clk-axi-clkgen.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557
  1. /*
  2. * AXI clkgen driver
  3. *
  4. * Copyright 2012-2013 Analog Devices Inc.
  5. * Author: Lars-Peter Clausen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. */
  10. #include <linux/platform_device.h>
  11. #include <linux/clk-provider.h>
  12. #include <linux/clk.h>
  13. #include <linux/slab.h>
  14. #include <linux/io.h>
  15. #include <linux/of.h>
  16. #include <linux/module.h>
  17. #include <linux/err.h>
  18. #define AXI_CLKGEN_V1_REG_UPDATE_ENABLE 0x04
  19. #define AXI_CLKGEN_V1_REG_CLK_OUT1 0x08
  20. #define AXI_CLKGEN_V1_REG_CLK_OUT2 0x0c
  21. #define AXI_CLKGEN_V1_REG_CLK_DIV 0x10
  22. #define AXI_CLKGEN_V1_REG_CLK_FB1 0x14
  23. #define AXI_CLKGEN_V1_REG_CLK_FB2 0x18
  24. #define AXI_CLKGEN_V1_REG_LOCK1 0x1c
  25. #define AXI_CLKGEN_V1_REG_LOCK2 0x20
  26. #define AXI_CLKGEN_V1_REG_LOCK3 0x24
  27. #define AXI_CLKGEN_V1_REG_FILTER1 0x28
  28. #define AXI_CLKGEN_V1_REG_FILTER2 0x2c
  29. #define AXI_CLKGEN_V2_REG_RESET 0x40
  30. #define AXI_CLKGEN_V2_REG_DRP_CNTRL 0x70
  31. #define AXI_CLKGEN_V2_REG_DRP_STATUS 0x74
  32. #define AXI_CLKGEN_V2_RESET_MMCM_ENABLE BIT(1)
  33. #define AXI_CLKGEN_V2_RESET_ENABLE BIT(0)
  34. #define AXI_CLKGEN_V2_DRP_CNTRL_SEL BIT(29)
  35. #define AXI_CLKGEN_V2_DRP_CNTRL_READ BIT(28)
  36. #define AXI_CLKGEN_V2_DRP_STATUS_BUSY BIT(16)
  37. #define MMCM_REG_CLKOUT0_1 0x08
  38. #define MMCM_REG_CLKOUT0_2 0x09
  39. #define MMCM_REG_CLK_FB1 0x14
  40. #define MMCM_REG_CLK_FB2 0x15
  41. #define MMCM_REG_CLK_DIV 0x16
  42. #define MMCM_REG_LOCK1 0x18
  43. #define MMCM_REG_LOCK2 0x19
  44. #define MMCM_REG_LOCK3 0x1a
  45. #define MMCM_REG_FILTER1 0x4e
  46. #define MMCM_REG_FILTER2 0x4f
  47. struct axi_clkgen;
  48. struct axi_clkgen_mmcm_ops {
  49. void (*enable)(struct axi_clkgen *axi_clkgen, bool enable);
  50. int (*write)(struct axi_clkgen *axi_clkgen, unsigned int reg,
  51. unsigned int val, unsigned int mask);
  52. int (*read)(struct axi_clkgen *axi_clkgen, unsigned int reg,
  53. unsigned int *val);
  54. };
  55. struct axi_clkgen {
  56. void __iomem *base;
  57. const struct axi_clkgen_mmcm_ops *mmcm_ops;
  58. struct clk_hw clk_hw;
  59. };
  60. static void axi_clkgen_mmcm_enable(struct axi_clkgen *axi_clkgen,
  61. bool enable)
  62. {
  63. axi_clkgen->mmcm_ops->enable(axi_clkgen, enable);
  64. }
  65. static int axi_clkgen_mmcm_write(struct axi_clkgen *axi_clkgen,
  66. unsigned int reg, unsigned int val, unsigned int mask)
  67. {
  68. return axi_clkgen->mmcm_ops->write(axi_clkgen, reg, val, mask);
  69. }
  70. static int axi_clkgen_mmcm_read(struct axi_clkgen *axi_clkgen,
  71. unsigned int reg, unsigned int *val)
  72. {
  73. return axi_clkgen->mmcm_ops->read(axi_clkgen, reg, val);
  74. }
  75. static uint32_t axi_clkgen_lookup_filter(unsigned int m)
  76. {
  77. switch (m) {
  78. case 0:
  79. return 0x01001990;
  80. case 1:
  81. return 0x01001190;
  82. case 2:
  83. return 0x01009890;
  84. case 3:
  85. return 0x01001890;
  86. case 4:
  87. return 0x01008890;
  88. case 5 ... 8:
  89. return 0x01009090;
  90. case 9 ... 11:
  91. return 0x01000890;
  92. case 12:
  93. return 0x08009090;
  94. case 13 ... 22:
  95. return 0x01001090;
  96. case 23 ... 36:
  97. return 0x01008090;
  98. case 37 ... 46:
  99. return 0x08001090;
  100. default:
  101. return 0x08008090;
  102. }
  103. }
  104. static const uint32_t axi_clkgen_lock_table[] = {
  105. 0x060603e8, 0x060603e8, 0x080803e8, 0x0b0b03e8,
  106. 0x0e0e03e8, 0x111103e8, 0x131303e8, 0x161603e8,
  107. 0x191903e8, 0x1c1c03e8, 0x1f1f0384, 0x1f1f0339,
  108. 0x1f1f02ee, 0x1f1f02bc, 0x1f1f028a, 0x1f1f0271,
  109. 0x1f1f023f, 0x1f1f0226, 0x1f1f020d, 0x1f1f01f4,
  110. 0x1f1f01db, 0x1f1f01c2, 0x1f1f01a9, 0x1f1f0190,
  111. 0x1f1f0190, 0x1f1f0177, 0x1f1f015e, 0x1f1f015e,
  112. 0x1f1f0145, 0x1f1f0145, 0x1f1f012c, 0x1f1f012c,
  113. 0x1f1f012c, 0x1f1f0113, 0x1f1f0113, 0x1f1f0113,
  114. };
  115. static uint32_t axi_clkgen_lookup_lock(unsigned int m)
  116. {
  117. if (m < ARRAY_SIZE(axi_clkgen_lock_table))
  118. return axi_clkgen_lock_table[m];
  119. return 0x1f1f00fa;
  120. }
  121. static const unsigned int fpfd_min = 10000;
  122. static const unsigned int fpfd_max = 300000;
  123. static const unsigned int fvco_min = 600000;
  124. static const unsigned int fvco_max = 1200000;
  125. static void axi_clkgen_calc_params(unsigned long fin, unsigned long fout,
  126. unsigned int *best_d, unsigned int *best_m, unsigned int *best_dout)
  127. {
  128. unsigned long d, d_min, d_max, _d_min, _d_max;
  129. unsigned long m, m_min, m_max;
  130. unsigned long f, dout, best_f, fvco;
  131. fin /= 1000;
  132. fout /= 1000;
  133. best_f = ULONG_MAX;
  134. *best_d = 0;
  135. *best_m = 0;
  136. *best_dout = 0;
  137. d_min = max_t(unsigned long, DIV_ROUND_UP(fin, fpfd_max), 1);
  138. d_max = min_t(unsigned long, fin / fpfd_min, 80);
  139. m_min = max_t(unsigned long, DIV_ROUND_UP(fvco_min, fin) * d_min, 1);
  140. m_max = min_t(unsigned long, fvco_max * d_max / fin, 64);
  141. for (m = m_min; m <= m_max; m++) {
  142. _d_min = max(d_min, DIV_ROUND_UP(fin * m, fvco_max));
  143. _d_max = min(d_max, fin * m / fvco_min);
  144. for (d = _d_min; d <= _d_max; d++) {
  145. fvco = fin * m / d;
  146. dout = DIV_ROUND_CLOSEST(fvco, fout);
  147. dout = clamp_t(unsigned long, dout, 1, 128);
  148. f = fvco / dout;
  149. if (abs(f - fout) < abs(best_f - fout)) {
  150. best_f = f;
  151. *best_d = d;
  152. *best_m = m;
  153. *best_dout = dout;
  154. if (best_f == fout)
  155. return;
  156. }
  157. }
  158. }
  159. }
  160. static void axi_clkgen_calc_clk_params(unsigned int divider, unsigned int *low,
  161. unsigned int *high, unsigned int *edge, unsigned int *nocount)
  162. {
  163. if (divider == 1)
  164. *nocount = 1;
  165. else
  166. *nocount = 0;
  167. *high = divider / 2;
  168. *edge = divider % 2;
  169. *low = divider - *high;
  170. }
  171. static void axi_clkgen_write(struct axi_clkgen *axi_clkgen,
  172. unsigned int reg, unsigned int val)
  173. {
  174. writel(val, axi_clkgen->base + reg);
  175. }
  176. static void axi_clkgen_read(struct axi_clkgen *axi_clkgen,
  177. unsigned int reg, unsigned int *val)
  178. {
  179. *val = readl(axi_clkgen->base + reg);
  180. }
  181. static unsigned int axi_clkgen_v1_map_mmcm_reg(unsigned int reg)
  182. {
  183. switch (reg) {
  184. case MMCM_REG_CLKOUT0_1:
  185. return AXI_CLKGEN_V1_REG_CLK_OUT1;
  186. case MMCM_REG_CLKOUT0_2:
  187. return AXI_CLKGEN_V1_REG_CLK_OUT2;
  188. case MMCM_REG_CLK_FB1:
  189. return AXI_CLKGEN_V1_REG_CLK_FB1;
  190. case MMCM_REG_CLK_FB2:
  191. return AXI_CLKGEN_V1_REG_CLK_FB2;
  192. case MMCM_REG_CLK_DIV:
  193. return AXI_CLKGEN_V1_REG_CLK_DIV;
  194. case MMCM_REG_LOCK1:
  195. return AXI_CLKGEN_V1_REG_LOCK1;
  196. case MMCM_REG_LOCK2:
  197. return AXI_CLKGEN_V1_REG_LOCK2;
  198. case MMCM_REG_LOCK3:
  199. return AXI_CLKGEN_V1_REG_LOCK3;
  200. case MMCM_REG_FILTER1:
  201. return AXI_CLKGEN_V1_REG_FILTER1;
  202. case MMCM_REG_FILTER2:
  203. return AXI_CLKGEN_V1_REG_FILTER2;
  204. default:
  205. return 0;
  206. }
  207. }
  208. static int axi_clkgen_v1_mmcm_write(struct axi_clkgen *axi_clkgen,
  209. unsigned int reg, unsigned int val, unsigned int mask)
  210. {
  211. reg = axi_clkgen_v1_map_mmcm_reg(reg);
  212. if (reg == 0)
  213. return -EINVAL;
  214. axi_clkgen_write(axi_clkgen, reg, val);
  215. return 0;
  216. }
  217. static int axi_clkgen_v1_mmcm_read(struct axi_clkgen *axi_clkgen,
  218. unsigned int reg, unsigned int *val)
  219. {
  220. reg = axi_clkgen_v1_map_mmcm_reg(reg);
  221. if (reg == 0)
  222. return -EINVAL;
  223. axi_clkgen_read(axi_clkgen, reg, val);
  224. return 0;
  225. }
  226. static void axi_clkgen_v1_mmcm_enable(struct axi_clkgen *axi_clkgen,
  227. bool enable)
  228. {
  229. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V1_REG_UPDATE_ENABLE, enable);
  230. }
  231. static const struct axi_clkgen_mmcm_ops axi_clkgen_v1_mmcm_ops = {
  232. .write = axi_clkgen_v1_mmcm_write,
  233. .read = axi_clkgen_v1_mmcm_read,
  234. .enable = axi_clkgen_v1_mmcm_enable,
  235. };
  236. static int axi_clkgen_wait_non_busy(struct axi_clkgen *axi_clkgen)
  237. {
  238. unsigned int timeout = 10000;
  239. unsigned int val;
  240. do {
  241. axi_clkgen_read(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_STATUS, &val);
  242. } while ((val & AXI_CLKGEN_V2_DRP_STATUS_BUSY) && --timeout);
  243. if (val & AXI_CLKGEN_V2_DRP_STATUS_BUSY)
  244. return -EIO;
  245. return val & 0xffff;
  246. }
  247. static int axi_clkgen_v2_mmcm_read(struct axi_clkgen *axi_clkgen,
  248. unsigned int reg, unsigned int *val)
  249. {
  250. unsigned int reg_val;
  251. int ret;
  252. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  253. if (ret < 0)
  254. return ret;
  255. reg_val = AXI_CLKGEN_V2_DRP_CNTRL_SEL | AXI_CLKGEN_V2_DRP_CNTRL_READ;
  256. reg_val |= (reg << 16);
  257. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val);
  258. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  259. if (ret < 0)
  260. return ret;
  261. *val = ret;
  262. return 0;
  263. }
  264. static int axi_clkgen_v2_mmcm_write(struct axi_clkgen *axi_clkgen,
  265. unsigned int reg, unsigned int val, unsigned int mask)
  266. {
  267. unsigned int reg_val = 0;
  268. int ret;
  269. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  270. if (ret < 0)
  271. return ret;
  272. if (mask != 0xffff) {
  273. axi_clkgen_v2_mmcm_read(axi_clkgen, reg, &reg_val);
  274. reg_val &= ~mask;
  275. }
  276. reg_val |= AXI_CLKGEN_V2_DRP_CNTRL_SEL | (reg << 16) | (val & mask);
  277. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val);
  278. return 0;
  279. }
  280. static void axi_clkgen_v2_mmcm_enable(struct axi_clkgen *axi_clkgen,
  281. bool enable)
  282. {
  283. unsigned int val = AXI_CLKGEN_V2_RESET_ENABLE;
  284. if (enable)
  285. val |= AXI_CLKGEN_V2_RESET_MMCM_ENABLE;
  286. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_RESET, val);
  287. }
  288. static const struct axi_clkgen_mmcm_ops axi_clkgen_v2_mmcm_ops = {
  289. .write = axi_clkgen_v2_mmcm_write,
  290. .read = axi_clkgen_v2_mmcm_read,
  291. .enable = axi_clkgen_v2_mmcm_enable,
  292. };
  293. static struct axi_clkgen *clk_hw_to_axi_clkgen(struct clk_hw *clk_hw)
  294. {
  295. return container_of(clk_hw, struct axi_clkgen, clk_hw);
  296. }
  297. static int axi_clkgen_set_rate(struct clk_hw *clk_hw,
  298. unsigned long rate, unsigned long parent_rate)
  299. {
  300. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  301. unsigned int d, m, dout;
  302. unsigned int nocount;
  303. unsigned int high;
  304. unsigned int edge;
  305. unsigned int low;
  306. uint32_t filter;
  307. uint32_t lock;
  308. if (parent_rate == 0 || rate == 0)
  309. return -EINVAL;
  310. axi_clkgen_calc_params(parent_rate, rate, &d, &m, &dout);
  311. if (d == 0 || dout == 0 || m == 0)
  312. return -EINVAL;
  313. filter = axi_clkgen_lookup_filter(m - 1);
  314. lock = axi_clkgen_lookup_lock(m - 1);
  315. axi_clkgen_calc_clk_params(dout, &low, &high, &edge, &nocount);
  316. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLKOUT0_1,
  317. (high << 6) | low, 0xefff);
  318. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLKOUT0_2,
  319. (edge << 7) | (nocount << 6), 0x03ff);
  320. axi_clkgen_calc_clk_params(d, &low, &high, &edge, &nocount);
  321. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_DIV,
  322. (edge << 13) | (nocount << 12) | (high << 6) | low, 0x3fff);
  323. axi_clkgen_calc_clk_params(m, &low, &high, &edge, &nocount);
  324. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_FB1,
  325. (high << 6) | low, 0xefff);
  326. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_FB2,
  327. (edge << 7) | (nocount << 6), 0x03ff);
  328. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK1, lock & 0x3ff, 0x3ff);
  329. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK2,
  330. (((lock >> 16) & 0x1f) << 10) | 0x1, 0x7fff);
  331. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK3,
  332. (((lock >> 24) & 0x1f) << 10) | 0x3e9, 0x7fff);
  333. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER1, filter >> 16, 0x9900);
  334. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER2, filter, 0x9900);
  335. return 0;
  336. }
  337. static long axi_clkgen_round_rate(struct clk_hw *hw, unsigned long rate,
  338. unsigned long *parent_rate)
  339. {
  340. unsigned int d, m, dout;
  341. axi_clkgen_calc_params(*parent_rate, rate, &d, &m, &dout);
  342. if (d == 0 || dout == 0 || m == 0)
  343. return -EINVAL;
  344. return *parent_rate / d * m / dout;
  345. }
  346. static unsigned long axi_clkgen_recalc_rate(struct clk_hw *clk_hw,
  347. unsigned long parent_rate)
  348. {
  349. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  350. unsigned int d, m, dout;
  351. unsigned int reg;
  352. unsigned long long tmp;
  353. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLKOUT0_1, &reg);
  354. dout = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  355. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLK_DIV, &reg);
  356. d = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  357. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLK_FB1, &reg);
  358. m = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  359. if (d == 0 || dout == 0)
  360. return 0;
  361. tmp = (unsigned long long)(parent_rate / d) * m;
  362. do_div(tmp, dout);
  363. if (tmp > ULONG_MAX)
  364. return ULONG_MAX;
  365. return tmp;
  366. }
  367. static int axi_clkgen_enable(struct clk_hw *clk_hw)
  368. {
  369. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  370. axi_clkgen_mmcm_enable(axi_clkgen, true);
  371. return 0;
  372. }
  373. static void axi_clkgen_disable(struct clk_hw *clk_hw)
  374. {
  375. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  376. axi_clkgen_mmcm_enable(axi_clkgen, false);
  377. }
  378. static const struct clk_ops axi_clkgen_ops = {
  379. .recalc_rate = axi_clkgen_recalc_rate,
  380. .round_rate = axi_clkgen_round_rate,
  381. .set_rate = axi_clkgen_set_rate,
  382. .enable = axi_clkgen_enable,
  383. .disable = axi_clkgen_disable,
  384. };
  385. static const struct of_device_id axi_clkgen_ids[] = {
  386. {
  387. .compatible = "adi,axi-clkgen-1.00.a",
  388. .data = &axi_clkgen_v1_mmcm_ops
  389. }, {
  390. .compatible = "adi,axi-clkgen-2.00.a",
  391. .data = &axi_clkgen_v2_mmcm_ops,
  392. },
  393. { },
  394. };
  395. MODULE_DEVICE_TABLE(of, axi_clkgen_ids);
  396. static int axi_clkgen_probe(struct platform_device *pdev)
  397. {
  398. const struct of_device_id *id;
  399. struct axi_clkgen *axi_clkgen;
  400. struct clk_init_data init;
  401. const char *parent_name;
  402. const char *clk_name;
  403. struct resource *mem;
  404. struct clk *clk;
  405. if (!pdev->dev.of_node)
  406. return -ENODEV;
  407. id = of_match_node(axi_clkgen_ids, pdev->dev.of_node);
  408. if (!id)
  409. return -ENODEV;
  410. axi_clkgen = devm_kzalloc(&pdev->dev, sizeof(*axi_clkgen), GFP_KERNEL);
  411. if (!axi_clkgen)
  412. return -ENOMEM;
  413. axi_clkgen->mmcm_ops = id->data;
  414. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  415. axi_clkgen->base = devm_ioremap_resource(&pdev->dev, mem);
  416. if (IS_ERR(axi_clkgen->base))
  417. return PTR_ERR(axi_clkgen->base);
  418. parent_name = of_clk_get_parent_name(pdev->dev.of_node, 0);
  419. if (!parent_name)
  420. return -EINVAL;
  421. clk_name = pdev->dev.of_node->name;
  422. of_property_read_string(pdev->dev.of_node, "clock-output-names",
  423. &clk_name);
  424. init.name = clk_name;
  425. init.ops = &axi_clkgen_ops;
  426. init.flags = CLK_SET_RATE_GATE;
  427. init.parent_names = &parent_name;
  428. init.num_parents = 1;
  429. axi_clkgen_mmcm_enable(axi_clkgen, false);
  430. axi_clkgen->clk_hw.init = &init;
  431. clk = devm_clk_register(&pdev->dev, &axi_clkgen->clk_hw);
  432. if (IS_ERR(clk))
  433. return PTR_ERR(clk);
  434. return of_clk_add_provider(pdev->dev.of_node, of_clk_src_simple_get,
  435. clk);
  436. }
  437. static int axi_clkgen_remove(struct platform_device *pdev)
  438. {
  439. of_clk_del_provider(pdev->dev.of_node);
  440. return 0;
  441. }
  442. static struct platform_driver axi_clkgen_driver = {
  443. .driver = {
  444. .name = "adi-axi-clkgen",
  445. .of_match_table = axi_clkgen_ids,
  446. },
  447. .probe = axi_clkgen_probe,
  448. .remove = axi_clkgen_remove,
  449. };
  450. module_platform_driver(axi_clkgen_driver);
  451. MODULE_LICENSE("GPL v2");
  452. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  453. MODULE_DESCRIPTION("Driver for the Analog Devices' AXI clkgen pcore clock generator");