i2c-axxia.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. /*
  2. * This driver implements I2C master functionality using the LSI API2C
  3. * controller.
  4. *
  5. * NOTE: The controller has a limitation in that it can only do transfers of
  6. * maximum 255 bytes at a time. If a larger transfer is attempted, error code
  7. * (-EINVAL) is returned.
  8. *
  9. * This software is licensed under the terms of the GNU General Public
  10. * License version 2, as published by the Free Software Foundation, and
  11. * may be copied, distributed, and modified under those terms.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/clkdev.h>
  15. #include <linux/err.h>
  16. #include <linux/i2c.h>
  17. #include <linux/init.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/module.h>
  20. #include <linux/io.h>
  21. #include <linux/kernel.h>
  22. #include <linux/platform_device.h>
  23. #define SCL_WAIT_TIMEOUT_NS 25000000
  24. #define I2C_XFER_TIMEOUT (msecs_to_jiffies(250))
  25. #define I2C_STOP_TIMEOUT (msecs_to_jiffies(100))
  26. #define FIFO_SIZE 8
  27. #define GLOBAL_CONTROL 0x00
  28. #define GLOBAL_MST_EN BIT(0)
  29. #define GLOBAL_SLV_EN BIT(1)
  30. #define GLOBAL_IBML_EN BIT(2)
  31. #define INTERRUPT_STATUS 0x04
  32. #define INTERRUPT_ENABLE 0x08
  33. #define INT_SLV BIT(1)
  34. #define INT_MST BIT(0)
  35. #define WAIT_TIMER_CONTROL 0x0c
  36. #define WT_EN BIT(15)
  37. #define WT_VALUE(_x) ((_x) & 0x7fff)
  38. #define IBML_TIMEOUT 0x10
  39. #define IBML_LOW_MEXT 0x14
  40. #define IBML_LOW_SEXT 0x18
  41. #define TIMER_CLOCK_DIV 0x1c
  42. #define I2C_BUS_MONITOR 0x20
  43. #define BM_SDAC BIT(3)
  44. #define BM_SCLC BIT(2)
  45. #define BM_SDAS BIT(1)
  46. #define BM_SCLS BIT(0)
  47. #define SOFT_RESET 0x24
  48. #define MST_COMMAND 0x28
  49. #define CMD_BUSY (1<<3)
  50. #define CMD_MANUAL (0x00 | CMD_BUSY)
  51. #define CMD_AUTO (0x01 | CMD_BUSY)
  52. #define MST_RX_XFER 0x2c
  53. #define MST_TX_XFER 0x30
  54. #define MST_ADDR_1 0x34
  55. #define MST_ADDR_2 0x38
  56. #define MST_DATA 0x3c
  57. #define MST_TX_FIFO 0x40
  58. #define MST_RX_FIFO 0x44
  59. #define MST_INT_ENABLE 0x48
  60. #define MST_INT_STATUS 0x4c
  61. #define MST_STATUS_RFL (1 << 13) /* RX FIFO serivce */
  62. #define MST_STATUS_TFL (1 << 12) /* TX FIFO service */
  63. #define MST_STATUS_SNS (1 << 11) /* Manual mode done */
  64. #define MST_STATUS_SS (1 << 10) /* Automatic mode done */
  65. #define MST_STATUS_SCC (1 << 9) /* Stop complete */
  66. #define MST_STATUS_IP (1 << 8) /* Invalid parameter */
  67. #define MST_STATUS_TSS (1 << 7) /* Timeout */
  68. #define MST_STATUS_AL (1 << 6) /* Arbitration lost */
  69. #define MST_STATUS_ND (1 << 5) /* NAK on data phase */
  70. #define MST_STATUS_NA (1 << 4) /* NAK on address phase */
  71. #define MST_STATUS_NAK (MST_STATUS_NA | \
  72. MST_STATUS_ND)
  73. #define MST_STATUS_ERR (MST_STATUS_NAK | \
  74. MST_STATUS_AL | \
  75. MST_STATUS_IP | \
  76. MST_STATUS_TSS)
  77. #define MST_TX_BYTES_XFRD 0x50
  78. #define MST_RX_BYTES_XFRD 0x54
  79. #define SCL_HIGH_PERIOD 0x80
  80. #define SCL_LOW_PERIOD 0x84
  81. #define SPIKE_FLTR_LEN 0x88
  82. #define SDA_SETUP_TIME 0x8c
  83. #define SDA_HOLD_TIME 0x90
  84. /**
  85. * axxia_i2c_dev - I2C device context
  86. * @base: pointer to register struct
  87. * @msg: pointer to current message
  88. * @msg_xfrd: number of bytes transferred in msg
  89. * @msg_err: error code for completed message
  90. * @msg_complete: xfer completion object
  91. * @dev: device reference
  92. * @adapter: core i2c abstraction
  93. * @i2c_clk: clock reference for i2c input clock
  94. * @bus_clk_rate: current i2c bus clock rate
  95. */
  96. struct axxia_i2c_dev {
  97. void __iomem *base;
  98. struct i2c_msg *msg;
  99. size_t msg_xfrd;
  100. int msg_err;
  101. struct completion msg_complete;
  102. struct device *dev;
  103. struct i2c_adapter adapter;
  104. struct clk *i2c_clk;
  105. u32 bus_clk_rate;
  106. };
  107. static void i2c_int_disable(struct axxia_i2c_dev *idev, u32 mask)
  108. {
  109. u32 int_en;
  110. int_en = readl(idev->base + MST_INT_ENABLE);
  111. writel(int_en & ~mask, idev->base + MST_INT_ENABLE);
  112. }
  113. static void i2c_int_enable(struct axxia_i2c_dev *idev, u32 mask)
  114. {
  115. u32 int_en;
  116. int_en = readl(idev->base + MST_INT_ENABLE);
  117. writel(int_en | mask, idev->base + MST_INT_ENABLE);
  118. }
  119. /**
  120. * ns_to_clk - Convert time (ns) to clock cycles for the given clock frequency.
  121. */
  122. static u32 ns_to_clk(u64 ns, u32 clk_mhz)
  123. {
  124. return div_u64(ns * clk_mhz, 1000);
  125. }
  126. static int axxia_i2c_init(struct axxia_i2c_dev *idev)
  127. {
  128. u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate;
  129. u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000;
  130. u32 t_setup;
  131. u32 t_high, t_low;
  132. u32 tmo_clk;
  133. u32 prescale;
  134. unsigned long timeout;
  135. dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n",
  136. idev->bus_clk_rate, clk_mhz, divisor);
  137. /* Reset controller */
  138. writel(0x01, idev->base + SOFT_RESET);
  139. timeout = jiffies + msecs_to_jiffies(100);
  140. while (readl(idev->base + SOFT_RESET) & 1) {
  141. if (time_after(jiffies, timeout)) {
  142. dev_warn(idev->dev, "Soft reset failed\n");
  143. break;
  144. }
  145. }
  146. /* Enable Master Mode */
  147. writel(0x1, idev->base + GLOBAL_CONTROL);
  148. if (idev->bus_clk_rate <= 100000) {
  149. /* Standard mode SCL 50/50, tSU:DAT = 250 ns */
  150. t_high = divisor * 1 / 2;
  151. t_low = divisor * 1 / 2;
  152. t_setup = ns_to_clk(250, clk_mhz);
  153. } else {
  154. /* Fast mode SCL 33/66, tSU:DAT = 100 ns */
  155. t_high = divisor * 1 / 3;
  156. t_low = divisor * 2 / 3;
  157. t_setup = ns_to_clk(100, clk_mhz);
  158. }
  159. /* SCL High Time */
  160. writel(t_high, idev->base + SCL_HIGH_PERIOD);
  161. /* SCL Low Time */
  162. writel(t_low, idev->base + SCL_LOW_PERIOD);
  163. /* SDA Setup Time */
  164. writel(t_setup, idev->base + SDA_SETUP_TIME);
  165. /* SDA Hold Time, 300ns */
  166. writel(ns_to_clk(300, clk_mhz), idev->base + SDA_HOLD_TIME);
  167. /* Filter <50ns spikes */
  168. writel(ns_to_clk(50, clk_mhz), idev->base + SPIKE_FLTR_LEN);
  169. /* Configure Time-Out Registers */
  170. tmo_clk = ns_to_clk(SCL_WAIT_TIMEOUT_NS, clk_mhz);
  171. /* Find prescaler value that makes tmo_clk fit in 15-bits counter. */
  172. for (prescale = 0; prescale < 15; ++prescale) {
  173. if (tmo_clk <= 0x7fff)
  174. break;
  175. tmo_clk >>= 1;
  176. }
  177. if (tmo_clk > 0x7fff)
  178. tmo_clk = 0x7fff;
  179. /* Prescale divider (log2) */
  180. writel(prescale, idev->base + TIMER_CLOCK_DIV);
  181. /* Timeout in divided clocks */
  182. writel(WT_EN | WT_VALUE(tmo_clk), idev->base + WAIT_TIMER_CONTROL);
  183. /* Mask all master interrupt bits */
  184. i2c_int_disable(idev, ~0);
  185. /* Interrupt enable */
  186. writel(0x01, idev->base + INTERRUPT_ENABLE);
  187. return 0;
  188. }
  189. static int i2c_m_rd(const struct i2c_msg *msg)
  190. {
  191. return (msg->flags & I2C_M_RD) != 0;
  192. }
  193. static int i2c_m_ten(const struct i2c_msg *msg)
  194. {
  195. return (msg->flags & I2C_M_TEN) != 0;
  196. }
  197. static int i2c_m_recv_len(const struct i2c_msg *msg)
  198. {
  199. return (msg->flags & I2C_M_RECV_LEN) != 0;
  200. }
  201. /**
  202. * axxia_i2c_empty_rx_fifo - Fetch data from RX FIFO and update SMBus block
  203. * transfer length if this is the first byte of such a transfer.
  204. */
  205. static int axxia_i2c_empty_rx_fifo(struct axxia_i2c_dev *idev)
  206. {
  207. struct i2c_msg *msg = idev->msg;
  208. size_t rx_fifo_avail = readl(idev->base + MST_RX_FIFO);
  209. int bytes_to_transfer = min(rx_fifo_avail, msg->len - idev->msg_xfrd);
  210. while (bytes_to_transfer-- > 0) {
  211. int c = readl(idev->base + MST_DATA);
  212. if (idev->msg_xfrd == 0 && i2c_m_recv_len(msg)) {
  213. /*
  214. * Check length byte for SMBus block read
  215. */
  216. if (c <= 0 || c > I2C_SMBUS_BLOCK_MAX) {
  217. idev->msg_err = -EPROTO;
  218. i2c_int_disable(idev, ~0);
  219. complete(&idev->msg_complete);
  220. break;
  221. }
  222. msg->len = 1 + c;
  223. writel(msg->len, idev->base + MST_RX_XFER);
  224. }
  225. msg->buf[idev->msg_xfrd++] = c;
  226. }
  227. return 0;
  228. }
  229. /**
  230. * axxia_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer.
  231. * @return: Number of bytes left to transfer.
  232. */
  233. static int axxia_i2c_fill_tx_fifo(struct axxia_i2c_dev *idev)
  234. {
  235. struct i2c_msg *msg = idev->msg;
  236. size_t tx_fifo_avail = FIFO_SIZE - readl(idev->base + MST_TX_FIFO);
  237. int bytes_to_transfer = min(tx_fifo_avail, msg->len - idev->msg_xfrd);
  238. int ret = msg->len - idev->msg_xfrd - bytes_to_transfer;
  239. while (bytes_to_transfer-- > 0)
  240. writel(msg->buf[idev->msg_xfrd++], idev->base + MST_DATA);
  241. return ret;
  242. }
  243. static irqreturn_t axxia_i2c_isr(int irq, void *_dev)
  244. {
  245. struct axxia_i2c_dev *idev = _dev;
  246. u32 status;
  247. if (!(readl(idev->base + INTERRUPT_STATUS) & INT_MST))
  248. return IRQ_NONE;
  249. /* Read interrupt status bits */
  250. status = readl(idev->base + MST_INT_STATUS);
  251. if (!idev->msg) {
  252. dev_warn(idev->dev, "unexpected interrupt\n");
  253. goto out;
  254. }
  255. /* RX FIFO needs service? */
  256. if (i2c_m_rd(idev->msg) && (status & MST_STATUS_RFL))
  257. axxia_i2c_empty_rx_fifo(idev);
  258. /* TX FIFO needs service? */
  259. if (!i2c_m_rd(idev->msg) && (status & MST_STATUS_TFL)) {
  260. if (axxia_i2c_fill_tx_fifo(idev) == 0)
  261. i2c_int_disable(idev, MST_STATUS_TFL);
  262. }
  263. if (status & MST_STATUS_SCC) {
  264. /* Stop completed */
  265. i2c_int_disable(idev, ~0);
  266. complete(&idev->msg_complete);
  267. } else if (status & MST_STATUS_SNS) {
  268. /* Transfer done */
  269. i2c_int_disable(idev, ~0);
  270. if (i2c_m_rd(idev->msg) && idev->msg_xfrd < idev->msg->len)
  271. axxia_i2c_empty_rx_fifo(idev);
  272. complete(&idev->msg_complete);
  273. } else if (unlikely(status & MST_STATUS_ERR)) {
  274. /* Transfer error */
  275. i2c_int_disable(idev, ~0);
  276. if (status & MST_STATUS_AL)
  277. idev->msg_err = -EAGAIN;
  278. else if (status & MST_STATUS_NAK)
  279. idev->msg_err = -ENXIO;
  280. else
  281. idev->msg_err = -EIO;
  282. dev_dbg(idev->dev, "error %#x, addr=%#x rx=%u/%u tx=%u/%u\n",
  283. status,
  284. idev->msg->addr,
  285. readl(idev->base + MST_RX_BYTES_XFRD),
  286. readl(idev->base + MST_RX_XFER),
  287. readl(idev->base + MST_TX_BYTES_XFRD),
  288. readl(idev->base + MST_TX_XFER));
  289. complete(&idev->msg_complete);
  290. }
  291. out:
  292. /* Clear interrupt */
  293. writel(INT_MST, idev->base + INTERRUPT_STATUS);
  294. return IRQ_HANDLED;
  295. }
  296. static int axxia_i2c_xfer_msg(struct axxia_i2c_dev *idev, struct i2c_msg *msg)
  297. {
  298. u32 int_mask = MST_STATUS_ERR | MST_STATUS_SNS;
  299. u32 rx_xfer, tx_xfer;
  300. u32 addr_1, addr_2;
  301. unsigned long time_left;
  302. idev->msg = msg;
  303. idev->msg_xfrd = 0;
  304. idev->msg_err = 0;
  305. reinit_completion(&idev->msg_complete);
  306. if (i2c_m_ten(msg)) {
  307. /* 10-bit address
  308. * addr_1: 5'b11110 | addr[9:8] | (R/nW)
  309. * addr_2: addr[7:0]
  310. */
  311. addr_1 = 0xF0 | ((msg->addr >> 7) & 0x06);
  312. addr_2 = msg->addr & 0xFF;
  313. } else {
  314. /* 7-bit address
  315. * addr_1: addr[6:0] | (R/nW)
  316. * addr_2: dont care
  317. */
  318. addr_1 = (msg->addr << 1) & 0xFF;
  319. addr_2 = 0;
  320. }
  321. if (i2c_m_rd(msg)) {
  322. /* I2C read transfer */
  323. rx_xfer = i2c_m_recv_len(msg) ? I2C_SMBUS_BLOCK_MAX : msg->len;
  324. tx_xfer = 0;
  325. addr_1 |= 1; /* Set the R/nW bit of the address */
  326. } else {
  327. /* I2C write transfer */
  328. rx_xfer = 0;
  329. tx_xfer = msg->len;
  330. }
  331. writel(rx_xfer, idev->base + MST_RX_XFER);
  332. writel(tx_xfer, idev->base + MST_TX_XFER);
  333. writel(addr_1, idev->base + MST_ADDR_1);
  334. writel(addr_2, idev->base + MST_ADDR_2);
  335. if (i2c_m_rd(msg))
  336. int_mask |= MST_STATUS_RFL;
  337. else if (axxia_i2c_fill_tx_fifo(idev) != 0)
  338. int_mask |= MST_STATUS_TFL;
  339. /* Start manual mode */
  340. writel(CMD_MANUAL, idev->base + MST_COMMAND);
  341. i2c_int_enable(idev, int_mask);
  342. time_left = wait_for_completion_timeout(&idev->msg_complete,
  343. I2C_XFER_TIMEOUT);
  344. i2c_int_disable(idev, int_mask);
  345. if (readl(idev->base + MST_COMMAND) & CMD_BUSY)
  346. dev_warn(idev->dev, "busy after xfer\n");
  347. if (time_left == 0)
  348. idev->msg_err = -ETIMEDOUT;
  349. if (idev->msg_err == -ETIMEDOUT)
  350. i2c_recover_bus(&idev->adapter);
  351. if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO)
  352. axxia_i2c_init(idev);
  353. return idev->msg_err;
  354. }
  355. static int axxia_i2c_stop(struct axxia_i2c_dev *idev)
  356. {
  357. u32 int_mask = MST_STATUS_ERR | MST_STATUS_SCC;
  358. unsigned long time_left;
  359. reinit_completion(&idev->msg_complete);
  360. /* Issue stop */
  361. writel(0xb, idev->base + MST_COMMAND);
  362. i2c_int_enable(idev, int_mask);
  363. time_left = wait_for_completion_timeout(&idev->msg_complete,
  364. I2C_STOP_TIMEOUT);
  365. i2c_int_disable(idev, int_mask);
  366. if (time_left == 0)
  367. return -ETIMEDOUT;
  368. if (readl(idev->base + MST_COMMAND) & CMD_BUSY)
  369. dev_warn(idev->dev, "busy after stop\n");
  370. return 0;
  371. }
  372. static int
  373. axxia_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
  374. {
  375. struct axxia_i2c_dev *idev = i2c_get_adapdata(adap);
  376. int i;
  377. int ret = 0;
  378. for (i = 0; ret == 0 && i < num; ++i)
  379. ret = axxia_i2c_xfer_msg(idev, &msgs[i]);
  380. axxia_i2c_stop(idev);
  381. return ret ? : i;
  382. }
  383. static int axxia_i2c_get_scl(struct i2c_adapter *adap)
  384. {
  385. struct axxia_i2c_dev *idev = i2c_get_adapdata(adap);
  386. return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SCLS);
  387. }
  388. static void axxia_i2c_set_scl(struct i2c_adapter *adap, int val)
  389. {
  390. struct axxia_i2c_dev *idev = i2c_get_adapdata(adap);
  391. u32 tmp;
  392. /* Preserve SDA Control */
  393. tmp = readl(idev->base + I2C_BUS_MONITOR) & BM_SDAC;
  394. if (!val)
  395. tmp |= BM_SCLC;
  396. writel(tmp, idev->base + I2C_BUS_MONITOR);
  397. }
  398. static int axxia_i2c_get_sda(struct i2c_adapter *adap)
  399. {
  400. struct axxia_i2c_dev *idev = i2c_get_adapdata(adap);
  401. return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SDAS);
  402. }
  403. static struct i2c_bus_recovery_info axxia_i2c_recovery_info = {
  404. .recover_bus = i2c_generic_scl_recovery,
  405. .get_scl = axxia_i2c_get_scl,
  406. .set_scl = axxia_i2c_set_scl,
  407. .get_sda = axxia_i2c_get_sda,
  408. };
  409. static u32 axxia_i2c_func(struct i2c_adapter *adap)
  410. {
  411. u32 caps = (I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
  412. I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA);
  413. return caps;
  414. }
  415. static const struct i2c_algorithm axxia_i2c_algo = {
  416. .master_xfer = axxia_i2c_xfer,
  417. .functionality = axxia_i2c_func,
  418. };
  419. static struct i2c_adapter_quirks axxia_i2c_quirks = {
  420. .max_read_len = 255,
  421. .max_write_len = 255,
  422. };
  423. static int axxia_i2c_probe(struct platform_device *pdev)
  424. {
  425. struct device_node *np = pdev->dev.of_node;
  426. struct axxia_i2c_dev *idev = NULL;
  427. struct resource *res;
  428. void __iomem *base;
  429. int irq;
  430. int ret = 0;
  431. idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
  432. if (!idev)
  433. return -ENOMEM;
  434. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  435. base = devm_ioremap_resource(&pdev->dev, res);
  436. if (IS_ERR(base))
  437. return PTR_ERR(base);
  438. irq = platform_get_irq(pdev, 0);
  439. if (irq < 0) {
  440. dev_err(&pdev->dev, "missing interrupt resource\n");
  441. return irq;
  442. }
  443. idev->i2c_clk = devm_clk_get(&pdev->dev, "i2c");
  444. if (IS_ERR(idev->i2c_clk)) {
  445. dev_err(&pdev->dev, "missing clock\n");
  446. return PTR_ERR(idev->i2c_clk);
  447. }
  448. idev->base = base;
  449. idev->dev = &pdev->dev;
  450. init_completion(&idev->msg_complete);
  451. of_property_read_u32(np, "clock-frequency", &idev->bus_clk_rate);
  452. if (idev->bus_clk_rate == 0)
  453. idev->bus_clk_rate = 100000; /* default clock rate */
  454. ret = axxia_i2c_init(idev);
  455. if (ret) {
  456. dev_err(&pdev->dev, "failed to initialize\n");
  457. return ret;
  458. }
  459. ret = devm_request_irq(&pdev->dev, irq, axxia_i2c_isr, 0,
  460. pdev->name, idev);
  461. if (ret) {
  462. dev_err(&pdev->dev, "failed to claim IRQ%d\n", irq);
  463. return ret;
  464. }
  465. clk_prepare_enable(idev->i2c_clk);
  466. i2c_set_adapdata(&idev->adapter, idev);
  467. strlcpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name));
  468. idev->adapter.owner = THIS_MODULE;
  469. idev->adapter.algo = &axxia_i2c_algo;
  470. idev->adapter.bus_recovery_info = &axxia_i2c_recovery_info;
  471. idev->adapter.quirks = &axxia_i2c_quirks;
  472. idev->adapter.dev.parent = &pdev->dev;
  473. idev->adapter.dev.of_node = pdev->dev.of_node;
  474. platform_set_drvdata(pdev, idev);
  475. ret = i2c_add_adapter(&idev->adapter);
  476. if (ret) {
  477. dev_err(&pdev->dev, "failed to add adapter\n");
  478. return ret;
  479. }
  480. return 0;
  481. }
  482. static int axxia_i2c_remove(struct platform_device *pdev)
  483. {
  484. struct axxia_i2c_dev *idev = platform_get_drvdata(pdev);
  485. clk_disable_unprepare(idev->i2c_clk);
  486. i2c_del_adapter(&idev->adapter);
  487. return 0;
  488. }
  489. /* Match table for of_platform binding */
  490. static const struct of_device_id axxia_i2c_of_match[] = {
  491. { .compatible = "lsi,api2c", },
  492. {},
  493. };
  494. MODULE_DEVICE_TABLE(of, axxia_i2c_of_match);
  495. static struct platform_driver axxia_i2c_driver = {
  496. .probe = axxia_i2c_probe,
  497. .remove = axxia_i2c_remove,
  498. .driver = {
  499. .name = "axxia-i2c",
  500. .of_match_table = axxia_i2c_of_match,
  501. },
  502. };
  503. module_platform_driver(axxia_i2c_driver);
  504. MODULE_DESCRIPTION("Axxia I2C Bus driver");
  505. MODULE_AUTHOR("Anders Berg <anders.berg@lsi.com>");
  506. MODULE_LICENSE("GPL v2");