dst(&fl6, np->opt, &final);
  190. fl6.saddr = ireq->ir_v6_loc_addr;
  191. fl6.flowi6_oif = sk->sk_bound_dev_if;
  192. fl6.flowi6_mark = ireq->ir_mark;
  193. fl6.fl6_dport = ireq->ir_rmt_port;
  194. fl6.fl6_sport = inet_sk(sk)->inet_sport;
  195. security_req_classify_flow(req, flowi6_to_flowi(&fl6));
  196. dst = ip6_dst_lookup_flow(sk, &fl6, final_p);
  197. if (IS_ERR(dst))
  198. goto out_free;
  199. }
  200. req->window_clamp = tp->window_clamp ? :dst_metric(dst, RTAX_WINDOW);
  201. tcp_select_initial_window(tcp_full_space(sk), req->mss,
  202. &req->rcv_wnd, &req->window_clamp,
  203. ireq->wscale_ok, &rcv_wscale,
  204. dst_metric(dst, RTAX_INITRWND));
  205. ireq->rcv_wscale = rcv_wscale;
  206. ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), dst);
  207. ret = tcp_get_cookie_sock(sk, skb, req, dst);
  208. out:
  209. return ret;
  210. out_free:
  211. reqsk_free(req);
  212. return NULL;
  213. }