smsc9420.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17. *
  18. ***************************************************************************
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/phy.h>
  25. #include <linux/pci.h>
  26. #include <linux/if_vlan.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/crc32.h>
  29. #include <linux/slab.h>
  30. #include <linux/module.h>
  31. #include <asm/unaligned.h>
  32. #include "smsc9420.h"
  33. #define DRV_NAME "smsc9420"
  34. #define DRV_MDIONAME "smsc9420-mdio"
  35. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  36. #define DRV_VERSION "1.01"
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_VERSION);
  39. struct smsc9420_dma_desc {
  40. u32 status;
  41. u32 length;
  42. u32 buffer1;
  43. u32 buffer2;
  44. };
  45. struct smsc9420_ring_info {
  46. struct sk_buff *skb;
  47. dma_addr_t mapping;
  48. };
  49. struct smsc9420_pdata {
  50. void __iomem *ioaddr;
  51. struct pci_dev *pdev;
  52. struct net_device *dev;
  53. struct smsc9420_dma_desc *rx_ring;
  54. struct smsc9420_dma_desc *tx_ring;
  55. struct smsc9420_ring_info *tx_buffers;
  56. struct smsc9420_ring_info *rx_buffers;
  57. dma_addr_t rx_dma_addr;
  58. dma_addr_t tx_dma_addr;
  59. int tx_ring_head, tx_ring_tail;
  60. int rx_ring_head, rx_ring_tail;
  61. spinlock_t int_lock;
  62. spinlock_t phy_lock;
  63. struct napi_struct napi;
  64. bool software_irq_signal;
  65. bool rx_csum;
  66. u32 msg_enable;
  67. struct phy_device *phy_dev;
  68. struct mii_bus *mii_bus;
  69. int phy_irq[PHY_MAX_ADDR];
  70. int last_duplex;
  71. int last_carrier;
  72. };
  73. static const struct pci_device_id smsc9420_id_table[] = {
  74. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  75. { 0, }
  76. };
  77. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  78. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  79. static uint smsc_debug;
  80. static uint debug = -1;
  81. module_param(debug, uint, 0);
  82. MODULE_PARM_DESC(debug, "debug level");
  83. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  84. {
  85. return ioread32(pd->ioaddr + offset);
  86. }
  87. static inline void
  88. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  89. {
  90. iowrite32(value, pd->ioaddr + offset);
  91. }
  92. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  93. {
  94. /* to ensure PCI write completion, we must perform a PCI read */
  95. smsc9420_reg_read(pd, ID_REV);
  96. }
  97. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  98. {
  99. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  100. unsigned long flags;
  101. u32 addr;
  102. int i, reg = -EIO;
  103. spin_lock_irqsave(&pd->phy_lock, flags);
  104. /* confirm MII not busy */
  105. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  106. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  107. goto out;
  108. }
  109. /* set the address, index & direction (read from PHY) */
  110. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  111. MII_ACCESS_MII_READ_;
  112. smsc9420_reg_write(pd, MII_ACCESS, addr);
  113. /* wait for read to complete with 50us timeout */
  114. for (i = 0; i < 5; i++) {
  115. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  116. MII_ACCESS_MII_BUSY_)) {
  117. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  118. goto out;
  119. }
  120. udelay(10);
  121. }
  122. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  123. out:
  124. spin_unlock_irqrestore(&pd->phy_lock, flags);
  125. return reg;
  126. }
  127. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  128. u16 val)
  129. {
  130. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  131. unsigned long flags;
  132. u32 addr;
  133. int i, reg = -EIO;
  134. spin_lock_irqsave(&pd->phy_lock, flags);
  135. /* confirm MII not busy */
  136. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  137. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  138. goto out;
  139. }
  140. /* put the data to write in the MAC */
  141. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  142. /* set the address, index & direction (write to PHY) */
  143. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  144. MII_ACCESS_MII_WRITE_;
  145. smsc9420_reg_write(pd, MII_ACCESS, addr);
  146. /* wait for write to complete with 50us timeout */
  147. for (i = 0; i < 5; i++) {
  148. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  149. MII_ACCESS_MII_BUSY_)) {
  150. reg = 0;
  151. goto out;
  152. }
  153. udelay(10);
  154. }
  155. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  156. out:
  157. spin_unlock_irqrestore(&pd->phy_lock, flags);
  158. return reg;
  159. }
  160. /* Returns hash bit number for given MAC address
  161. * Example:
  162. * 01 00 5E 00 00 01 -> returns bit number 31 */
  163. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  164. {
  165. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  166. }
  167. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  168. {
  169. int timeout = 100000;
  170. BUG_ON(!pd);
  171. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  172. netif_dbg(pd, drv, pd->dev, "%s: Eeprom busy\n", __func__);
  173. return -EIO;
  174. }
  175. smsc9420_reg_write(pd, E2P_CMD,
  176. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  177. do {
  178. udelay(10);
  179. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  180. return 0;
  181. } while (timeout--);
  182. netif_warn(pd, drv, pd->dev, "%s: Eeprom timed out\n", __func__);
  183. return -EIO;
  184. }
  185. /* Standard ioctls for mii-tool */
  186. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  187. {
  188. struct smsc9420_pdata *pd = netdev_priv(dev);
  189. if (!netif_running(dev) || !pd->phy_dev)
  190. return -EINVAL;
  191. return phy_mii_ioctl(pd->phy_dev, ifr, cmd);
  192. }
  193. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  194. struct ethtool_cmd *cmd)
  195. {
  196. struct smsc9420_pdata *pd = netdev_priv(dev);
  197. if (!pd->phy_dev)
  198. return -ENODEV;
  199. cmd->maxtxpkt = 1;
  200. cmd->maxrxpkt = 1;
  201. return phy_ethtool_gset(pd->phy_dev, cmd);
  202. }
  203. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  204. struct ethtool_cmd *cmd)
  205. {
  206. struct smsc9420_pdata *pd = netdev_priv(dev);
  207. if (!pd->phy_dev)
  208. return -ENODEV;
  209. return phy_ethtool_sset(pd->phy_dev, cmd);
  210. }
  211. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  212. struct ethtool_drvinfo *drvinfo)
  213. {
  214. struct smsc9420_pdata *pd = netdev_priv(netdev);
  215. strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
  216. strlcpy(drvinfo->bus_info, pci_name(pd->pdev),
  217. sizeof(drvinfo->bus_info));
  218. strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
  219. }
  220. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  221. {
  222. struct smsc9420_pdata *pd = netdev_priv(netdev);
  223. return pd->msg_enable;
  224. }
  225. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  226. {
  227. struct smsc9420_pdata *pd = netdev_priv(netdev);
  228. pd->msg_enable = data;
  229. }
  230. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  231. {
  232. struct smsc9420_pdata *pd = netdev_priv(netdev);
  233. if (!pd->phy_dev)
  234. return -ENODEV;
  235. return phy_start_aneg(pd->phy_dev);
  236. }
  237. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  238. {
  239. /* all smsc9420 registers plus all phy registers */
  240. return 0x100 + (32 * sizeof(u32));
  241. }
  242. static void
  243. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  244. void *buf)
  245. {
  246. struct smsc9420_pdata *pd = netdev_priv(dev);
  247. struct phy_device *phy_dev = pd->phy_dev;
  248. unsigned int i, j = 0;
  249. u32 *data = buf;
  250. regs->version = smsc9420_reg_read(pd, ID_REV);
  251. for (i = 0; i < 0x100; i += (sizeof(u32)))
  252. data[j++] = smsc9420_reg_read(pd, i);
  253. // cannot read phy registers if the net device is down
  254. if (!phy_dev)
  255. return;
  256. for (i = 0; i <= 31; i++)
  257. data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
  258. }
  259. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  260. {
  261. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  262. temp &= ~GPIO_CFG_EEPR_EN_;
  263. smsc9420_reg_write(pd, GPIO_CFG, temp);
  264. msleep(1);
  265. }
  266. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  267. {
  268. int timeout = 100;
  269. u32 e2cmd;
  270. netif_dbg(pd, hw, pd->dev, "op 0x%08x\n", op);
  271. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  272. netif_warn(pd, hw, pd->dev, "Busy at start\n");
  273. return -EBUSY;
  274. }
  275. e2cmd = op | E2P_CMD_EPC_BUSY_;
  276. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  277. do {
  278. msleep(1);
  279. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  280. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  281. if (!timeout) {
  282. netif_info(pd, hw, pd->dev, "TIMED OUT\n");
  283. return -EAGAIN;
  284. }
  285. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  286. netif_info(pd, hw, pd->dev,
  287. "Error occurred during eeprom operation\n");
  288. return -EINVAL;
  289. }
  290. return 0;
  291. }
  292. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  293. u8 address, u8 *data)
  294. {
  295. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  296. int ret;
  297. netif_dbg(pd, hw, pd->dev, "address 0x%x\n", address);
  298. ret = smsc9420_eeprom_send_cmd(pd, op);
  299. if (!ret)
  300. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  301. return ret;
  302. }
  303. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  304. u8 address, u8 data)
  305. {
  306. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  307. int ret;
  308. netif_dbg(pd, hw, pd->dev, "address 0x%x, data 0x%x\n", address, data);
  309. ret = smsc9420_eeprom_send_cmd(pd, op);
  310. if (!ret) {
  311. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  312. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  313. ret = smsc9420_eeprom_send_cmd(pd, op);
  314. }
  315. return ret;
  316. }
  317. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  318. {
  319. return SMSC9420_EEPROM_SIZE;
  320. }
  321. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  322. struct ethtool_eeprom *eeprom, u8 *data)
  323. {
  324. struct smsc9420_pdata *pd = netdev_priv(dev);
  325. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  326. int len, i;
  327. smsc9420_eeprom_enable_access(pd);
  328. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  329. for (i = 0; i < len; i++) {
  330. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  331. if (ret < 0) {
  332. eeprom->len = 0;
  333. return ret;
  334. }
  335. }
  336. memcpy(data, &eeprom_data[eeprom->offset], len);
  337. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  338. eeprom->len = len;
  339. return 0;
  340. }
  341. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  342. struct ethtool_eeprom *eeprom, u8 *data)
  343. {
  344. struct smsc9420_pdata *pd = netdev_priv(dev);
  345. int ret;
  346. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  347. return -EINVAL;
  348. smsc9420_eeprom_enable_access(pd);
  349. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  350. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  351. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  352. /* Single byte write, according to man page */
  353. eeprom->len = 1;
  354. return ret;
  355. }
  356. static const struct ethtool_ops smsc9420_ethtool_ops = {
  357. .get_settings = smsc9420_ethtool_get_settings,
  358. .set_settings = smsc9420_ethtool_set_settings,
  359. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  360. .get_msglevel = smsc9420_ethtool_get_msglevel,
  361. .set_msglevel = smsc9420_ethtool_set_msglevel,
  362. .nway_reset = smsc9420_ethtool_nway_reset,
  363. .get_link = ethtool_op_get_link,
  364. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  365. .get_eeprom = smsc9420_ethtool_get_eeprom,
  366. .set_eeprom = smsc9420_ethtool_set_eeprom,
  367. .get_regs_len = smsc9420_ethtool_getregslen,
  368. .get_regs = smsc9420_ethtool_getregs,
  369. .get_ts_info = ethtool_op_get_ts_info,
  370. };
  371. /* Sets the device MAC address to dev_addr */
  372. static void smsc9420_set_mac_address(struct net_device *dev)
  373. {
  374. struct smsc9420_pdata *pd = netdev_priv(dev);
  375. u8 *dev_addr = dev->dev_addr;
  376. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  377. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  378. (dev_addr[1] << 8) | dev_addr[0];
  379. smsc9420_reg_write(pd, ADDRH, mac_high16);
  380. smsc9420_reg_write(pd, ADDRL, mac_low32);
  381. }
  382. static void smsc9420_check_mac_address(struct net_device *dev)
  383. {
  384. struct smsc9420_pdata *pd = netdev_priv(dev);
  385. /* Check if mac address has been specified when bringing interface up */
  386. if (is_valid_ether_addr(dev->dev_addr)) {
  387. smsc9420_set_mac_address(dev);
  388. netif_dbg(pd, probe, pd->dev,
  389. "MAC Address is specified by configuration\n");
  390. } else {
  391. /* Try reading mac address from device. if EEPROM is present
  392. * it will already have been set */
  393. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  394. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  395. dev->dev_addr[0] = (u8)(mac_low32);
  396. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  397. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  398. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  399. dev->dev_addr[4] = (u8)(mac_high16);
  400. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  401. if (is_valid_ether_addr(dev->dev_addr)) {
  402. /* eeprom values are valid so use them */
  403. netif_dbg(pd, probe, pd->dev,
  404. "Mac Address is read from EEPROM\n");
  405. } else {
  406. /* eeprom values are invalid, generate random MAC */
  407. eth_hw_addr_random(dev);
  408. smsc9420_set_mac_address(dev);
  409. netif_dbg(pd, probe, pd->dev,
  410. "MAC Address is set to random\n");
  411. }
  412. }
  413. }
  414. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  415. {
  416. u32 dmac_control, mac_cr, dma_intr_ena;
  417. int timeout = 1000;
  418. /* disable TX DMAC */
  419. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  420. dmac_control &= (~DMAC_CONTROL_ST_);
  421. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  422. /* Wait max 10ms for transmit process to stop */
  423. while (--timeout) {
  424. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  425. break;
  426. udelay(10);
  427. }
  428. if (!timeout)
  429. netif_warn(pd, ifdown, pd->dev, "TX DMAC failed to stop\n");
  430. /* ACK Tx DMAC stop bit */
  431. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  432. /* mask TX DMAC interrupts */
  433. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  434. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  435. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  436. smsc9420_pci_flush_write(pd);
  437. /* stop MAC TX */
  438. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  439. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  440. smsc9420_pci_flush_write(pd);
  441. }
  442. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  443. {
  444. int i;
  445. BUG_ON(!pd->tx_ring);
  446. if (!pd->tx_buffers)
  447. return;
  448. for (i = 0; i < TX_RING_SIZE; i++) {
  449. struct sk_buff *skb = pd->tx_buffers[i].skb;
  450. if (skb) {
  451. BUG_ON(!pd->tx_buffers[i].mapping);
  452. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  453. skb->len, PCI_DMA_TODEVICE);
  454. dev_kfree_skb_any(skb);
  455. }
  456. pd->tx_ring[i].status = 0;
  457. pd->tx_ring[i].length = 0;
  458. pd->tx_ring[i].buffer1 = 0;
  459. pd->tx_ring[i].buffer2 = 0;
  460. }
  461. wmb();
  462. kfree(pd->tx_buffers);
  463. pd->tx_buffers = NULL;
  464. pd->tx_ring_head = 0;
  465. pd->tx_ring_tail = 0;
  466. }
  467. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  468. {
  469. int i;
  470. BUG_ON(!pd->rx_ring);
  471. if (!pd->rx_buffers)
  472. return;
  473. for (i = 0; i < RX_RING_SIZE; i++) {
  474. if (pd->rx_buffers[i].skb)
  475. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  476. if (pd->rx_buffers[i].mapping)
  477. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  478. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  479. pd->rx_ring[i].status = 0;
  480. pd->rx_ring[i].length = 0;
  481. pd->rx_ring[i].buffer1 = 0;
  482. pd->rx_ring[i].buffer2 = 0;
  483. }
  484. wmb();
  485. kfree(pd->rx_buffers);
  486. pd->rx_buffers = NULL;
  487. pd->rx_ring_head = 0;
  488. pd->rx_ring_tail = 0;
  489. }
  490. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  491. {
  492. int timeout = 1000;
  493. u32 mac_cr, dmac_control, dma_intr_ena;
  494. /* mask RX DMAC interrupts */
  495. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  496. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  497. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  498. smsc9420_pci_flush_write(pd);
  499. /* stop RX MAC prior to stoping DMA */
  500. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  501. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  502. smsc9420_pci_flush_write(pd);
  503. /* stop RX DMAC */
  504. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  505. dmac_control &= (~DMAC_CONTROL_SR_);
  506. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  507. smsc9420_pci_flush_write(pd);
  508. /* wait up to 10ms for receive to stop */
  509. while (--timeout) {
  510. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  511. break;
  512. udelay(10);
  513. }
  514. if (!timeout)
  515. netif_warn(pd, ifdown, pd->dev,
  516. "RX DMAC did not stop! timeout\n");
  517. /* ACK the Rx DMAC stop bit */
  518. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  519. }
  520. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  521. {
  522. struct smsc9420_pdata *pd = dev_id;
  523. u32 int_cfg, int_sts, int_ctl;
  524. irqreturn_t ret = IRQ_NONE;
  525. ulong flags;
  526. BUG_ON(!pd);
  527. BUG_ON(!pd->ioaddr);
  528. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  529. /* check if it's our interrupt */
  530. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  531. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  532. return IRQ_NONE;
  533. int_sts = smsc9420_reg_read(pd, INT_STAT);
  534. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  535. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  536. u32 ints_to_clear = 0;
  537. if (status & DMAC_STS_TX_) {
  538. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  539. netif_wake_queue(pd->dev);
  540. }
  541. if (status & DMAC_STS_RX_) {
  542. /* mask RX DMAC interrupts */
  543. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  544. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  545. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  546. smsc9420_pci_flush_write(pd);
  547. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  548. napi_schedule(&pd->napi);
  549. }
  550. if (ints_to_clear)
  551. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  552. ret = IRQ_HANDLED;
  553. }
  554. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  555. /* mask software interrupt */
  556. spin_lock_irqsave(&pd->int_lock, flags);
  557. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  558. int_ctl &= (~INT_CTL_SW_INT_EN_);
  559. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  560. spin_unlock_irqrestore(&pd->int_lock, flags);
  561. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  562. pd->software_irq_signal = true;
  563. smp_wmb();
  564. ret = IRQ_HANDLED;
  565. }
  566. /* to ensure PCI write completion, we must perform a PCI read */
  567. smsc9420_pci_flush_write(pd);
  568. return ret;
  569. }
  570. #ifdef CONFIG_NET_POLL_CONTROLLER
  571. static void smsc9420_poll_controller(struct net_device *dev)
  572. {
  573. struct smsc9420_pdata *pd = netdev_priv(dev);
  574. const int irq = pd->pdev->irq;
  575. disable_irq(irq);
  576. smsc9420_isr(0, dev);
  577. enable_irq(irq);
  578. }
  579. #endif /* CONFIG_NET_POLL_CONTROLLER */
  580. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  581. {
  582. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  583. smsc9420_reg_read(pd, BUS_MODE);
  584. udelay(2);
  585. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  586. netif_warn(pd, drv, pd->dev, "Software reset not cleared\n");
  587. }
  588. static int smsc9420_stop(struct net_device *dev)
  589. {
  590. struct smsc9420_pdata *pd = netdev_priv(dev);
  591. u32 int_cfg;
  592. ulong flags;
  593. BUG_ON(!pd);
  594. BUG_ON(!pd->phy_dev);
  595. /* disable master interrupt */
  596. spin_lock_irqsave(&pd->int_lock, flags);
  597. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  598. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  599. spin_unlock_irqrestore(&pd->int_lock, flags);
  600. netif_tx_disable(dev);
  601. napi_disable(&pd->napi);
  602. smsc9420_stop_tx(pd);
  603. smsc9420_free_tx_ring(pd);
  604. smsc9420_stop_rx(pd);
  605. smsc9420_free_rx_ring(pd);
  606. free_irq(pd->pdev->irq, pd);
  607. smsc9420_dmac_soft_reset(pd);
  608. phy_stop(pd->phy_dev);
  609. phy_disconnect(pd->phy_dev);
  610. pd->phy_dev = NULL;
  611. mdiobus_unregister(pd->mii_bus);
  612. mdiobus_free(pd->mii_bus);
  613. return 0;
  614. }
  615. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  616. {
  617. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  618. dev->stats.rx_errors++;
  619. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  620. dev->stats.rx_over_errors++;
  621. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  622. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  623. dev->stats.rx_frame_errors++;
  624. else if (desc_status & RDES0_CRC_ERROR_)
  625. dev->stats.rx_crc_errors++;
  626. }
  627. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  628. dev->stats.rx_length_errors++;
  629. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  630. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  631. dev->stats.rx_length_errors++;
  632. if (desc_status & RDES0_MULTICAST_FRAME_)
  633. dev->stats.multicast++;
  634. }
  635. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  636. const u32 status)
  637. {
  638. struct net_device *dev = pd->dev;
  639. struct sk_buff *skb;
  640. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  641. >> RDES0_FRAME_LENGTH_SHFT_;
  642. /* remove crc from packet lendth */
  643. packet_length -= 4;
  644. if (pd->rx_csum)
  645. packet_length -= 2;
  646. dev->stats.rx_packets++;
  647. dev->stats.rx_bytes += packet_length;
  648. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  649. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  650. pd->rx_buffers[index].mapping = 0;
  651. skb = pd->rx_buffers[index].skb;
  652. pd->rx_buffers[index].skb = NULL;
  653. if (pd->rx_csum) {
  654. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  655. NET_IP_ALIGN + packet_length + 4);
  656. put_unaligned_le16(hw_csum, &skb->csum);
  657. skb->ip_summed = CHECKSUM_COMPLETE;
  658. }
  659. skb_reserve(skb, NET_IP_ALIGN);
  660. skb_put(skb, packet_length);
  661. skb->protocol = eth_type_trans(skb, dev);
  662. netif_receive_skb(skb);
  663. }
  664. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  665. {
  666. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  667. dma_addr_t mapping;
  668. BUG_ON(pd->rx_buffers[index].skb);
  669. BUG_ON(pd->rx_buffers[index].mapping);
  670. if (unlikely(!skb))
  671. return -ENOMEM;
  672. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  673. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  674. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  675. dev_kfree_skb_any(skb);
  676. netif_warn(pd, rx_err, pd->dev, "pci_map_single failed!\n");
  677. return -ENOMEM;
  678. }
  679. pd->rx_buffers[index].skb = skb;
  680. pd->rx_buffers[index].mapping = mapping;
  681. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  682. pd->rx_ring[index].status = RDES0_OWN_;
  683. wmb();
  684. return 0;
  685. }
  686. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  687. {
  688. while (pd->rx_ring_tail != pd->rx_ring_head) {
  689. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  690. break;
  691. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  692. }
  693. }
  694. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  695. {
  696. struct smsc9420_pdata *pd =
  697. container_of(napi, struct smsc9420_pdata, napi);
  698. struct net_device *dev = pd->dev;
  699. u32 drop_frame_cnt, dma_intr_ena, status;
  700. int work_done;
  701. for (work_done = 0; work_done < budget; work_done++) {
  702. rmb();
  703. status = pd->rx_ring[pd->rx_ring_head].status;
  704. /* stop if DMAC owns this dma descriptor */
  705. if (status & RDES0_OWN_)
  706. break;
  707. smsc9420_rx_count_stats(dev, status);
  708. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  709. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  710. smsc9420_alloc_new_rx_buffers(pd);
  711. }
  712. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  713. dev->stats.rx_dropped +=
  714. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  715. /* Kick RXDMA */
  716. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  717. smsc9420_pci_flush_write(pd);
  718. if (work_done < budget) {
  719. napi_complete(&pd->napi);
  720. /* re-enable RX DMA interrupts */
  721. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  722. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  723. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  724. smsc9420_pci_flush_write(pd);
  725. }
  726. return work_done;
  727. }
  728. static void
  729. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  730. {
  731. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  732. dev->stats.tx_errors++;
  733. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  734. TDES0_EXCESSIVE_COLLISIONS_))
  735. dev->stats.tx_aborted_errors++;
  736. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  737. dev->stats.tx_carrier_errors++;
  738. } else {
  739. dev->stats.tx_packets++;
  740. dev->stats.tx_bytes += (length & 0x7FF);
  741. }
  742. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  743. dev->stats.collisions += 16;
  744. } else {
  745. dev->stats.collisions +=
  746. (status & TDES0_COLLISION_COUNT_MASK_) >>
  747. TDES0_COLLISION_COUNT_SHFT_;
  748. }
  749. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  750. dev->stats.tx_heartbeat_errors++;
  751. }
  752. /* Check for completed dma transfers, update stats and free skbs */
  753. static void smsc9420_complete_tx(struct net_device *dev)
  754. {
  755. struct smsc9420_pdata *pd = netdev_priv(dev);
  756. while (pd->tx_ring_tail != pd->tx_ring_head) {
  757. int index = pd->tx_ring_tail;
  758. u32 status, length;
  759. rmb();
  760. status = pd->tx_ring[index].status;
  761. length = pd->tx_ring[index].length;
  762. /* Check if DMA still owns this descriptor */
  763. if (unlikely(TDES0_OWN_ & status))
  764. break;
  765. smsc9420_tx_update_stats(dev, status, length);
  766. BUG_ON(!pd->tx_buffers[index].skb);
  767. BUG_ON(!pd->tx_buffers[index].mapping);
  768. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  769. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  770. pd->tx_buffers[index].mapping = 0;
  771. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  772. pd->tx_buffers[index].skb = NULL;
  773. pd->tx_ring[index].buffer1 = 0;
  774. wmb();
  775. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  776. }
  777. }
  778. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  779. struct net_device *dev)
  780. {
  781. struct smsc9420_pdata *pd = netdev_priv(dev);
  782. dma_addr_t mapping;
  783. int index = pd->tx_ring_head;
  784. u32 tmp_desc1;
  785. bool about_to_take_last_desc =
  786. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  787. smsc9420_complete_tx(dev);
  788. rmb();
  789. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  790. BUG_ON(pd->tx_buffers[index].skb);
  791. BUG_ON(pd->tx_buffers[index].mapping);
  792. mapping = pci_map_single(pd->pdev, skb->data,
  793. skb->len, PCI_DMA_TODEVICE);
  794. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  795. netif_warn(pd, tx_err, pd->dev,
  796. "pci_map_single failed, dropping packet\n");
  797. return NETDEV_TX_BUSY;
  798. }
  799. pd->tx_buffers[index].skb = skb;
  800. pd->tx_buffers[index].mapping = mapping;
  801. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  802. if (unlikely(about_to_take_last_desc)) {
  803. tmp_desc1 |= TDES1_IC_;
  804. netif_stop_queue(pd->dev);
  805. }
  806. /* check if we are at the last descriptor and need to set EOR */
  807. if (unlikely(index == (TX_RING_SIZE - 1)))
  808. tmp_desc1 |= TDES1_TER_;
  809. pd->tx_ring[index].buffer1 = mapping;
  810. pd->tx_ring[index].length = tmp_desc1;
  811. wmb();
  812. /* increment head */
  813. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  814. /* assign ownership to DMAC */
  815. pd->tx_ring[index].status = TDES0_OWN_;
  816. wmb();
  817. skb_tx_timestamp(skb);
  818. /* kick the DMA */
  819. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  820. smsc9420_pci_flush_write(pd);
  821. return NETDEV_TX_OK;
  822. }
  823. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  824. {
  825. struct smsc9420_pdata *pd = netdev_priv(dev);
  826. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  827. dev->stats.rx_dropped +=
  828. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  829. return &dev->stats;
  830. }
  831. static void smsc9420_set_multicast_list(struct net_device *dev)
  832. {
  833. struct smsc9420_pdata *pd = netdev_priv(dev);
  834. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  835. if (dev->flags & IFF_PROMISC) {
  836. netif_dbg(pd, hw, pd->dev, "Promiscuous Mode Enabled\n");
  837. mac_cr |= MAC_CR_PRMS_;
  838. mac_cr &= (~MAC_CR_MCPAS_);
  839. mac_cr &= (~MAC_CR_HPFILT_);
  840. } else if (dev->flags & IFF_ALLMULTI) {
  841. netif_dbg(pd, hw, pd->dev, "Receive all Multicast Enabled\n");
  842. mac_cr &= (~MAC_CR_PRMS_);
  843. mac_cr |= MAC_CR_MCPAS_;
  844. mac_cr &= (~MAC_CR_HPFILT_);
  845. } else if (!netdev_mc_empty(dev)) {
  846. struct netdev_hw_addr *ha;
  847. u32 hash_lo = 0, hash_hi = 0;
  848. netif_dbg(pd, hw, pd->dev, "Multicast filter enabled\n");
  849. netdev_for_each_mc_addr(ha, dev) {
  850. u32 bit_num = smsc9420_hash(ha->addr);
  851. u32 mask = 1 << (bit_num & 0x1F);
  852. if (bit_num & 0x20)
  853. hash_hi |= mask;
  854. else
  855. hash_lo |= mask;
  856. }
  857. smsc9420_reg_write(pd, HASHH, hash_hi);
  858. smsc9420_reg_write(pd, HASHL, hash_lo);
  859. mac_cr &= (~MAC_CR_PRMS_);
  860. mac_cr &= (~MAC_CR_MCPAS_);
  861. mac_cr |= MAC_CR_HPFILT_;
  862. } else {
  863. netif_dbg(pd, hw, pd->dev, "Receive own packets only\n");
  864. smsc9420_reg_write(pd, HASHH, 0);
  865. smsc9420_reg_write(pd, HASHL, 0);
  866. mac_cr &= (~MAC_CR_PRMS_);
  867. mac_cr &= (~MAC_CR_MCPAS_);
  868. mac_cr &= (~MAC_CR_HPFILT_);
  869. }
  870. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  871. smsc9420_pci_flush_write(pd);
  872. }
  873. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  874. {
  875. struct phy_device *phy_dev = pd->phy_dev;
  876. u32 flow;
  877. if (phy_dev->duplex == DUPLEX_FULL) {
  878. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  879. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  880. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  881. if (cap & FLOW_CTRL_RX)
  882. flow = 0xFFFF0002;
  883. else
  884. flow = 0;
  885. netif_info(pd, link, pd->dev, "rx pause %s, tx pause %s\n",
  886. cap & FLOW_CTRL_RX ? "enabled" : "disabled",
  887. cap & FLOW_CTRL_TX ? "enabled" : "disabled");
  888. } else {
  889. netif_info(pd, link, pd->dev, "half duplex\n");
  890. flow = 0;
  891. }
  892. smsc9420_reg_write(pd, FLOW, flow);
  893. }
  894. /* Update link mode if anything has changed. Called periodically when the
  895. * PHY is in polling mode, even if nothing has changed. */
  896. static void smsc9420_phy_adjust_link(struct net_device *dev)
  897. {
  898. struct smsc9420_pdata *pd = netdev_priv(dev);
  899. struct phy_device *phy_dev = pd->phy_dev;
  900. int carrier;
  901. if (phy_dev->duplex != pd->last_duplex) {
  902. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  903. if (phy_dev->duplex) {
  904. netif_dbg(pd, link, pd->dev, "full duplex mode\n");
  905. mac_cr |= MAC_CR_FDPX_;
  906. } else {
  907. netif_dbg(pd, link, pd->dev, "half duplex mode\n");
  908. mac_cr &= ~MAC_CR_FDPX_;
  909. }
  910. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  911. smsc9420_phy_update_flowcontrol(pd);
  912. pd->last_duplex = phy_dev->duplex;
  913. }
  914. carrier = netif_carrier_ok(dev);
  915. if (carrier != pd->last_carrier) {
  916. if (carrier)
  917. netif_dbg(pd, link, pd->dev, "carrier OK\n");
  918. else
  919. netif_dbg(pd, link, pd->dev, "no carrier\n");
  920. pd->last_carrier = carrier;
  921. }
  922. }
  923. static int smsc9420_mii_probe(struct net_device *dev)
  924. {
  925. struct smsc9420_pdata *pd = netdev_priv(dev);
  926. struct phy_device *phydev = NULL;
  927. BUG_ON(pd->phy_dev);
  928. /* Device only supports internal PHY at address 1 */
  929. if (!pd->mii_bus->phy_map[1]) {
  930. netdev_err(dev, "no PHY found at address 1\n");
  931. return -ENODEV;
  932. }
  933. phydev = pd->mii_bus->phy_map[1];
  934. netif_info(pd, probe, pd->dev, "PHY addr %d, phy_id 0x%08X\n",
  935. phydev->addr, phydev->phy_id);
  936. phydev = phy_connect(dev, dev_name(&phydev->dev),
  937. smsc9420_phy_adjust_link, PHY_INTERFACE_MODE_MII);
  938. if (IS_ERR(phydev)) {
  939. netdev_err(dev, "Could not attach to PHY\n");
  940. return PTR_ERR(phydev);
  941. }
  942. netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  943. phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
  944. /* mask with MAC supported features */
  945. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  946. SUPPORTED_Asym_Pause);
  947. phydev->advertising = phydev->supported;
  948. pd->phy_dev = phydev;
  949. pd->last_duplex = -1;
  950. pd->last_carrier = -1;
  951. return 0;
  952. }
  953. static int smsc9420_mii_init(struct net_device *dev)
  954. {
  955. struct smsc9420_pdata *pd = netdev_priv(dev);
  956. int err = -ENXIO, i;
  957. pd->mii_bus = mdiobus_alloc();
  958. if (!pd->mii_bus) {
  959. err = -ENOMEM;
  960. goto err_out_1;
  961. }
  962. pd->mii_bus->name = DRV_MDIONAME;
  963. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  964. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  965. pd->mii_bus->priv = pd;
  966. pd->mii_bus->read = smsc9420_mii_read;
  967. pd->mii_bus->write = smsc9420_mii_write;
  968. pd->mii_bus->irq = pd->phy_irq;
  969. for (i = 0; i < PHY_MAX_ADDR; ++i)
  970. pd->mii_bus->irq[i] = PHY_POLL;
  971. /* Mask all PHYs except ID 1 (internal) */
  972. pd->mii_bus->phy_mask = ~(1 << 1);
  973. if (mdiobus_register(pd->mii_bus)) {
  974. netif_warn(pd, probe, pd->dev, "Error registering mii bus\n");
  975. goto err_out_free_bus_2;
  976. }
  977. if (smsc9420_mii_probe(dev) < 0) {
  978. netif_warn(pd, probe, pd->dev, "Error probing mii bus\n");
  979. goto err_out_unregister_bus_3;
  980. }
  981. return 0;
  982. err_out_unregister_bus_3:
  983. mdiobus_unregister(pd->mii_bus);
  984. err_out_free_bus_2:
  985. mdiobus_free(pd->mii_bus);
  986. err_out_1:
  987. return err;
  988. }
  989. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  990. {
  991. int i;
  992. BUG_ON(!pd->tx_ring);
  993. pd->tx_buffers = kmalloc_array(TX_RING_SIZE,
  994. sizeof(struct smsc9420_ring_info),
  995. GFP_KERNEL);
  996. if (!pd->tx_buffers)
  997. return -ENOMEM;
  998. /* Initialize the TX Ring */
  999. for (i = 0; i < TX_RING_SIZE; i++) {
  1000. pd->tx_buffers[i].skb = NULL;
  1001. pd->tx_buffers[i].mapping = 0;
  1002. pd->tx_ring[i].status = 0;
  1003. pd->tx_ring[i].length = 0;
  1004. pd->tx_ring[i].buffer1 = 0;
  1005. pd->tx_ring[i].buffer2 = 0;
  1006. }
  1007. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1008. wmb();
  1009. pd->tx_ring_head = 0;
  1010. pd->tx_ring_tail = 0;
  1011. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1012. smsc9420_pci_flush_write(pd);
  1013. return 0;
  1014. }
  1015. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1016. {
  1017. int i;
  1018. BUG_ON(!pd->rx_ring);
  1019. pd->rx_buffers = kmalloc_array(RX_RING_SIZE,
  1020. sizeof(struct smsc9420_ring_info),
  1021. GFP_KERNEL);
  1022. if (pd->rx_buffers == NULL)
  1023. goto out;
  1024. /* initialize the rx ring */
  1025. for (i = 0; i < RX_RING_SIZE; i++) {
  1026. pd->rx_ring[i].status = 0;
  1027. pd->rx_ring[i].length = PKT_BUF_SZ;
  1028. pd->rx_ring[i].buffer2 = 0;
  1029. pd->rx_buffers[i].skb = NULL;
  1030. pd->rx_buffers[i].mapping = 0;
  1031. }
  1032. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1033. /* now allocate the entire ring of skbs */
  1034. for (i = 0; i < RX_RING_SIZE; i++) {
  1035. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1036. netif_warn(pd, ifup, pd->dev,
  1037. "failed to allocate rx skb %d\n", i);
  1038. goto out_free_rx_skbs;
  1039. }
  1040. }
  1041. pd->rx_ring_head = 0;
  1042. pd->rx_ring_tail = 0;
  1043. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1044. netif_dbg(pd, ifup, pd->dev, "VLAN1 = 0x%08x\n",
  1045. smsc9420_reg_read(pd, VLAN1));
  1046. if (pd->rx_csum) {
  1047. /* Enable RX COE */
  1048. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1049. smsc9420_reg_write(pd, COE_CR, coe);
  1050. netif_dbg(pd, ifup, pd->dev, "COE_CR = 0x%08x\n", coe);
  1051. }
  1052. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1053. smsc9420_pci_flush_write(pd);
  1054. return 0;
  1055. out_free_rx_skbs:
  1056. smsc9420_free_rx_ring(pd);
  1057. out:
  1058. return -ENOMEM;
  1059. }
  1060. static int smsc9420_open(struct net_device *dev)
  1061. {
  1062. struct smsc9420_pdata *pd = netdev_priv(dev);
  1063. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1064. const int irq = pd->pdev->irq;
  1065. unsigned long flags;
  1066. int result = 0, timeout;
  1067. if (!is_valid_ether_addr(dev->dev_addr)) {
  1068. netif_warn(pd, ifup, pd->dev,
  1069. "dev_addr is not a valid MAC address\n");
  1070. result = -EADDRNOTAVAIL;
  1071. goto out_0;
  1072. }
  1073. netif_carrier_off(dev);
  1074. /* disable, mask and acknowledge all interrupts */
  1075. spin_lock_irqsave(&pd->int_lock, flags);
  1076. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1077. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1078. smsc9420_reg_write(pd, INT_CTL, 0);
  1079. spin_unlock_irqrestore(&pd->int_lock, flags);
  1080. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1081. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1082. smsc9420_pci_flush_write(pd);
  1083. result = request_irq(irq, smsc9420_isr, IRQF_SHARED, DRV_NAME, pd);
  1084. if (result) {
  1085. netif_warn(pd, ifup, pd->dev, "Unable to use IRQ = %d\n", irq);
  1086. result = -ENODEV;
  1087. goto out_0;
  1088. }
  1089. smsc9420_dmac_soft_reset(pd);
  1090. /* make sure MAC_CR is sane */
  1091. smsc9420_reg_write(pd, MAC_CR, 0);
  1092. smsc9420_set_mac_address(dev);
  1093. /* Configure GPIO pins to drive LEDs */
  1094. smsc9420_reg_write(pd, GPIO_CFG,
  1095. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1096. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1097. #ifdef __BIG_ENDIAN
  1098. bus_mode |= BUS_MODE_DBO_;
  1099. #endif
  1100. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1101. smsc9420_pci_flush_write(pd);
  1102. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1103. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1104. smsc9420_reg_write(pd, DMAC_CONTROL,
  1105. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1106. smsc9420_pci_flush_write(pd);
  1107. /* test the IRQ connection to the ISR */
  1108. netif_dbg(pd, ifup, pd->dev, "Testing ISR using IRQ %d\n", irq);
  1109. pd->software_irq_signal = false;
  1110. spin_lock_irqsave(&pd->int_lock, flags);
  1111. /* configure interrupt deassertion timer and enable interrupts */
  1112. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1113. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1114. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1115. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1116. /* unmask software interrupt */
  1117. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1118. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1119. spin_unlock_irqrestore(&pd->int_lock, flags);
  1120. smsc9420_pci_flush_write(pd);
  1121. timeout = 1000;
  1122. while (timeout--) {
  1123. if (pd->software_irq_signal)
  1124. break;
  1125. msleep(1);
  1126. }
  1127. /* disable interrupts */
  1128. spin_lock_irqsave(&pd->int_lock, flags);
  1129. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1130. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1131. spin_unlock_irqrestore(&pd->int_lock, flags);
  1132. if (!pd->software_irq_signal) {
  1133. netif_warn(pd, ifup, pd->dev, "ISR failed signaling test\n");
  1134. result = -ENODEV;
  1135. goto out_free_irq_1;
  1136. }
  1137. netif_dbg(pd, ifup, pd->dev, "ISR passed test using IRQ %d\n", irq);
  1138. result = smsc9420_alloc_tx_ring(pd);
  1139. if (result) {
  1140. netif_warn(pd, ifup, pd->dev,
  1141. "Failed to Initialize tx dma ring\n");
  1142. result = -ENOMEM;
  1143. goto out_free_irq_1;
  1144. }
  1145. result = smsc9420_alloc_rx_ring(pd);
  1146. if (result) {
  1147. netif_warn(pd, ifup, pd->dev,
  1148. "Failed to Initialize rx dma ring\n");
  1149. result = -ENOMEM;
  1150. goto out_free_tx_ring_2;
  1151. }
  1152. result = smsc9420_mii_init(dev);
  1153. if (result) {
  1154. netif_warn(pd, ifup, pd->dev, "Failed to initialize Phy\n");
  1155. result = -ENODEV;
  1156. goto out_free_rx_ring_3;
  1157. }
  1158. /* Bring the PHY up */
  1159. phy_start(pd->phy_dev);
  1160. napi_enable(&pd->napi);
  1161. /* start tx and rx */
  1162. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1163. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1164. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1165. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1166. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1167. smsc9420_pci_flush_write(pd);
  1168. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1169. dma_intr_ena |=
  1170. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1171. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1172. smsc9420_pci_flush_write(pd);
  1173. netif_wake_queue(dev);
  1174. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1175. /* enable interrupts */
  1176. spin_lock_irqsave(&pd->int_lock, flags);
  1177. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1178. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1179. spin_unlock_irqrestore(&pd->int_lock, flags);
  1180. return 0;
  1181. out_free_rx_ring_3:
  1182. smsc9420_free_rx_ring(pd);
  1183. out_free_tx_ring_2:
  1184. smsc9420_free_tx_ring(pd);
  1185. out_free_irq_1:
  1186. free_irq(irq, pd);
  1187. out_0:
  1188. return result;
  1189. }
  1190. #ifdef CONFIG_PM
  1191. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1192. {
  1193. struct net_device *dev = pci_get_drvdata(pdev);
  1194. struct smsc9420_pdata *pd = netdev_priv(dev);
  1195. u32 int_cfg;
  1196. ulong flags;
  1197. /* disable interrupts */
  1198. spin_lock_irqsave(&pd->int_lock, flags);
  1199. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1200. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1201. spin_unlock_irqrestore(&pd->int_lock, flags);
  1202. if (netif_running(dev)) {
  1203. netif_tx_disable(dev);
  1204. smsc9420_stop_tx(pd);
  1205. smsc9420_free_tx_ring(pd);
  1206. napi_disable(&pd->napi);
  1207. smsc9420_stop_rx(pd);
  1208. smsc9420_free_rx_ring(pd);
  1209. free_irq(pd->pdev->irq, pd);
  1210. netif_device_detach(dev);
  1211. }
  1212. pci_save_state(pdev);
  1213. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1214. pci_disable_device(pdev);
  1215. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1216. return 0;
  1217. }
  1218. static int smsc9420_resume(struct pci_dev *pdev)
  1219. {
  1220. struct net_device *dev = pci_get_drvdata(pdev);
  1221. struct smsc9420_pdata *pd = netdev_priv(dev);
  1222. int err;
  1223. pci_set_power_state(pdev, PCI_D0);
  1224. pci_restore_state(pdev);
  1225. err = pci_enable_device(pdev);
  1226. if (err)
  1227. return err;
  1228. pci_set_master(pdev);
  1229. err = pci_enable_wake(pdev, PCI_D0, 0);
  1230. if (err)
  1231. netif_warn(pd, ifup, pd->dev, "pci_enable_wake failed: %d\n",
  1232. err);
  1233. if (netif_running(dev)) {
  1234. /* FIXME: gross. It looks like ancient PM relic.*/
  1235. err = smsc9420_open(dev);
  1236. netif_device_attach(dev);
  1237. }
  1238. return err;
  1239. }
  1240. #endif /* CONFIG_PM */
  1241. static const struct net_device_ops smsc9420_netdev_ops = {
  1242. .ndo_open = smsc9420_open,
  1243. .ndo_stop = smsc9420_stop,
  1244. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1245. .ndo_get_stats = smsc9420_get_stats,
  1246. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1247. .ndo_do_ioctl = smsc9420_do_ioctl,
  1248. .ndo_validate_addr = eth_validate_addr,
  1249. .ndo_set_mac_address = eth_mac_addr,
  1250. #ifdef CONFIG_NET_POLL_CONTROLLER
  1251. .ndo_poll_controller = smsc9420_poll_controller,
  1252. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1253. };
  1254. static int
  1255. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1256. {
  1257. struct net_device *dev;
  1258. struct smsc9420_pdata *pd;
  1259. void __iomem *virt_addr;
  1260. int result = 0;
  1261. u32 id_rev;
  1262. pr_info("%s version %s\n", DRV_DESCRIPTION, DRV_VERSION);
  1263. /* First do the PCI initialisation */
  1264. result = pci_enable_device(pdev);
  1265. if (unlikely(result)) {
  1266. pr_err("Cannot enable smsc9420\n");
  1267. goto out_0;
  1268. }
  1269. pci_set_master(pdev);
  1270. dev = alloc_etherdev(sizeof(*pd));
  1271. if (!dev)
  1272. goto out_disable_pci_device_1;
  1273. SET_NETDEV_DEV(dev, &pdev->dev);
  1274. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1275. netdev_err(dev, "Cannot find PCI device base address\n");
  1276. goto out_free_netdev_2;
  1277. }
  1278. if ((pci_request_regions(pdev, DRV_NAME))) {
  1279. netdev_err(dev, "Cannot obtain PCI resources, aborting\n");
  1280. goto out_free_netdev_2;
  1281. }
  1282. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1283. netdev_err(dev, "No usable DMA configuration, aborting\n");
  1284. goto out_free_regions_3;
  1285. }
  1286. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1287. pci_resource_len(pdev, SMSC_BAR));
  1288. if (!virt_addr) {
  1289. netdev_err(dev, "Cannot map device registers, aborting\n");
  1290. goto out_free_regions_3;
  1291. }
  1292. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1293. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1294. pd = netdev_priv(dev);
  1295. /* pci descriptors are created in the PCI consistent area */
  1296. pd->rx_ring = pci_alloc_consistent(pdev,
  1297. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1298. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1299. &pd->rx_dma_addr);
  1300. if (!pd->rx_ring)
  1301. goto out_free_io_4;
  1302. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1303. pd->tx_ring = (pd->rx_ring + RX_RING_SIZE);
  1304. pd->tx_dma_addr = pd->rx_dma_addr +
  1305. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1306. pd->pdev = pdev;
  1307. pd->dev = dev;
  1308. pd->ioaddr = virt_addr;
  1309. pd->msg_enable = smsc_debug;
  1310. pd->rx_csum = true;
  1311. netif_dbg(pd, probe, pd->dev, "lan_base=0x%08lx\n", (ulong)virt_addr);
  1312. id_rev = smsc9420_reg_read(pd, ID_REV);
  1313. switch (id_rev & 0xFFFF0000) {
  1314. case 0x94200000:
  1315. netif_info(pd, probe, pd->dev,
  1316. "LAN9420 identified, ID_REV=0x%08X\n", id_rev);
  1317. break;
  1318. default:
  1319. netif_warn(pd, probe, pd->dev, "LAN9420 NOT identified\n");
  1320. netif_warn(pd, probe, pd->dev, "ID_REV=0x%08X\n", id_rev);
  1321. goto out_free_dmadesc_5;
  1322. }
  1323. smsc9420_dmac_soft_reset(pd);
  1324. smsc9420_eeprom_reload(pd);
  1325. smsc9420_check_mac_address(dev);
  1326. dev->netdev_ops = &smsc9420_netdev_ops;
  1327. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1328. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1329. result = register_netdev(dev);
  1330. if (result) {
  1331. netif_warn(pd, probe, pd->dev, "error %i registering device\n",
  1332. result);
  1333. goto out_free_dmadesc_5;
  1334. }
  1335. pci_set_drvdata(pdev, dev);
  1336. spin_lock_init(&pd->int_lock);
  1337. spin_lock_init(&pd->phy_lock);
  1338. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1339. return 0;
  1340. out_free_dmadesc_5:
  1341. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1342. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1343. out_free_io_4:
  1344. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1345. out_free_regions_3:
  1346. pci_release_regions(pdev);
  1347. out_free_netdev_2:
  1348. free_netdev(dev);
  1349. out_disable_pci_device_1:
  1350. pci_disable_device(pdev);
  1351. out_0:
  1352. return -ENODEV;
  1353. }
  1354. static void smsc9420_remove(struct pci_dev *pdev)
  1355. {
  1356. struct net_device *dev;
  1357. struct smsc9420_pdata *pd;
  1358. dev = pci_get_drvdata(pdev);
  1359. if (!dev)
  1360. return;
  1361. pd = netdev_priv(dev);
  1362. unregister_netdev(dev);
  1363. /* tx_buffers and rx_buffers are freed in stop */
  1364. BUG_ON(pd->tx_buffers);
  1365. BUG_ON(pd->rx_buffers);
  1366. BUG_ON(!pd->tx_ring);
  1367. BUG_ON(!pd->rx_ring);
  1368. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1369. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1370. iounmap(pd->ioaddr - LAN9420_CPSR_ENDIAN_OFFSET);
  1371. pci_release_regions(pdev);
  1372. free_netdev(dev);
  1373. pci_disable_device(pdev);
  1374. }
  1375. static struct pci_driver smsc9420_driver = {
  1376. .name = DRV_NAME,
  1377. .id_table = smsc9420_id_table,
  1378. .probe = smsc9420_probe,
  1379. .remove = smsc9420_remove,
  1380. #ifdef CONFIG_PM
  1381. .suspend = smsc9420_suspend,
  1382. .resume = smsc9420_resume,
  1383. #endif /* CONFIG_PM */
  1384. };
  1385. static int __init smsc9420_init_module(void)
  1386. {
  1387. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1388. return pci_register_driver(&smsc9420_driver);
  1389. }
  1390. static void __exit smsc9420_exit_module(void)
  1391. {
  1392. pci_unregister_driver(&smsc9420_driver);
  1393. }
  1394. module_init(smsc9420_init_module);
  1395. module_exit(smsc9420_exit_module);