mv_init.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * Marvell 88SE64xx/88SE94xx pci init
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. int interrupt_coalescing = 0x80;
  27. static struct scsi_transport_template *mvs_stt;
  28. static const struct mvs_chip_info mvs_chips[] = {
  29. [chip_6320] = { 1, 2, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  30. [chip_6440] = { 1, 4, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  31. [chip_6485] = { 1, 8, 0x800, 33, 32, 6, 10, &mvs_64xx_dispatch, },
  32. [chip_9180] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  33. [chip_9480] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  34. [chip_9445] = { 1, 4, 0x800, 17, 64, 8, 11, &mvs_94xx_dispatch, },
  35. [chip_9485] = { 2, 4, 0x800, 17, 64, 8, 11, &mvs_94xx_dispatch, },
  36. [chip_1300] = { 1, 4, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  37. [chip_1320] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  38. };
  39. struct device_attribute *mvst_host_attrs[];
  40. #define SOC_SAS_NUM 2
  41. static struct scsi_host_template mvs_sht = {
  42. .module = THIS_MODULE,
  43. .name = DRV_NAME,
  44. .queuecommand = sas_queuecommand,
  45. .target_alloc = sas_target_alloc,
  46. .slave_configure = sas_slave_configure,
  47. .scan_finished = mvs_scan_finished,
  48. .scan_start = mvs_scan_start,
  49. .change_queue_depth = sas_change_queue_depth,
  50. .bios_param = sas_bios_param,
  51. .can_queue = 1,
  52. .this_id = -1,
  53. .sg_tablesize = SG_ALL,
  54. .max_sectors = SCSI_DEFAULT_MAX_SECTORS,
  55. .use_clustering = ENABLE_CLUSTERING,
  56. .eh_device_reset_handler = sas_eh_device_reset_handler,
  57. .eh_bus_reset_handler = sas_eh_bus_reset_handler,
  58. .target_destroy = sas_target_destroy,
  59. .ioctl = sas_ioctl,
  60. .shost_attrs = mvst_host_attrs,
  61. .use_blk_tags = 1,
  62. .track_queue_depth = 1,
  63. };
  64. static struct sas_domain_function_template mvs_transport_ops = {
  65. .lldd_dev_found = mvs_dev_found,
  66. .lldd_dev_gone = mvs_dev_gone,
  67. .lldd_execute_task = mvs_queue_command,
  68. .lldd_control_phy = mvs_phy_control,
  69. .lldd_abort_task = mvs_abort_task,
  70. .lldd_abort_task_set = mvs_abort_task_set,
  71. .lldd_clear_aca = mvs_clear_aca,
  72. .lldd_clear_task_set = mvs_clear_task_set,
  73. .lldd_I_T_nexus_reset = mvs_I_T_nexus_reset,
  74. .lldd_lu_reset = mvs_lu_reset,
  75. .lldd_query_task = mvs_query_task,
  76. .lldd_port_formed = mvs_port_formed,
  77. .lldd_port_deformed = mvs_port_deformed,
  78. };
  79. static void mvs_phy_init(struct mvs_info *mvi, int phy_id)
  80. {
  81. struct mvs_phy *phy = &mvi->phy[phy_id];
  82. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  83. phy->mvi = mvi;
  84. phy->port = NULL;
  85. init_timer(&phy->timer);
  86. sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0;
  87. sas_phy->class = SAS;
  88. sas_phy->iproto = SAS_PROTOCOL_ALL;
  89. sas_phy->tproto = 0;
  90. sas_phy->type = PHY_TYPE_PHYSICAL;
  91. sas_phy->role = PHY_ROLE_INITIATOR;
  92. sas_phy->oob_mode = OOB_NOT_CONNECTED;
  93. sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
  94. sas_phy->id = phy_id;
  95. sas_phy->sas_addr = &mvi->sas_addr[0];
  96. sas_phy->frame_rcvd = &phy->frame_rcvd[0];
  97. sas_phy->ha = (struct sas_ha_struct *)mvi->shost->hostdata;
  98. sas_phy->lldd_phy = phy;
  99. }
  100. static void mvs_free(struct mvs_info *mvi)
  101. {
  102. struct mvs_wq *mwq;
  103. int slot_nr;
  104. if (!mvi)
  105. return;
  106. if (mvi->flags & MVF_FLAG_SOC)
  107. slot_nr = MVS_SOC_SLOTS;
  108. else
  109. slot_nr = MVS_CHIP_SLOT_SZ;
  110. if (mvi->dma_pool)
  111. pci_pool_destroy(mvi->dma_pool);
  112. if (mvi->tx)
  113. dma_free_coherent(mvi->dev,
  114. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  115. mvi->tx, mvi->tx_dma);
  116. if (mvi->rx_fis)
  117. dma_free_coherent(mvi->dev, MVS_RX_FISL_SZ,
  118. mvi->rx_fis, mvi->rx_fis_dma);
  119. if (mvi->rx)
  120. dma_free_coherent(mvi->dev,
  121. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  122. mvi->rx, mvi->rx_dma);
  123. if (mvi->slot)
  124. dma_free_coherent(mvi->dev,
  125. sizeof(*mvi->slot) * slot_nr,
  126. mvi->slot, mvi->slot_dma);
  127. if (mvi->bulk_buffer)
  128. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  129. mvi->bulk_buffer, mvi->bulk_buffer_dma);
  130. if (mvi->bulk_buffer1)
  131. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  132. mvi->bulk_buffer1, mvi->bulk_buffer_dma1);
  133. MVS_CHIP_DISP->chip_iounmap(mvi);
  134. if (mvi->shost)
  135. scsi_host_put(mvi->shost);
  136. list_for_each_entry(mwq, &mvi->wq_list, entry)
  137. cancel_delayed_work(&mwq->work_q);
  138. kfree(mvi->tags);
  139. kfree(mvi);
  140. }
  141. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  142. static void mvs_tasklet(unsigned long opaque)
  143. {
  144. u32 stat;
  145. u16 core_nr, i = 0;
  146. struct mvs_info *mvi;
  147. struct sas_ha_struct *sha = (struct sas_ha_struct *)opaque;
  148. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  149. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  150. if (unlikely(!mvi))
  151. BUG_ON(1);
  152. stat = MVS_CHIP_DISP->isr_status(mvi, mvi->pdev->irq);
  153. if (!stat)
  154. goto out;
  155. for (i = 0; i < core_nr; i++) {
  156. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  157. MVS_CHIP_DISP->isr(mvi, mvi->pdev->irq, stat);
  158. }
  159. out:
  160. MVS_CHIP_DISP->interrupt_enable(mvi);
  161. }
  162. #endif
  163. static irqreturn_t mvs_interrupt(int irq, void *opaque)
  164. {
  165. u32 core_nr;
  166. u32 stat;
  167. struct mvs_info *mvi;
  168. struct sas_ha_struct *sha = opaque;
  169. #ifndef CONFIG_SCSI_MVSAS_TASKLET
  170. u32 i;
  171. #endif
  172. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  173. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  174. if (unlikely(!mvi))
  175. return IRQ_NONE;
  176. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  177. MVS_CHIP_DISP->interrupt_disable(mvi);
  178. #endif
  179. stat = MVS_CHIP_DISP->isr_status(mvi, irq);
  180. if (!stat) {
  181. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  182. MVS_CHIP_DISP->interrupt_enable(mvi);
  183. #endif
  184. return IRQ_NONE;
  185. }
  186. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  187. tasklet_schedule(&((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet);
  188. #else
  189. for (i = 0; i < core_nr; i++) {
  190. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  191. MVS_CHIP_DISP->isr(mvi, irq, stat);
  192. }
  193. #endif
  194. return IRQ_HANDLED;
  195. }
  196. static int mvs_alloc(struct mvs_info *mvi, struct Scsi_Host *shost)
  197. {
  198. int i = 0, slot_nr;
  199. char pool_name[32];
  200. if (mvi->flags & MVF_FLAG_SOC)
  201. slot_nr = MVS_SOC_SLOTS;
  202. else
  203. slot_nr = MVS_CHIP_SLOT_SZ;
  204. spin_lock_init(&mvi->lock);
  205. for (i = 0; i < mvi->chip->n_phy; i++) {
  206. mvs_phy_init(mvi, i);
  207. mvi->port[i].wide_port_phymap = 0;
  208. mvi->port[i].port_attached = 0;
  209. INIT_LIST_HEAD(&mvi->port[i].list);
  210. }
  211. for (i = 0; i < MVS_MAX_DEVICES; i++) {
  212. mvi->devices[i].taskfileset = MVS_ID_NOT_MAPPED;
  213. mvi->devices[i].dev_type = SAS_PHY_UNUSED;
  214. mvi->devices[i].device_id = i;
  215. mvi->devices[i].dev_status = MVS_DEV_NORMAL;
  216. init_timer(&mvi->devices[i].timer);
  217. }
  218. /*
  219. * alloc and init our DMA areas
  220. */
  221. mvi->tx = dma_alloc_coherent(mvi->dev,
  222. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  223. &mvi->tx_dma, GFP_KERNEL);
  224. if (!mvi->tx)
  225. goto err_out;
  226. memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ);
  227. mvi->rx_fis = dma_alloc_coherent(mvi->dev, MVS_RX_FISL_SZ,
  228. &mvi->rx_fis_dma, GFP_KERNEL);
  229. if (!mvi->rx_fis)
  230. goto err_out;
  231. memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ);
  232. mvi->rx = dma_alloc_coherent(mvi->dev,
  233. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  234. &mvi->rx_dma, GFP_KERNEL);
  235. if (!mvi->rx)
  236. goto err_out;
  237. memset(mvi->rx, 0, sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1));
  238. mvi->rx[0] = cpu_to_le32(0xfff);
  239. mvi->rx_cons = 0xfff;
  240. mvi->slot = dma_alloc_coherent(mvi->dev,
  241. sizeof(*mvi->slot) * slot_nr,
  242. &mvi->slot_dma, GFP_KERNEL);
  243. if (!mvi->slot)
  244. goto err_out;
  245. memset(mvi->slot, 0, sizeof(*mvi->slot) * slot_nr);
  246. mvi->bulk_buffer = dma_alloc_coherent(mvi->dev,
  247. TRASH_BUCKET_SIZE,
  248. &mvi->bulk_buffer_dma, GFP_KERNEL);
  249. if (!mvi->bulk_buffer)
  250. goto err_out;
  251. mvi->bulk_buffer1 = dma_alloc_coherent(mvi->dev,
  252. TRASH_BUCKET_SIZE,
  253. &mvi->bulk_buffer_dma1, GFP_KERNEL);
  254. if (!mvi->bulk_buffer1)
  255. goto err_out;
  256. sprintf(pool_name, "%s%d", "mvs_dma_pool", mvi->id);
  257. mvi->dma_pool = pci_pool_create(pool_name, mvi->pdev, MVS_SLOT_BUF_SZ, 16, 0);
  258. if (!mvi->dma_pool) {
  259. printk(KERN_DEBUG "failed to create dma pool %s.\n", pool_name);
  260. goto err_out;
  261. }
  262. mvi->tags_num = slot_nr;
  263. /* Initialize tags */
  264. mvs_tag_init(mvi);
  265. return 0;
  266. err_out:
  267. return 1;
  268. }
  269. int mvs_ioremap(struct mvs_info *mvi, int bar, int bar_ex)
  270. {
  271. unsigned long res_start, res_len, res_flag, res_flag_ex = 0;
  272. struct pci_dev *pdev = mvi->pdev;
  273. if (bar_ex != -1) {
  274. /*
  275. * ioremap main and peripheral registers
  276. */
  277. res_start = pci_resource_start(pdev, bar_ex);
  278. res_len = pci_resource_len(pdev, bar_ex);
  279. if (!res_start || !res_len)
  280. goto err_out;
  281. res_flag_ex = pci_resource_flags(pdev, bar_ex);
  282. if (res_flag_ex & IORESOURCE_MEM) {
  283. if (res_flag_ex & IORESOURCE_CACHEABLE)
  284. mvi->regs_ex = ioremap(res_start, res_len);
  285. else
  286. mvi->regs_ex = ioremap_nocache(res_start,
  287. res_len);
  288. } else
  289. mvi->regs_ex = (void *)res_start;
  290. if (!mvi->regs_ex)
  291. goto err_out;
  292. }
  293. res_start = pci_resource_start(pdev, bar);
  294. res_len = pci_resource_len(pdev, bar);
  295. if (!res_start || !res_len)
  296. goto err_out;
  297. res_flag = pci_resource_flags(pdev, bar);
  298. if (res_flag & IORESOURCE_CACHEABLE)
  299. mvi->regs = ioremap(res_start, res_len);
  300. else
  301. mvi->regs = ioremap_nocache(res_start, res_len);
  302. if (!mvi->regs) {
  303. if (mvi->regs_ex && (res_flag_ex & IORESOURCE_MEM))
  304. iounmap(mvi->regs_ex);
  305. mvi->regs_ex = NULL;
  306. goto err_out;
  307. }
  308. return 0;
  309. err_out:
  310. return -1;
  311. }
  312. void mvs_iounmap(void __iomem *regs)
  313. {
  314. iounmap(regs);
  315. }
  316. static struct mvs_info *mvs_pci_alloc(struct pci_dev *pdev,
  317. const struct pci_device_id *ent,
  318. struct Scsi_Host *shost, unsigned int id)
  319. {
  320. struct mvs_info *mvi = NULL;
  321. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  322. mvi = kzalloc(sizeof(*mvi) +
  323. (1L << mvs_chips[ent->driver_data].slot_width) *
  324. sizeof(struct mvs_slot_info), GFP_KERNEL);
  325. if (!mvi)
  326. return NULL;
  327. mvi->pdev = pdev;
  328. mvi->dev = &pdev->dev;
  329. mvi->chip_id = ent->driver_data;
  330. mvi->chip = &mvs_chips[mvi->chip_id];
  331. INIT_LIST_HEAD(&mvi->wq_list);
  332. ((struct mvs_prv_info *)sha->lldd_ha)->mvi[id] = mvi;
  333. ((struct mvs_prv_info *)sha->lldd_ha)->n_phy = mvi->chip->n_phy;
  334. mvi->id = id;
  335. mvi->sas = sha;
  336. mvi->shost = shost;
  337. mvi->tags = kzalloc(MVS_CHIP_SLOT_SZ>>3, GFP_KERNEL);
  338. if (!mvi->tags)
  339. goto err_out;
  340. if (MVS_CHIP_DISP->chip_ioremap(mvi))
  341. goto err_out;
  342. if (!mvs_alloc(mvi, shost))
  343. return mvi;
  344. err_out:
  345. mvs_free(mvi);
  346. return NULL;
  347. }
  348. static int pci_go_64(struct pci_dev *pdev)
  349. {
  350. int rc;
  351. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  352. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  353. if (rc) {
  354. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  355. if (rc) {
  356. dev_printk(KERN_ERR, &pdev->dev,
  357. "64-bit DMA enable failed\n");
  358. return rc;
  359. }
  360. }
  361. } else {
  362. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  363. if (rc) {
  364. dev_printk(KERN_ERR, &pdev->dev,
  365. "32-bit DMA enable failed\n");
  366. return rc;
  367. }
  368. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  369. if (rc) {
  370. dev_printk(KERN_ERR, &pdev->dev,
  371. "32-bit consistent DMA enable failed\n");
  372. return rc;
  373. }
  374. }
  375. return rc;
  376. }
  377. static int mvs_prep_sas_ha_init(struct Scsi_Host *shost,
  378. const struct mvs_chip_info *chip_info)
  379. {
  380. int phy_nr, port_nr; unsigned short core_nr;
  381. struct asd_sas_phy **arr_phy;
  382. struct asd_sas_port **arr_port;
  383. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  384. core_nr = chip_info->n_host;
  385. phy_nr = core_nr * chip_info->n_phy;
  386. port_nr = phy_nr;
  387. memset(sha, 0x00, sizeof(struct sas_ha_struct));
  388. arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL);
  389. arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL);
  390. if (!arr_phy || !arr_port)
  391. goto exit_free;
  392. sha->sas_phy = arr_phy;
  393. sha->sas_port = arr_port;
  394. sha->core.shost = shost;
  395. sha->lldd_ha = kzalloc(sizeof(struct mvs_prv_info), GFP_KERNEL);
  396. if (!sha->lldd_ha)
  397. goto exit_free;
  398. ((struct mvs_prv_info *)sha->lldd_ha)->n_host = core_nr;
  399. shost->transportt = mvs_stt;
  400. shost->max_id = MVS_MAX_DEVICES;
  401. shost->max_lun = ~0;
  402. shost->max_channel = 1;
  403. shost->max_cmd_len = 16;
  404. return 0;
  405. exit_free:
  406. kfree(arr_phy);
  407. kfree(arr_port);
  408. return -1;
  409. }
  410. static void mvs_post_sas_ha_init(struct Scsi_Host *shost,
  411. const struct mvs_chip_info *chip_info)
  412. {
  413. int can_queue, i = 0, j = 0;
  414. struct mvs_info *mvi = NULL;
  415. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  416. unsigned short nr_core = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  417. for (j = 0; j < nr_core; j++) {
  418. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
  419. for (i = 0; i < chip_info->n_phy; i++) {
  420. sha->sas_phy[j * chip_info->n_phy + i] =
  421. &mvi->phy[i].sas_phy;
  422. sha->sas_port[j * chip_info->n_phy + i] =
  423. &mvi->port[i].sas_port;
  424. }
  425. }
  426. sha->sas_ha_name = DRV_NAME;
  427. sha->dev = mvi->dev;
  428. sha->lldd_module = THIS_MODULE;
  429. sha->sas_addr = &mvi->sas_addr[0];
  430. sha->num_phys = nr_core * chip_info->n_phy;
  431. if (mvi->flags & MVF_FLAG_SOC)
  432. can_queue = MVS_SOC_CAN_QUEUE;
  433. else
  434. can_queue = MVS_CHIP_SLOT_SZ;
  435. shost->sg_tablesize = min_t(u16, SG_ALL, MVS_MAX_SG);
  436. shost->can_queue = can_queue;
  437. mvi->shost->cmd_per_lun = MVS_QUEUE_SIZE;
  438. sha->core.shost = mvi->shost;
  439. }
  440. static void mvs_init_sas_add(struct mvs_info *mvi)
  441. {
  442. u8 i;
  443. for (i = 0; i < mvi->chip->n_phy; i++) {
  444. mvi->phy[i].dev_sas_addr = 0x5005043011ab0000ULL;
  445. mvi->phy[i].dev_sas_addr =
  446. cpu_to_be64((u64)(*(u64 *)&mvi->phy[i].dev_sas_addr));
  447. }
  448. memcpy(mvi->sas_addr, &mvi->phy[0].dev_sas_addr, SAS_ADDR_SIZE);
  449. }
  450. static int mvs_pci_init(struct pci_dev *pdev, const struct pci_device_id *ent)
  451. {
  452. unsigned int rc, nhost = 0;
  453. struct mvs_info *mvi;
  454. struct mvs_prv_info *mpi;
  455. irq_handler_t irq_handler = mvs_interrupt;
  456. struct Scsi_Host *shost = NULL;
  457. const struct mvs_chip_info *chip;
  458. dev_printk(KERN_INFO, &pdev->dev,
  459. "mvsas: driver version %s\n", DRV_VERSION);
  460. rc = pci_enable_device(pdev);
  461. if (rc)
  462. goto err_out_enable;
  463. pci_set_master(pdev);
  464. rc = pci_request_regions(pdev, DRV_NAME);
  465. if (rc)
  466. goto err_out_disable;
  467. rc = pci_go_64(pdev);
  468. if (rc)
  469. goto err_out_regions;
  470. shost = scsi_host_alloc(&mvs_sht, sizeof(void *));
  471. if (!shost) {
  472. rc = -ENOMEM;
  473. goto err_out_regions;
  474. }
  475. chip = &mvs_chips[ent->driver_data];
  476. SHOST_TO_SAS_HA(shost) =
  477. kcalloc(1, sizeof(struct sas_ha_struct), GFP_KERNEL);
  478. if (!SHOST_TO_SAS_HA(shost)) {
  479. kfree(shost);
  480. rc = -ENOMEM;
  481. goto err_out_regions;
  482. }
  483. rc = mvs_prep_sas_ha_init(shost, chip);
  484. if (rc) {
  485. kfree(shost);
  486. rc = -ENOMEM;
  487. goto err_out_regions;
  488. }
  489. pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost));
  490. do {
  491. mvi = mvs_pci_alloc(pdev, ent, shost, nhost);
  492. if (!mvi) {
  493. rc = -ENOMEM;
  494. goto err_out_regions;
  495. }
  496. memset(&mvi->hba_info_param, 0xFF,
  497. sizeof(struct hba_info_page));
  498. mvs_init_sas_add(mvi);
  499. mvi->instance = nhost;
  500. rc = MVS_CHIP_DISP->chip_init(mvi);
  501. if (rc) {
  502. mvs_free(mvi);
  503. goto err_out_regions;
  504. }
  505. nhost++;
  506. } while (nhost < chip->n_host);
  507. mpi = (struct mvs_prv_info *)(SHOST_TO_SAS_HA(shost)->lldd_ha);
  508. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  509. tasklet_init(&(mpi->mv_tasklet), mvs_tasklet,
  510. (unsigned long)SHOST_TO_SAS_HA(shost));
  511. #endif
  512. mvs_post_sas_ha_init(shost, chip);
  513. rc = scsi_add_host(shost, &pdev->dev);
  514. if (rc)
  515. goto err_out_shost;
  516. rc = sas_register_ha(SHOST_TO_SAS_HA(shost));
  517. if (rc)
  518. goto err_out_shost;
  519. rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED,
  520. DRV_NAME, SHOST_TO_SAS_HA(shost));
  521. if (rc)
  522. goto err_not_sas;
  523. MVS_CHIP_DISP->interrupt_enable(mvi);
  524. scsi_scan_host(mvi->shost);
  525. return 0;
  526. err_not_sas:
  527. sas_unregister_ha(SHOST_TO_SAS_HA(shost));
  528. err_out_shost:
  529. scsi_remove_host(mvi->shost);
  530. err_out_regions:
  531. pci_release_regions(pdev);
  532. err_out_disable:
  533. pci_disable_device(pdev);
  534. err_out_enable:
  535. return rc;
  536. }
  537. static void mvs_pci_remove(struct pci_dev *pdev)
  538. {
  539. unsigned short core_nr, i = 0;
  540. struct sas_ha_struct *sha = pci_get_drvdata(pdev);
  541. struct mvs_info *mvi = NULL;
  542. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  543. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  544. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  545. tasklet_kill(&((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet);
  546. #endif
  547. sas_unregister_ha(sha);
  548. sas_remove_host(mvi->shost);
  549. scsi_remove_host(mvi->shost);
  550. MVS_CHIP_DISP->interrupt_disable(mvi);
  551. free_irq(mvi->pdev->irq, sha);
  552. for (i = 0; i < core_nr; i++) {
  553. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  554. mvs_free(mvi);
  555. }
  556. kfree(sha->sas_phy);
  557. kfree(sha->sas_port);
  558. kfree(sha);
  559. pci_release_regions(pdev);
  560. pci_disable_device(pdev);
  561. return;
  562. }
  563. static struct pci_device_id mvs_pci_table[] = {
  564. { PCI_VDEVICE(MARVELL, 0x6320), chip_6320 },
  565. { PCI_VDEVICE(MARVELL, 0x6340), chip_6440 },
  566. {
  567. .vendor = PCI_VENDOR_ID_MARVELL,
  568. .device = 0x6440,
  569. .subvendor = PCI_ANY_ID,
  570. .subdevice = 0x6480,
  571. .class = 0,
  572. .class_mask = 0,
  573. .driver_data = chip_6485,
  574. },
  575. { PCI_VDEVICE(MARVELL, 0x6440), chip_6440 },
  576. { PCI_VDEVICE(MARVELL, 0x6485), chip_6485 },
  577. { PCI_VDEVICE(MARVELL, 0x9480), chip_9480 },
  578. { PCI_VDEVICE(MARVELL, 0x9180), chip_9180 },
  579. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1300), chip_1300 },
  580. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1320), chip_1320 },
  581. { PCI_VDEVICE(ADAPTEC2, 0x0450), chip_6440 },
  582. { PCI_VDEVICE(TTI, 0x2710), chip_9480 },
  583. { PCI_VDEVICE(TTI, 0x2720), chip_9480 },
  584. { PCI_VDEVICE(TTI, 0x2721), chip_9480 },
  585. { PCI_VDEVICE(TTI, 0x2722), chip_9480 },
  586. { PCI_VDEVICE(TTI, 0x2740), chip_9480 },
  587. { PCI_VDEVICE(TTI, 0x2744), chip_9480 },
  588. { PCI_VDEVICE(TTI, 0x2760), chip_9480 },
  589. {
  590. .vendor = PCI_VENDOR_ID_MARVELL_EXT,
  591. .device = 0x9480,
  592. .subvendor = PCI_ANY_ID,
  593. .subdevice = 0x9480,
  594. .class = 0,
  595. .class_mask = 0,
  596. .driver_data = chip_9480,
  597. },
  598. {
  599. .vendor = PCI_VENDOR_ID_MARVELL_EXT,
  600. .device = 0x9445,
  601. .subvendor = PCI_ANY_ID,
  602. .subdevice = 0x9480,
  603. .class = 0,
  604. .class_mask = 0,
  605. .driver_data = chip_9445,
  606. },
  607. {
  608. .vendor = PCI_VENDOR_ID_MARVELL_EXT,
  609. .device = 0x9485,
  610. .subvendor = PCI_ANY_ID,
  611. .subdevice = 0x9480,
  612. .class = 0,
  613. .class_mask = 0,
  614. .driver_data = chip_9485,
  615. },
  616. {
  617. .vendor = PCI_VENDOR_ID_MARVELL_EXT,
  618. .device = 0x9485,
  619. .subvendor = PCI_ANY_ID,
  620. .subdevice = 0x9485,
  621. .class = 0,
  622. .class_mask = 0,
  623. .driver_data = chip_9485,
  624. },
  625. { PCI_VDEVICE(OCZ, 0x1021), chip_9485}, /* OCZ RevoDrive3 */
  626. { PCI_VDEVICE(OCZ, 0x1022), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  627. { PCI_VDEVICE(OCZ, 0x1040), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  628. { PCI_VDEVICE(OCZ, 0x1041), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  629. { PCI_VDEVICE(OCZ, 0x1042), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  630. { PCI_VDEVICE(OCZ, 0x1043), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  631. { PCI_VDEVICE(OCZ, 0x1044), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  632. { PCI_VDEVICE(OCZ, 0x1080), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  633. { PCI_VDEVICE(OCZ, 0x1083), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  634. { PCI_VDEVICE(OCZ, 0x1084), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  635. { } /* terminate list */
  636. };
  637. static struct pci_driver mvs_pci_driver = {
  638. .name = DRV_NAME,
  639. .id_table = mvs_pci_table,
  640. .probe = mvs_pci_init,
  641. .remove = mvs_pci_remove,
  642. };
  643. static ssize_t
  644. mvs_show_driver_version(struct device *cdev,
  645. struct device_attribute *attr, char *buffer)
  646. {
  647. return snprintf(buffer, PAGE_SIZE, "%s\n", DRV_VERSION);
  648. }
  649. static DEVICE_ATTR(driver_version,
  650. S_IRUGO,
  651. mvs_show_driver_version,
  652. NULL);
  653. static ssize_t
  654. mvs_store_interrupt_coalescing(struct device *cdev,
  655. struct device_attribute *attr,
  656. const char *buffer, size_t size)
  657. {
  658. int val = 0;
  659. struct mvs_info *mvi = NULL;
  660. struct Scsi_Host *shost = class_to_shost(cdev);
  661. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  662. u8 i, core_nr;
  663. if (buffer == NULL)
  664. return size;
  665. if (sscanf(buffer, "%d", &val) != 1)
  666. return -EINVAL;
  667. if (val >= 0x10000) {
  668. mv_dprintk("interrupt coalescing timer %d us is"
  669. "too long\n", val);
  670. return strlen(buffer);
  671. }
  672. interrupt_coalescing = val;
  673. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  674. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  675. if (unlikely(!mvi))
  676. return -EINVAL;
  677. for (i = 0; i < core_nr; i++) {
  678. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  679. if (MVS_CHIP_DISP->tune_interrupt)
  680. MVS_CHIP_DISP->tune_interrupt(mvi,
  681. interrupt_coalescing);
  682. }
  683. mv_dprintk("set interrupt coalescing time to %d us\n",
  684. interrupt_coalescing);
  685. return strlen(buffer);
  686. }
  687. static ssize_t mvs_show_interrupt_coalescing(struct device *cdev,
  688. struct device_attribute *attr, char *buffer)
  689. {
  690. return snprintf(buffer, PAGE_SIZE, "%d\n", interrupt_coalescing);
  691. }
  692. static DEVICE_ATTR(interrupt_coalescing,
  693. S_IRUGO|S_IWUSR,
  694. mvs_show_interrupt_coalescing,
  695. mvs_store_interrupt_coalescing);
  696. /* task handler */
  697. struct task_struct *mvs_th;
  698. static int __init mvs_init(void)
  699. {
  700. int rc;
  701. mvs_stt = sas_domain_attach_transport(&mvs_transport_ops);
  702. if (!mvs_stt)
  703. return -ENOMEM;
  704. rc = pci_register_driver(&mvs_pci_driver);
  705. if (rc)
  706. goto err_out;
  707. return 0;
  708. err_out:
  709. sas_release_transport(mvs_stt);
  710. return rc;
  711. }
  712. static void __exit mvs_exit(void)
  713. {
  714. pci_unregister_driver(&mvs_pci_driver);
  715. sas_release_transport(mvs_stt);
  716. }
  717. struct device_attribute *mvst_host_attrs[] = {
  718. &dev_attr_driver_version,
  719. &dev_attr_interrupt_coalescing,
  720. NULL,
  721. };
  722. module_init(mvs_init);
  723. module_exit(mvs_exit);
  724. MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  725. MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
  726. MODULE_VERSION(DRV_VERSION);
  727. MODULE_LICENSE("GPL");
  728. #ifdef CONFIG_PCI
  729. MODULE_DEVICE_TABLE(pci, mvs_pci_table);
  730. #endif