super.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * linux/fs/ufs/super.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. */
  8. /* Derived from
  9. *
  10. * linux/fs/ext2/super.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Inspired by
  28. *
  29. * linux/fs/ufs/super.c
  30. *
  31. * Copyright (C) 1996
  32. * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
  33. * Laboratory for Computer Science Research Computing Facility
  34. * Rutgers, The State University of New Jersey
  35. *
  36. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  37. *
  38. * Kernel module support added on 96/04/26 by
  39. * Stefan Reinauer <stepan@home.culture.mipt.ru>
  40. *
  41. * Module usage counts added on 96/04/29 by
  42. * Gertjan van Wingerde <gwingerde@gmail.com>
  43. *
  44. * Clean swab support on 19970406 by
  45. * Francois-Rene Rideau <fare@tunes.org>
  46. *
  47. * 4.4BSD (FreeBSD) support added on February 1st 1998 by
  48. * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
  49. * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
  50. *
  51. * NeXTstep support added on February 5th 1998 by
  52. * Niels Kristian Bech Jensen <nkbj@image.dk>.
  53. *
  54. * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
  55. *
  56. * HP/UX hfs filesystem support added by
  57. * Martin K. Petersen <mkp@mkp.net>, August 1999
  58. *
  59. * UFS2 (of FreeBSD 5.x) support added by
  60. * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
  61. *
  62. * UFS2 write support added by
  63. * Evgeniy Dushistov <dushistov@mail.ru>, 2007
  64. */
  65. #include <linux/exportfs.h>
  66. #include <linux/module.h>
  67. #include <linux/bitops.h>
  68. #include <stdarg.h>
  69. #include <asm/uaccess.h>
  70. #include <linux/errno.h>
  71. #include <linux/fs.h>
  72. #include <linux/slab.h>
  73. #include <linux/time.h>
  74. #include <linux/stat.h>
  75. #include <linux/string.h>
  76. #include <linux/blkdev.h>
  77. #include <linux/backing-dev.h>
  78. #include <linux/init.h>
  79. #include <linux/parser.h>
  80. #include <linux/buffer_head.h>
  81. #include <linux/vfs.h>
  82. #include <linux/log2.h>
  83. #include <linux/mount.h>
  84. #include <linux/seq_file.h>
  85. #include "ufs_fs.h"
  86. #include "ufs.h"
  87. #include "swab.h"
  88. #include "util.h"
  89. void lock_ufs(struct super_block *sb)
  90. {
  91. struct ufs_sb_info *sbi = UFS_SB(sb);
  92. mutex_lock(&sbi->mutex);
  93. sbi->mutex_owner = current;
  94. }
  95. void unlock_ufs(struct super_block *sb)
  96. {
  97. struct ufs_sb_info *sbi = UFS_SB(sb);
  98. sbi->mutex_owner = NULL;
  99. mutex_unlock(&sbi->mutex);
  100. }
  101. static struct inode *ufs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
  102. {
  103. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  104. struct inode *inode;
  105. if (ino < UFS_ROOTINO || ino > uspi->s_ncg * uspi->s_ipg)
  106. return ERR_PTR(-ESTALE);
  107. inode = ufs_iget(sb, ino);
  108. if (IS_ERR(inode))
  109. return ERR_CAST(inode);
  110. if (generation && inode->i_generation != generation) {
  111. iput(inode);
  112. return ERR_PTR(-ESTALE);
  113. }
  114. return inode;
  115. }
  116. static struct dentry *ufs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  117. int fh_len, int fh_type)
  118. {
  119. return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  120. }
  121. static struct dentry *ufs_fh_to_parent(struct super_block *sb, struct fid *fid,
  122. int fh_len, int fh_type)
  123. {
  124. return generic_fh_to_parent(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  125. }
  126. static struct dentry *ufs_get_parent(struct dentry *child)
  127. {
  128. struct qstr dot_dot = QSTR_INIT("..", 2);
  129. ino_t ino;
  130. ino = ufs_inode_by_name(d_inode(child), &dot_dot);
  131. if (!ino)
  132. return ERR_PTR(-ENOENT);
  133. return d_obtain_alias(ufs_iget(d_inode(child)->i_sb, ino));
  134. }
  135. static const struct export_operations ufs_export_ops = {
  136. .fh_to_dentry = ufs_fh_to_dentry,
  137. .fh_to_parent = ufs_fh_to_parent,
  138. .get_parent = ufs_get_parent,
  139. };
  140. #ifdef CONFIG_UFS_DEBUG
  141. /*
  142. * Print contents of ufs_super_block, useful for debugging
  143. */
  144. static void ufs_print_super_stuff(struct super_block *sb,
  145. struct ufs_super_block_first *usb1,
  146. struct ufs_super_block_second *usb2,
  147. struct ufs_super_block_third *usb3)
  148. {
  149. u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
  150. pr_debug("ufs_print_super_stuff\n");
  151. pr_debug(" magic: 0x%x\n", magic);
  152. if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
  153. pr_debug(" fs_size: %llu\n", (unsigned long long)
  154. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
  155. pr_debug(" fs_dsize: %llu\n", (unsigned long long)
  156. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
  157. pr_debug(" bsize: %u\n",
  158. fs32_to_cpu(sb, usb1->fs_bsize));
  159. pr_debug(" fsize: %u\n",
  160. fs32_to_cpu(sb, usb1->fs_fsize));
  161. pr_debug(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname);
  162. pr_debug(" fs_sblockloc: %llu\n", (unsigned long long)
  163. fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
  164. pr_debug(" cs_ndir(No of dirs): %llu\n", (unsigned long long)
  165. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
  166. pr_debug(" cs_nbfree(No of free blocks): %llu\n",
  167. (unsigned long long)
  168. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
  169. pr_info(" cs_nifree(Num of free inodes): %llu\n",
  170. (unsigned long long)
  171. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
  172. pr_info(" cs_nffree(Num of free frags): %llu\n",
  173. (unsigned long long)
  174. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
  175. pr_info(" fs_maxsymlinklen: %u\n",
  176. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
  177. } else {
  178. pr_debug(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
  179. pr_debug(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
  180. pr_debug(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
  181. pr_debug(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
  182. pr_debug(" cgoffset: %u\n",
  183. fs32_to_cpu(sb, usb1->fs_cgoffset));
  184. pr_debug(" ~cgmask: 0x%x\n",
  185. ~fs32_to_cpu(sb, usb1->fs_cgmask));
  186. pr_debug(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
  187. pr_debug(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
  188. pr_debug(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
  189. pr_debug(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
  190. pr_debug(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
  191. pr_debug(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
  192. pr_debug(" fragshift: %u\n",
  193. fs32_to_cpu(sb, usb1->fs_fragshift));
  194. pr_debug(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
  195. pr_debug(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
  196. pr_debug(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
  197. pr_debug(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
  198. pr_debug(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
  199. pr_debug(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
  200. pr_debug(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
  201. pr_debug(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
  202. pr_debug(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
  203. pr_debug(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
  204. pr_debug(" fstodb: %u\n",
  205. fs32_to_cpu(sb, usb1->fs_fsbtodb));
  206. pr_debug(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
  207. pr_debug(" ndir %u\n",
  208. fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
  209. pr_debug(" nifree %u\n",
  210. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
  211. pr_debug(" nbfree %u\n",
  212. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
  213. pr_debug(" nffree %u\n",
  214. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
  215. }
  216. pr_debug("\n");
  217. }
  218. /*
  219. * Print contents of ufs_cylinder_group, useful for debugging
  220. */
  221. static void ufs_print_cylinder_stuff(struct super_block *sb,
  222. struct ufs_cylinder_group *cg)
  223. {
  224. pr_debug("\nufs_print_cylinder_stuff\n");
  225. pr_debug("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
  226. pr_debug(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
  227. pr_debug(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
  228. pr_debug(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
  229. pr_debug(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
  230. pr_debug(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
  231. pr_debug(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
  232. pr_debug(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
  233. pr_debug(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
  234. pr_debug(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
  235. pr_debug(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
  236. pr_debug(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
  237. pr_debug(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
  238. pr_debug(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
  239. pr_debug(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
  240. fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
  241. fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
  242. fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
  243. fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
  244. pr_debug(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
  245. pr_debug(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
  246. pr_debug(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
  247. pr_debug(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
  248. pr_debug(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
  249. pr_debug(" clustersumoff %u\n",
  250. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
  251. pr_debug(" clusteroff %u\n",
  252. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
  253. pr_debug(" nclusterblks %u\n",
  254. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
  255. pr_debug("\n");
  256. }
  257. #else
  258. # define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/
  259. # define ufs_print_cylinder_stuff(sb, cg) /**/
  260. #endif /* CONFIG_UFS_DEBUG */
  261. static const struct super_operations ufs_super_ops;
  262. void ufs_error (struct super_block * sb, const char * function,
  263. const char * fmt, ...)
  264. {
  265. struct ufs_sb_private_info * uspi;
  266. struct ufs_super_block_first * usb1;
  267. struct va_format vaf;
  268. va_list args;
  269. uspi = UFS_SB(sb)->s_uspi;
  270. usb1 = ubh_get_usb_first(uspi);
  271. if (!(sb->s_flags & MS_RDONLY)) {
  272. usb1->fs_clean = UFS_FSBAD;
  273. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  274. ufs_mark_sb_dirty(sb);
  275. sb->s_flags |= MS_RDONLY;
  276. }
  277. va_start(args, fmt);
  278. vaf.fmt = fmt;
  279. vaf.va = &args;
  280. switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
  281. case UFS_MOUNT_ONERROR_PANIC:
  282. panic("panic (device %s): %s: %pV\n",
  283. sb->s_id, function, &vaf);
  284. case UFS_MOUNT_ONERROR_LOCK:
  285. case UFS_MOUNT_ONERROR_UMOUNT:
  286. case UFS_MOUNT_ONERROR_REPAIR:
  287. pr_crit("error (device %s): %s: %pV\n",
  288. sb->s_id, function, &vaf);
  289. }
  290. va_end(args);
  291. }
  292. void ufs_panic (struct super_block * sb, const char * function,
  293. const char * fmt, ...)
  294. {
  295. struct ufs_sb_private_info * uspi;
  296. struct ufs_super_block_first * usb1;
  297. struct va_format vaf;
  298. va_list args;
  299. uspi = UFS_SB(sb)->s_uspi;
  300. usb1 = ubh_get_usb_first(uspi);
  301. if (!(sb->s_flags & MS_RDONLY)) {
  302. usb1->fs_clean = UFS_FSBAD;
  303. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  304. ufs_mark_sb_dirty(sb);
  305. }
  306. va_start(args, fmt);
  307. vaf.fmt = fmt;
  308. vaf.va = &args;
  309. sb->s_flags |= MS_RDONLY;
  310. pr_crit("panic (device %s): %s: %pV\n",
  311. sb->s_id, function, &vaf);
  312. va_end(args);
  313. }
  314. void ufs_warning (struct super_block * sb, const char * function,
  315. const char * fmt, ...)
  316. {
  317. struct va_format vaf;
  318. va_list args;
  319. va_start(args, fmt);
  320. vaf.fmt = fmt;
  321. vaf.va = &args;
  322. pr_warn("(device %s): %s: %pV\n",
  323. sb->s_id, function, &vaf);
  324. va_end(args);
  325. }
  326. enum {
  327. Opt_type_old = UFS_MOUNT_UFSTYPE_OLD,
  328. Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86,
  329. Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN,
  330. Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS,
  331. Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD,
  332. Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2,
  333. Opt_type_hp = UFS_MOUNT_UFSTYPE_HP,
  334. Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD,
  335. Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP,
  336. Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP,
  337. Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC,
  338. Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK,
  339. Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT,
  340. Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR,
  341. Opt_err
  342. };
  343. static const match_table_t tokens = {
  344. {Opt_type_old, "ufstype=old"},
  345. {Opt_type_sunx86, "ufstype=sunx86"},
  346. {Opt_type_sun, "ufstype=sun"},
  347. {Opt_type_sunos, "ufstype=sunos"},
  348. {Opt_type_44bsd, "ufstype=44bsd"},
  349. {Opt_type_ufs2, "ufstype=ufs2"},
  350. {Opt_type_ufs2, "ufstype=5xbsd"},
  351. {Opt_type_hp, "ufstype=hp"},
  352. {Opt_type_nextstepcd, "ufstype=nextstep-cd"},
  353. {Opt_type_nextstep, "ufstype=nextstep"},
  354. {Opt_type_openstep, "ufstype=openstep"},
  355. /*end of possible ufs types */
  356. {Opt_onerror_panic, "onerror=panic"},
  357. {Opt_onerror_lock, "onerror=lock"},
  358. {Opt_onerror_umount, "onerror=umount"},
  359. {Opt_onerror_repair, "onerror=repair"},
  360. {Opt_err, NULL}
  361. };
  362. static int ufs_parse_options (char * options, unsigned * mount_options)
  363. {
  364. char * p;
  365. UFSD("ENTER\n");
  366. if (!options)
  367. return 1;
  368. while ((p = strsep(&options, ",")) != NULL) {
  369. substring_t args[MAX_OPT_ARGS];
  370. int token;
  371. if (!*p)
  372. continue;
  373. token = match_token(p, tokens, args);
  374. switch (token) {
  375. case Opt_type_old:
  376. ufs_clear_opt (*mount_options, UFSTYPE);
  377. ufs_set_opt (*mount_options, UFSTYPE_OLD);
  378. break;
  379. case Opt_type_sunx86:
  380. ufs_clear_opt (*mount_options, UFSTYPE);
  381. ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
  382. break;
  383. case Opt_type_sun:
  384. ufs_clear_opt (*mount_options, UFSTYPE);
  385. ufs_set_opt (*mount_options, UFSTYPE_SUN);
  386. break;
  387. case Opt_type_sunos:
  388. ufs_clear_opt(*mount_options, UFSTYPE);
  389. ufs_set_opt(*mount_options, UFSTYPE_SUNOS);
  390. break;
  391. case Opt_type_44bsd:
  392. ufs_clear_opt (*mount_options, UFSTYPE);
  393. ufs_set_opt (*mount_options, UFSTYPE_44BSD);
  394. break;
  395. case Opt_type_ufs2:
  396. ufs_clear_opt(*mount_options, UFSTYPE);
  397. ufs_set_opt(*mount_options, UFSTYPE_UFS2);
  398. break;
  399. case Opt_type_hp:
  400. ufs_clear_opt (*mount_options, UFSTYPE);
  401. ufs_set_opt (*mount_options, UFSTYPE_HP);
  402. break;
  403. case Opt_type_nextstepcd:
  404. ufs_clear_opt (*mount_options, UFSTYPE);
  405. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
  406. break;
  407. case Opt_type_nextstep:
  408. ufs_clear_opt (*mount_options, UFSTYPE);
  409. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
  410. break;
  411. case Opt_type_openstep:
  412. ufs_clear_opt (*mount_options, UFSTYPE);
  413. ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
  414. break;
  415. case Opt_onerror_panic:
  416. ufs_clear_opt (*mount_options, ONERROR);
  417. ufs_set_opt (*mount_options, ONERROR_PANIC);
  418. break;
  419. case Opt_onerror_lock:
  420. ufs_clear_opt (*mount_options, ONERROR);
  421. ufs_set_opt (*mount_options, ONERROR_LOCK);
  422. break;
  423. case Opt_onerror_umount:
  424. ufs_clear_opt (*mount_options, ONERROR);
  425. ufs_set_opt (*mount_options, ONERROR_UMOUNT);
  426. break;
  427. case Opt_onerror_repair:
  428. pr_err("Unable to do repair on error, will lock lock instead\n");
  429. ufs_clear_opt (*mount_options, ONERROR);
  430. ufs_set_opt (*mount_options, ONERROR_REPAIR);
  431. break;
  432. default:
  433. pr_err("Invalid option: \"%s\" or missing value\n", p);
  434. return 0;
  435. }
  436. }
  437. return 1;
  438. }
  439. /*
  440. * Different types of UFS hold fs_cstotal in different
  441. * places, and use different data structure for it.
  442. * To make things simpler we just copy fs_cstotal to ufs_sb_private_info
  443. */
  444. static void ufs_setup_cstotal(struct super_block *sb)
  445. {
  446. struct ufs_sb_info *sbi = UFS_SB(sb);
  447. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  448. struct ufs_super_block_first *usb1;
  449. struct ufs_super_block_second *usb2;
  450. struct ufs_super_block_third *usb3;
  451. unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  452. UFSD("ENTER, mtype=%u\n", mtype);
  453. usb1 = ubh_get_usb_first(uspi);
  454. usb2 = ubh_get_usb_second(uspi);
  455. usb3 = ubh_get_usb_third(uspi);
  456. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  457. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  458. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  459. /*we have statistic in different place, then usual*/
  460. uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
  461. uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
  462. uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
  463. uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
  464. } else {
  465. uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
  466. uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
  467. uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
  468. uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
  469. }
  470. UFSD("EXIT\n");
  471. }
  472. /*
  473. * Read on-disk structures associated with cylinder groups
  474. */
  475. static int ufs_read_cylinder_structures(struct super_block *sb)
  476. {
  477. struct ufs_sb_info *sbi = UFS_SB(sb);
  478. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  479. struct ufs_buffer_head * ubh;
  480. unsigned char * base, * space;
  481. unsigned size, blks, i;
  482. UFSD("ENTER\n");
  483. /*
  484. * Read cs structures from (usually) first data block
  485. * on the device.
  486. */
  487. size = uspi->s_cssize;
  488. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  489. base = space = kmalloc(size, GFP_NOFS);
  490. if (!base)
  491. goto failed;
  492. sbi->s_csp = (struct ufs_csum *)space;
  493. for (i = 0; i < blks; i += uspi->s_fpb) {
  494. size = uspi->s_bsize;
  495. if (i + uspi->s_fpb > blks)
  496. size = (blks - i) * uspi->s_fsize;
  497. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  498. if (!ubh)
  499. goto failed;
  500. ubh_ubhcpymem (space, ubh, size);
  501. space += size;
  502. ubh_brelse (ubh);
  503. ubh = NULL;
  504. }
  505. /*
  506. * Read cylinder group (we read only first fragment from block
  507. * at this time) and prepare internal data structures for cg caching.
  508. */
  509. if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_NOFS)))
  510. goto failed;
  511. for (i = 0; i < uspi->s_ncg; i++)
  512. sbi->s_ucg[i] = NULL;
  513. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  514. sbi->s_ucpi[i] = NULL;
  515. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  516. }
  517. for (i = 0; i < uspi->s_ncg; i++) {
  518. UFSD("read cg %u\n", i);
  519. if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
  520. goto failed;
  521. if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
  522. goto failed;
  523. ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
  524. }
  525. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  526. if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_NOFS)))
  527. goto failed;
  528. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  529. }
  530. sbi->s_cg_loaded = 0;
  531. UFSD("EXIT\n");
  532. return 1;
  533. failed:
  534. kfree (base);
  535. if (sbi->s_ucg) {
  536. for (i = 0; i < uspi->s_ncg; i++)
  537. if (sbi->s_ucg[i])
  538. brelse (sbi->s_ucg[i]);
  539. kfree (sbi->s_ucg);
  540. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
  541. kfree (sbi->s_ucpi[i]);
  542. }
  543. UFSD("EXIT (FAILED)\n");
  544. return 0;
  545. }
  546. /*
  547. * Sync our internal copy of fs_cstotal with disk
  548. */
  549. static void ufs_put_cstotal(struct super_block *sb)
  550. {
  551. unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  552. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  553. struct ufs_super_block_first *usb1;
  554. struct ufs_super_block_second *usb2;
  555. struct ufs_super_block_third *usb3;
  556. UFSD("ENTER\n");
  557. usb1 = ubh_get_usb_first(uspi);
  558. usb2 = ubh_get_usb_second(uspi);
  559. usb3 = ubh_get_usb_third(uspi);
  560. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  561. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  562. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  563. /*we have statistic in different place, then usual*/
  564. usb2->fs_un.fs_u2.cs_ndir =
  565. cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
  566. usb2->fs_un.fs_u2.cs_nbfree =
  567. cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
  568. usb3->fs_un1.fs_u2.cs_nifree =
  569. cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
  570. usb3->fs_un1.fs_u2.cs_nffree =
  571. cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
  572. } else {
  573. usb1->fs_cstotal.cs_ndir =
  574. cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
  575. usb1->fs_cstotal.cs_nbfree =
  576. cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
  577. usb1->fs_cstotal.cs_nifree =
  578. cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
  579. usb1->fs_cstotal.cs_nffree =
  580. cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
  581. }
  582. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  583. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  584. UFSD("EXIT\n");
  585. }
  586. /**
  587. * ufs_put_super_internal() - put on-disk intrenal structures
  588. * @sb: pointer to super_block structure
  589. * Put on-disk structures associated with cylinder groups
  590. * and write them back to disk, also update cs_total on disk
  591. */
  592. static void ufs_put_super_internal(struct super_block *sb)
  593. {
  594. struct ufs_sb_info *sbi = UFS_SB(sb);
  595. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  596. struct ufs_buffer_head * ubh;
  597. unsigned char * base, * space;
  598. unsigned blks, size, i;
  599. UFSD("ENTER\n");
  600. ufs_put_cstotal(sb);
  601. size = uspi->s_cssize;
  602. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  603. base = space = (char*) sbi->s_csp;
  604. for (i = 0; i < blks; i += uspi->s_fpb) {
  605. size = uspi->s_bsize;
  606. if (i + uspi->s_fpb > blks)
  607. size = (blks - i) * uspi->s_fsize;
  608. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  609. ubh_memcpyubh (ubh, space, size);
  610. space += size;
  611. ubh_mark_buffer_uptodate (ubh, 1);
  612. ubh_mark_buffer_dirty (ubh);
  613. ubh_brelse (ubh);
  614. }
  615. for (i = 0; i < sbi->s_cg_loaded; i++) {
  616. ufs_put_cylinder (sb, i);
  617. kfree (sbi->s_ucpi[i]);
  618. }
  619. for (; i < UFS_MAX_GROUP_LOADED; i++)
  620. kfree (sbi->s_ucpi[i]);
  621. for (i = 0; i < uspi->s_ncg; i++)
  622. brelse (sbi->s_ucg[i]);
  623. kfree (sbi->s_ucg);
  624. kfree (base);
  625. UFSD("EXIT\n");
  626. }
  627. static int ufs_sync_fs(struct super_block *sb, int wait)
  628. {
  629. struct ufs_sb_private_info * uspi;
  630. struct ufs_super_block_first * usb1;
  631. struct ufs_super_block_third * usb3;
  632. unsigned flags;
  633. lock_ufs(sb);
  634. mutex_lock(&UFS_SB(sb)->s_lock);
  635. UFSD("ENTER\n");
  636. flags = UFS_SB(sb)->s_flags;
  637. uspi = UFS_SB(sb)->s_uspi;
  638. usb1 = ubh_get_usb_first(uspi);
  639. usb3 = ubh_get_usb_third(uspi);
  640. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  641. if ((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  642. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  643. (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  644. ufs_set_fs_state(sb, usb1, usb3,
  645. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  646. ufs_put_cstotal(sb);
  647. UFSD("EXIT\n");
  648. mutex_unlock(&UFS_SB(sb)->s_lock);
  649. unlock_ufs(sb);
  650. return 0;
  651. }
  652. static void delayed_sync_fs(struct work_struct *work)
  653. {
  654. struct ufs_sb_info *sbi;
  655. sbi = container_of(work, struct ufs_sb_info, sync_work.work);
  656. spin_lock(&sbi->work_lock);
  657. sbi->work_queued = 0;
  658. spin_unlock(&sbi->work_lock);
  659. ufs_sync_fs(sbi->sb, 1);
  660. }
  661. void ufs_mark_sb_dirty(struct super_block *sb)
  662. {
  663. struct ufs_sb_info *sbi = UFS_SB(sb);
  664. unsigned long delay;
  665. spin_lock(&sbi->work_lock);
  666. if (!sbi->work_queued) {
  667. delay = msecs_to_jiffies(dirty_writeback_interval * 10);
  668. queue_delayed_work(system_long_wq, &sbi->sync_work, delay);
  669. sbi->work_queued = 1;
  670. }
  671. spin_unlock(&sbi->work_lock);
  672. }
  673. static void ufs_put_super(struct super_block *sb)
  674. {
  675. struct ufs_sb_info * sbi = UFS_SB(sb);
  676. UFSD("ENTER\n");
  677. if (!(sb->s_flags & MS_RDONLY))
  678. ufs_put_super_internal(sb);
  679. cancel_delayed_work_sync(&sbi->sync_work);
  680. ubh_brelse_uspi (sbi->s_uspi);
  681. kfree (sbi->s_uspi);
  682. mutex_destroy(&sbi->mutex);
  683. kfree (sbi);
  684. sb->s_fs_info = NULL;
  685. UFSD("EXIT\n");
  686. return;
  687. }
  688. static int ufs_fill_super(struct super_block *sb, void *data, int silent)
  689. {
  690. struct ufs_sb_info * sbi;
  691. struct ufs_sb_private_info * uspi;
  692. struct ufs_super_block_first * usb1;
  693. struct ufs_super_block_second * usb2;
  694. struct ufs_super_block_third * usb3;
  695. struct ufs_buffer_head * ubh;
  696. struct inode *inode;
  697. unsigned block_size, super_block_size;
  698. unsigned flags;
  699. unsigned super_block_offset;
  700. unsigned maxsymlen;
  701. int ret = -EINVAL;
  702. uspi = NULL;
  703. ubh = NULL;
  704. flags = 0;
  705. UFSD("ENTER\n");
  706. #ifndef CONFIG_UFS_FS_WRITE
  707. if (!(sb->s_flags & MS_RDONLY)) {
  708. pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
  709. return -EROFS;
  710. }
  711. #endif
  712. sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
  713. if (!sbi)
  714. goto failed_nomem;
  715. sb->s_fs_info = sbi;
  716. sbi->sb = sb;
  717. UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
  718. mutex_init(&sbi->mutex);
  719. mutex_init(&sbi->s_lock);
  720. spin_lock_init(&sbi->work_lock);
  721. INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
  722. /*
  723. * Set default mount options
  724. * Parse mount options
  725. */
  726. sbi->s_mount_opt = 0;
  727. ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
  728. if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
  729. pr_err("wrong mount options\n");
  730. goto failed;
  731. }
  732. if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
  733. if (!silent)
  734. pr_err("You didn't specify the type of your ufs filesystem\n\n"
  735. "mount -t ufs -o ufstype="
  736. "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
  737. ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
  738. "default is ufstype=old\n");
  739. ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
  740. }
  741. uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
  742. sbi->s_uspi = uspi;
  743. if (!uspi)
  744. goto failed;
  745. uspi->s_dirblksize = UFS_SECTOR_SIZE;
  746. super_block_offset=UFS_SBLOCK;
  747. /* Keep 2Gig file limit. Some UFS variants need to override
  748. this but as I don't know which I'll let those in the know loosen
  749. the rules */
  750. switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
  751. case UFS_MOUNT_UFSTYPE_44BSD:
  752. UFSD("ufstype=44bsd\n");
  753. uspi->s_fsize = block_size = 512;
  754. uspi->s_fmask = ~(512 - 1);
  755. uspi->s_fshift = 9;
  756. uspi->s_sbsize = super_block_size = 1536;
  757. uspi->s_sbbase = 0;
  758. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  759. break;
  760. case UFS_MOUNT_UFSTYPE_UFS2:
  761. UFSD("ufstype=ufs2\n");
  762. super_block_offset=SBLOCK_UFS2;
  763. uspi->s_fsize = block_size = 512;
  764. uspi->s_fmask = ~(512 - 1);
  765. uspi->s_fshift = 9;
  766. uspi->s_sbsize = super_block_size = 1536;
  767. uspi->s_sbbase = 0;
  768. flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  769. break;
  770. case UFS_MOUNT_UFSTYPE_SUN:
  771. UFSD("ufstype=sun\n");
  772. uspi->s_fsize = block_size = 1024;
  773. uspi->s_fmask = ~(1024 - 1);
  774. uspi->s_fshift = 10;
  775. uspi->s_sbsize = super_block_size = 2048;
  776. uspi->s_sbbase = 0;
  777. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  778. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
  779. break;
  780. case UFS_MOUNT_UFSTYPE_SUNOS:
  781. UFSD("ufstype=sunos\n");
  782. uspi->s_fsize = block_size = 1024;
  783. uspi->s_fmask = ~(1024 - 1);
  784. uspi->s_fshift = 10;
  785. uspi->s_sbsize = 2048;
  786. super_block_size = 2048;
  787. uspi->s_sbbase = 0;
  788. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  789. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
  790. break;
  791. case UFS_MOUNT_UFSTYPE_SUNx86:
  792. UFSD("ufstype=sunx86\n");
  793. uspi->s_fsize = block_size = 1024;
  794. uspi->s_fmask = ~(1024 - 1);
  795. uspi->s_fshift = 10;
  796. uspi->s_sbsize = super_block_size = 2048;
  797. uspi->s_sbbase = 0;
  798. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  799. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
  800. break;
  801. case UFS_MOUNT_UFSTYPE_OLD:
  802. UFSD("ufstype=old\n");
  803. uspi->s_fsize = block_size = 1024;
  804. uspi->s_fmask = ~(1024 - 1);
  805. uspi->s_fshift = 10;
  806. uspi->s_sbsize = super_block_size = 2048;
  807. uspi->s_sbbase = 0;
  808. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  809. if (!(sb->s_flags & MS_RDONLY)) {
  810. if (!silent)
  811. pr_info("ufstype=old is supported read-only\n");
  812. sb->s_flags |= MS_RDONLY;
  813. }
  814. break;
  815. case UFS_MOUNT_UFSTYPE_NEXTSTEP:
  816. UFSD("ufstype=nextstep\n");
  817. uspi->s_fsize = block_size = 1024;
  818. uspi->s_fmask = ~(1024 - 1);
  819. uspi->s_fshift = 10;
  820. uspi->s_sbsize = super_block_size = 2048;
  821. uspi->s_sbbase = 0;
  822. uspi->s_dirblksize = 1024;
  823. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  824. if (!(sb->s_flags & MS_RDONLY)) {
  825. if (!silent)
  826. pr_info("ufstype=nextstep is supported read-only\n");
  827. sb->s_flags |= MS_RDONLY;
  828. }
  829. break;
  830. case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
  831. UFSD("ufstype=nextstep-cd\n");
  832. uspi->s_fsize = block_size = 2048;
  833. uspi->s_fmask = ~(2048 - 1);
  834. uspi->s_fshift = 11;
  835. uspi->s_sbsize = super_block_size = 2048;
  836. uspi->s_sbbase = 0;
  837. uspi->s_dirblksize = 1024;
  838. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  839. if (!(sb->s_flags & MS_RDONLY)) {
  840. if (!silent)
  841. pr_info("ufstype=nextstep-cd is supported read-only\n");
  842. sb->s_flags |= MS_RDONLY;
  843. }
  844. break;
  845. case UFS_MOUNT_UFSTYPE_OPENSTEP:
  846. UFSD("ufstype=openstep\n");
  847. uspi->s_fsize = block_size = 1024;
  848. uspi->s_fmask = ~(1024 - 1);
  849. uspi->s_fshift = 10;
  850. uspi->s_sbsize = super_block_size = 2048;
  851. uspi->s_sbbase = 0;
  852. uspi->s_dirblksize = 1024;
  853. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  854. if (!(sb->s_flags & MS_RDONLY)) {
  855. if (!silent)
  856. pr_info("ufstype=openstep is supported read-only\n");
  857. sb->s_flags |= MS_RDONLY;
  858. }
  859. break;
  860. case UFS_MOUNT_UFSTYPE_HP:
  861. UFSD("ufstype=hp\n");
  862. uspi->s_fsize = block_size = 1024;
  863. uspi->s_fmask = ~(1024 - 1);
  864. uspi->s_fshift = 10;
  865. uspi->s_sbsize = super_block_size = 2048;
  866. uspi->s_sbbase = 0;
  867. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  868. if (!(sb->s_flags & MS_RDONLY)) {
  869. if (!silent)
  870. pr_info("ufstype=hp is supported read-only\n");
  871. sb->s_flags |= MS_RDONLY;
  872. }
  873. break;
  874. default:
  875. if (!silent)
  876. pr_err("unknown ufstype\n");
  877. goto failed;
  878. }
  879. again:
  880. if (!sb_set_blocksize(sb, block_size)) {
  881. pr_err("failed to set blocksize\n");
  882. goto failed;
  883. }
  884. /*
  885. * read ufs super block from device
  886. */
  887. ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
  888. if (!ubh)
  889. goto failed;
  890. usb1 = ubh_get_usb_first(uspi);
  891. usb2 = ubh_get_usb_second(uspi);
  892. usb3 = ubh_get_usb_third(uspi);
  893. /* Sort out mod used on SunOS 4.1.3 for fs_state */
  894. uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
  895. if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
  896. (uspi->s_postblformat != UFS_42POSTBLFMT)) {
  897. flags &= ~UFS_ST_MASK;
  898. flags |= UFS_ST_SUN;
  899. }
  900. /*
  901. * Check ufs magic number
  902. */
  903. sbi->s_bytesex = BYTESEX_LE;
  904. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  905. case UFS_MAGIC:
  906. case UFS_MAGIC_BW:
  907. case UFS2_MAGIC:
  908. case UFS_MAGIC_LFN:
  909. case UFS_MAGIC_FEA:
  910. case UFS_MAGIC_4GB:
  911. goto magic_found;
  912. }
  913. sbi->s_bytesex = BYTESEX_BE;
  914. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  915. case UFS_MAGIC:
  916. case UFS_MAGIC_BW:
  917. case UFS2_MAGIC:
  918. case UFS_MAGIC_LFN:
  919. case UFS_MAGIC_FEA:
  920. case UFS_MAGIC_4GB:
  921. goto magic_found;
  922. }
  923. if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
  924. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
  925. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
  926. && uspi->s_sbbase < 256) {
  927. ubh_brelse_uspi(uspi);
  928. ubh = NULL;
  929. uspi->s_sbbase += 8;
  930. goto again;
  931. }
  932. if (!silent)
  933. pr_err("%s(): bad magic number\n", __func__);
  934. goto failed;
  935. magic_found:
  936. /*
  937. * Check block and fragment sizes
  938. */
  939. uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
  940. uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
  941. uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
  942. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  943. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  944. if (!is_power_of_2(uspi->s_fsize)) {
  945. pr_err("%s(): fragment size %u is not a power of 2\n",
  946. __func__, uspi->s_fsize);
  947. goto failed;
  948. }
  949. if (uspi->s_fsize < 512) {
  950. pr_err("%s(): fragment size %u is too small\n",
  951. __func__, uspi->s_fsize);
  952. goto failed;
  953. }
  954. if (uspi->s_fsize > 4096) {
  955. pr_err("%s(): fragment size %u is too large\n",
  956. __func__, uspi->s_fsize);
  957. goto failed;
  958. }
  959. if (!is_power_of_2(uspi->s_bsize)) {
  960. pr_err("%s(): block size %u is not a power of 2\n",
  961. __func__, uspi->s_bsize);
  962. goto failed;
  963. }
  964. if (uspi->s_bsize < 4096) {
  965. pr_err("%s(): block size %u is too small\n",
  966. __func__, uspi->s_bsize);
  967. goto failed;
  968. }
  969. if (uspi->s_bsize / uspi->s_fsize > 8) {
  970. pr_err("%s(): too many fragments per block (%u)\n",
  971. __func__, uspi->s_bsize / uspi->s_fsize);
  972. goto failed;
  973. }
  974. if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
  975. ubh_brelse_uspi(uspi);
  976. ubh = NULL;
  977. block_size = uspi->s_fsize;
  978. super_block_size = uspi->s_sbsize;
  979. UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
  980. goto again;
  981. }
  982. sbi->s_flags = flags;/*after that line some functions use s_flags*/
  983. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  984. /*
  985. * Check, if file system was correctly unmounted.
  986. * If not, make it read only.
  987. */
  988. if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
  989. ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
  990. (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  991. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  992. (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
  993. (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
  994. switch(usb1->fs_clean) {
  995. case UFS_FSCLEAN:
  996. UFSD("fs is clean\n");
  997. break;
  998. case UFS_FSSTABLE:
  999. UFSD("fs is stable\n");
  1000. break;
  1001. case UFS_FSLOG:
  1002. UFSD("fs is logging fs\n");
  1003. break;
  1004. case UFS_FSOSF1:
  1005. UFSD("fs is DEC OSF/1\n");
  1006. break;
  1007. case UFS_FSACTIVE:
  1008. pr_err("%s(): fs is active\n", __func__);
  1009. sb->s_flags |= MS_RDONLY;
  1010. break;
  1011. case UFS_FSBAD:
  1012. pr_err("%s(): fs is bad\n", __func__);
  1013. sb->s_flags |= MS_RDONLY;
  1014. break;
  1015. default:
  1016. pr_err("%s(): can't grok fs_clean 0x%x\n",
  1017. __func__, usb1->fs_clean);
  1018. sb->s_flags |= MS_RDONLY;
  1019. break;
  1020. }
  1021. } else {
  1022. pr_err("%s(): fs needs fsck\n", __func__);
  1023. sb->s_flags |= MS_RDONLY;
  1024. }
  1025. /*
  1026. * Read ufs_super_block into internal data structures
  1027. */
  1028. sb->s_op = &ufs_super_ops;
  1029. sb->s_export_op = &ufs_export_ops;
  1030. sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
  1031. uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
  1032. uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
  1033. uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
  1034. uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
  1035. uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
  1036. uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
  1037. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1038. uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
  1039. uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1040. } else {
  1041. uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
  1042. uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
  1043. }
  1044. uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
  1045. /* s_bsize already set */
  1046. /* s_fsize already set */
  1047. uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
  1048. uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
  1049. uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
  1050. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  1051. uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
  1052. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  1053. UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
  1054. uspi->s_fshift);
  1055. uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
  1056. uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
  1057. /* s_sbsize already set */
  1058. uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
  1059. uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
  1060. uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
  1061. uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
  1062. uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
  1063. uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
  1064. uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
  1065. uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
  1066. if (uspi->fs_magic == UFS2_MAGIC)
  1067. uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
  1068. else
  1069. uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
  1070. uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
  1071. uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
  1072. uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
  1073. uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
  1074. uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
  1075. uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
  1076. uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
  1077. uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
  1078. uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
  1079. uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
  1080. uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
  1081. uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
  1082. uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
  1083. uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
  1084. /*
  1085. * Compute another frequently used values
  1086. */
  1087. uspi->s_fpbmask = uspi->s_fpb - 1;
  1088. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  1089. uspi->s_apbshift = uspi->s_bshift - 3;
  1090. else
  1091. uspi->s_apbshift = uspi->s_bshift - 2;
  1092. uspi->s_2apbshift = uspi->s_apbshift * 2;
  1093. uspi->s_3apbshift = uspi->s_apbshift * 3;
  1094. uspi->s_apb = 1 << uspi->s_apbshift;
  1095. uspi->s_2apb = 1 << uspi->s_2apbshift;
  1096. uspi->s_3apb = 1 << uspi->s_3apbshift;
  1097. uspi->s_apbmask = uspi->s_apb - 1;
  1098. uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
  1099. uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
  1100. uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
  1101. uspi->s_bpf = uspi->s_fsize << 3;
  1102. uspi->s_bpfshift = uspi->s_fshift + 3;
  1103. uspi->s_bpfmask = uspi->s_bpf - 1;
  1104. if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
  1105. (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
  1106. uspi->s_maxsymlinklen =
  1107. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);
  1108. if (uspi->fs_magic == UFS2_MAGIC)
  1109. maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
  1110. else
  1111. maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
  1112. if (uspi->s_maxsymlinklen > maxsymlen) {
  1113. ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
  1114. "fast symlink size (%u)\n", uspi->s_maxsymlinklen);
  1115. uspi->s_maxsymlinklen = maxsymlen;
  1116. }
  1117. sb->s_max_links = UFS_LINK_MAX;
  1118. inode = ufs_iget(sb, UFS_ROOTINO);
  1119. if (IS_ERR(inode)) {
  1120. ret = PTR_ERR(inode);
  1121. goto failed;
  1122. }
  1123. sb->s_root = d_make_root(inode);
  1124. if (!sb->s_root) {
  1125. ret = -ENOMEM;
  1126. goto failed;
  1127. }
  1128. ufs_setup_cstotal(sb);
  1129. /*
  1130. * Read cylinder group structures
  1131. */
  1132. if (!(sb->s_flags & MS_RDONLY))
  1133. if (!ufs_read_cylinder_structures(sb))
  1134. goto failed;
  1135. UFSD("EXIT\n");
  1136. return 0;
  1137. failed:
  1138. mutex_destroy(&sbi->mutex);
  1139. if (ubh)
  1140. ubh_brelse_uspi (uspi);
  1141. kfree (uspi);
  1142. kfree(sbi);
  1143. sb->s_fs_info = NULL;
  1144. UFSD("EXIT (FAILED)\n");
  1145. return ret;
  1146. failed_nomem:
  1147. UFSD("EXIT (NOMEM)\n");
  1148. return -ENOMEM;
  1149. }
  1150. static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
  1151. {
  1152. struct ufs_sb_private_info * uspi;
  1153. struct ufs_super_block_first * usb1;
  1154. struct ufs_super_block_third * usb3;
  1155. unsigned new_mount_opt, ufstype;
  1156. unsigned flags;
  1157. sync_filesystem(sb);
  1158. lock_ufs(sb);
  1159. mutex_lock(&UFS_SB(sb)->s_lock);
  1160. uspi = UFS_SB(sb)->s_uspi;
  1161. flags = UFS_SB(sb)->s_flags;
  1162. usb1 = ubh_get_usb_first(uspi);
  1163. usb3 = ubh_get_usb_third(uspi);
  1164. /*
  1165. * Allow the "check" option to be passed as a remount option.
  1166. * It is not possible to change ufstype option during remount
  1167. */
  1168. ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1169. new_mount_opt = 0;
  1170. ufs_set_opt (new_mount_opt, ONERROR_LOCK);
  1171. if (!ufs_parse_options (data, &new_mount_opt)) {
  1172. mutex_unlock(&UFS_SB(sb)->s_lock);
  1173. unlock_ufs(sb);
  1174. return -EINVAL;
  1175. }
  1176. if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
  1177. new_mount_opt |= ufstype;
  1178. } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
  1179. pr_err("ufstype can't be changed during remount\n");
  1180. mutex_unlock(&UFS_SB(sb)->s_lock);
  1181. unlock_ufs(sb);
  1182. return -EINVAL;
  1183. }
  1184. if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
  1185. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1186. mutex_unlock(&UFS_SB(sb)->s_lock);
  1187. unlock_ufs(sb);
  1188. return 0;
  1189. }
  1190. /*
  1191. * fs was mouted as rw, remounting ro
  1192. */
  1193. if (*mount_flags & MS_RDONLY) {
  1194. ufs_put_super_internal(sb);
  1195. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  1196. if ((flags & UFS_ST_MASK) == UFS_ST_SUN
  1197. || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
  1198. || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  1199. ufs_set_fs_state(sb, usb1, usb3,
  1200. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  1201. ubh_mark_buffer_dirty (USPI_UBH(uspi));
  1202. sb->s_flags |= MS_RDONLY;
  1203. } else {
  1204. /*
  1205. * fs was mounted as ro, remounting rw
  1206. */
  1207. #ifndef CONFIG_UFS_FS_WRITE
  1208. pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
  1209. mutex_unlock(&UFS_SB(sb)->s_lock);
  1210. unlock_ufs(sb);
  1211. return -EINVAL;
  1212. #else
  1213. if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
  1214. ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
  1215. ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
  1216. ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
  1217. ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
  1218. pr_err("this ufstype is read-only supported\n");
  1219. mutex_unlock(&UFS_SB(sb)->s_lock);
  1220. unlock_ufs(sb);
  1221. return -EINVAL;
  1222. }
  1223. if (!ufs_read_cylinder_structures(sb)) {
  1224. pr_err("failed during remounting\n");
  1225. mutex_unlock(&UFS_SB(sb)->s_lock);
  1226. unlock_ufs(sb);
  1227. return -EPERM;
  1228. }
  1229. sb->s_flags &= ~MS_RDONLY;
  1230. #endif
  1231. }
  1232. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1233. mutex_unlock(&UFS_SB(sb)->s_lock);
  1234. unlock_ufs(sb);
  1235. return 0;
  1236. }
  1237. static int ufs_show_options(struct seq_file *seq, struct dentry *root)
  1238. {
  1239. struct ufs_sb_info *sbi = UFS_SB(root->d_sb);
  1240. unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1241. const struct match_token *tp = tokens;
  1242. while (tp->token != Opt_onerror_panic && tp->token != mval)
  1243. ++tp;
  1244. BUG_ON(tp->token == Opt_onerror_panic);
  1245. seq_printf(seq, ",%s", tp->pattern);
  1246. mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR;
  1247. while (tp->token != Opt_err && tp->token != mval)
  1248. ++tp;
  1249. BUG_ON(tp->token == Opt_err);
  1250. seq_printf(seq, ",%s", tp->pattern);
  1251. return 0;
  1252. }
  1253. static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1254. {
  1255. struct super_block *sb = dentry->d_sb;
  1256. struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
  1257. unsigned flags = UFS_SB(sb)->s_flags;
  1258. struct ufs_super_block_third *usb3;
  1259. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  1260. lock_ufs(sb);
  1261. usb3 = ubh_get_usb_third(uspi);
  1262. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1263. buf->f_type = UFS2_MAGIC;
  1264. buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1265. } else {
  1266. buf->f_type = UFS_MAGIC;
  1267. buf->f_blocks = uspi->s_dsize;
  1268. }
  1269. buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
  1270. uspi->cs_total.cs_nffree;
  1271. buf->f_ffree = uspi->cs_total.cs_nifree;
  1272. buf->f_bsize = sb->s_blocksize;
  1273. buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
  1274. ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
  1275. buf->f_files = uspi->s_ncg * uspi->s_ipg;
  1276. buf->f_namelen = UFS_MAXNAMLEN;
  1277. buf->f_fsid.val[0] = (u32)id;
  1278. buf->f_fsid.val[1] = (u32)(id >> 32);
  1279. unlock_ufs(sb);
  1280. return 0;
  1281. }
  1282. static struct kmem_cache * ufs_inode_cachep;
  1283. static struct inode *ufs_alloc_inode(struct super_block *sb)
  1284. {
  1285. struct ufs_inode_info *ei;
  1286. ei = kmem_cache_alloc(ufs_inode_cachep, GFP_NOFS);
  1287. if (!ei)
  1288. return NULL;
  1289. ei->vfs_inode.i_version = 1;
  1290. return &ei->vfs_inode;
  1291. }
  1292. static void ufs_i_callback(struct rcu_head *head)
  1293. {
  1294. struct inode *inode = container_of(head, struct inode, i_rcu);
  1295. kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
  1296. }
  1297. static void ufs_destroy_inode(struct inode *inode)
  1298. {
  1299. call_rcu(&inode->i_rcu, ufs_i_callback);
  1300. }
  1301. static void init_once(void *foo)
  1302. {
  1303. struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
  1304. inode_init_once(&ei->vfs_inode);
  1305. }
  1306. static int __init init_inodecache(void)
  1307. {
  1308. ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
  1309. sizeof(struct ufs_inode_info),
  1310. 0, (SLAB_RECLAIM_ACCOUNT|
  1311. SLAB_MEM_SPREAD),
  1312. init_once);
  1313. if (ufs_inode_cachep == NULL)
  1314. return -ENOMEM;
  1315. return 0;
  1316. }
  1317. static void destroy_inodecache(void)
  1318. {
  1319. /*
  1320. * Make sure all delayed rcu free inodes are flushed before we
  1321. * destroy cache.
  1322. */
  1323. rcu_barrier();
  1324. kmem_cache_destroy(ufs_inode_cachep);
  1325. }
  1326. static const struct super_operations ufs_super_ops = {
  1327. .alloc_inode = ufs_alloc_inode,
  1328. .destroy_inode = ufs_destroy_inode,
  1329. .write_inode = ufs_write_inode,
  1330. .evict_inode = ufs_evict_inode,
  1331. .put_super = ufs_put_super,
  1332. .sync_fs = ufs_sync_fs,
  1333. .statfs = ufs_statfs,
  1334. .remount_fs = ufs_remount,
  1335. .show_options = ufs_show_options,
  1336. };
  1337. static struct dentry *ufs_mount(struct file_system_type *fs_type,
  1338. int flags, const char *dev_name, void *data)
  1339. {
  1340. return mount_bdev(fs_type, flags, dev_name, data, ufs_fill_super);
  1341. }
  1342. static struct file_system_type ufs_fs_type = {
  1343. .owner = THIS_MODULE,
  1344. .name = "ufs",
  1345. .mount = ufs_mount,
  1346. .kill_sb = kill_block_super,
  1347. .fs_flags = FS_REQUIRES_DEV,
  1348. };
  1349. MODULE_ALIAS_FS("ufs");
  1350. static int __init init_ufs_fs(void)
  1351. {
  1352. int err = init_inodecache();
  1353. if (err)
  1354. goto out1;
  1355. err = register_filesystem(&ufs_fs_type);
  1356. if (err)
  1357. goto out;
  1358. return 0;
  1359. out:
  1360. destroy_inodecache();
  1361. out1:
  1362. return err;
  1363. }
  1364. static void __exit exit_ufs_fs(void)
  1365. {
  1366. unregister_filesystem(&ufs_fs_type);
  1367. destroy_inodecache();
  1368. }
  1369. module_init(init_ufs_fs)
  1370. module_exit(exit_ufs_fs)
  1371. MODULE_LICENSE("GPL");