init.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. /*
  20. * We need to define the tracepoints somewhere, and tlb.c
  21. * is only compied when SMP=y.
  22. */
  23. #define CREATE_TRACE_POINTS
  24. #include <trace/events/tlb.h>
  25. #include "mm_internal.h"
  26. /*
  27. * Tables translating between page_cache_type_t and pte encoding.
  28. *
  29. * Minimal supported modes are defined statically, they are modified
  30. * during bootup if more supported cache modes are available.
  31. *
  32. * Index into __cachemode2pte_tbl[] is the cachemode.
  33. *
  34. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  35. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  36. */
  37. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  38. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  39. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  40. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  41. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  42. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  43. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  44. };
  45. EXPORT_SYMBOL(__cachemode2pte_tbl);
  46. uint8_t __pte2cachemode_tbl[8] = {
  47. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  48. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  49. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  50. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  51. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  52. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  53. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  54. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  55. };
  56. EXPORT_SYMBOL(__pte2cachemode_tbl);
  57. static unsigned long __initdata pgt_buf_start;
  58. static unsigned long __initdata pgt_buf_end;
  59. static unsigned long __initdata pgt_buf_top;
  60. static unsigned long min_pfn_mapped;
  61. static bool __initdata can_use_brk_pgt = true;
  62. /*
  63. * Pages returned are already directly mapped.
  64. *
  65. * Changing that is likely to break Xen, see commit:
  66. *
  67. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  68. *
  69. * for detailed information.
  70. */
  71. __ref void *alloc_low_pages(unsigned int num)
  72. {
  73. unsigned long pfn;
  74. int i;
  75. if (after_bootmem) {
  76. unsigned int order;
  77. order = get_order((unsigned long)num << PAGE_SHIFT);
  78. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  79. __GFP_ZERO, order);
  80. }
  81. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  82. unsigned long ret;
  83. if (min_pfn_mapped >= max_pfn_mapped)
  84. panic("alloc_low_pages: ran out of memory");
  85. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  86. max_pfn_mapped << PAGE_SHIFT,
  87. PAGE_SIZE * num , PAGE_SIZE);
  88. if (!ret)
  89. panic("alloc_low_pages: can not alloc memory");
  90. memblock_reserve(ret, PAGE_SIZE * num);
  91. pfn = ret >> PAGE_SHIFT;
  92. } else {
  93. pfn = pgt_buf_end;
  94. pgt_buf_end += num;
  95. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  96. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  97. }
  98. for (i = 0; i < num; i++) {
  99. void *adr;
  100. adr = __va((pfn + i) << PAGE_SHIFT);
  101. clear_page(adr);
  102. }
  103. return __va(pfn << PAGE_SHIFT);
  104. }
  105. /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
  106. #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
  107. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  108. void __init early_alloc_pgt_buf(void)
  109. {
  110. unsigned long tables = INIT_PGT_BUF_SIZE;
  111. phys_addr_t base;
  112. base = __pa(extend_brk(tables, PAGE_SIZE));
  113. pgt_buf_start = base >> PAGE_SHIFT;
  114. pgt_buf_end = pgt_buf_start;
  115. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  116. }
  117. int after_bootmem;
  118. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  119. struct map_range {
  120. unsigned long start;
  121. unsigned long end;
  122. unsigned page_size_mask;
  123. };
  124. static int page_size_mask;
  125. static void __init probe_page_size_mask(void)
  126. {
  127. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  128. /*
  129. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  130. * This will simplify cpa(), which otherwise needs to support splitting
  131. * large pages into small in interrupt context, etc.
  132. */
  133. if (cpu_has_pse)
  134. page_size_mask |= 1 << PG_LEVEL_2M;
  135. #endif
  136. /* Enable PSE if available */
  137. if (cpu_has_pse)
  138. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  139. /* Enable PGE if available */
  140. if (cpu_has_pge) {
  141. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  142. __supported_pte_mask |= _PAGE_GLOBAL;
  143. } else
  144. __supported_pte_mask &= ~_PAGE_GLOBAL;
  145. /* Enable 1 GB linear kernel mappings if available: */
  146. if (direct_gbpages && cpu_has_gbpages) {
  147. printk(KERN_INFO "Using GB pages for direct mapping\n");
  148. page_size_mask |= 1 << PG_LEVEL_1G;
  149. } else {
  150. direct_gbpages = 0;
  151. }
  152. }
  153. #ifdef CONFIG_X86_32
  154. #define NR_RANGE_MR 3
  155. #else /* CONFIG_X86_64 */
  156. #define NR_RANGE_MR 5
  157. #endif
  158. static int __meminit save_mr(struct map_range *mr, int nr_range,
  159. unsigned long start_pfn, unsigned long end_pfn,
  160. unsigned long page_size_mask)
  161. {
  162. if (start_pfn < end_pfn) {
  163. if (nr_range >= NR_RANGE_MR)
  164. panic("run out of range for init_memory_mapping\n");
  165. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  166. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  167. mr[nr_range].page_size_mask = page_size_mask;
  168. nr_range++;
  169. }
  170. return nr_range;
  171. }
  172. /*
  173. * adjust the page_size_mask for small range to go with
  174. * big page size instead small one if nearby are ram too.
  175. */
  176. static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
  177. int nr_range)
  178. {
  179. int i;
  180. for (i = 0; i < nr_range; i++) {
  181. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  182. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  183. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  184. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  185. #ifdef CONFIG_X86_32
  186. if ((end >> PAGE_SHIFT) > max_low_pfn)
  187. continue;
  188. #endif
  189. if (memblock_is_region_memory(start, end - start))
  190. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  191. }
  192. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  193. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  194. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  195. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  196. if (memblock_is_region_memory(start, end - start))
  197. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  198. }
  199. }
  200. }
  201. static const char *page_size_string(struct map_range *mr)
  202. {
  203. static const char str_1g[] = "1G";
  204. static const char str_2m[] = "2M";
  205. static const char str_4m[] = "4M";
  206. static const char str_4k[] = "4k";
  207. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  208. return str_1g;
  209. /*
  210. * 32-bit without PAE has a 4M large page size.
  211. * PG_LEVEL_2M is misnamed, but we can at least
  212. * print out the right size in the string.
  213. */
  214. if (IS_ENABLED(CONFIG_X86_32) &&
  215. !IS_ENABLED(CONFIG_X86_PAE) &&
  216. mr->page_size_mask & (1<<PG_LEVEL_2M))
  217. return str_4m;
  218. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  219. return str_2m;
  220. return str_4k;
  221. }
  222. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  223. unsigned long start,
  224. unsigned long end)
  225. {
  226. unsigned long start_pfn, end_pfn, limit_pfn;
  227. unsigned long pfn;
  228. int i;
  229. limit_pfn = PFN_DOWN(end);
  230. /* head if not big page alignment ? */
  231. pfn = start_pfn = PFN_DOWN(start);
  232. #ifdef CONFIG_X86_32
  233. /*
  234. * Don't use a large page for the first 2/4MB of memory
  235. * because there are often fixed size MTRRs in there
  236. * and overlapping MTRRs into large pages can cause
  237. * slowdowns.
  238. */
  239. if (pfn == 0)
  240. end_pfn = PFN_DOWN(PMD_SIZE);
  241. else
  242. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  243. #else /* CONFIG_X86_64 */
  244. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  245. #endif
  246. if (end_pfn > limit_pfn)
  247. end_pfn = limit_pfn;
  248. if (start_pfn < end_pfn) {
  249. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  250. pfn = end_pfn;
  251. }
  252. /* big page (2M) range */
  253. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  254. #ifdef CONFIG_X86_32
  255. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  256. #else /* CONFIG_X86_64 */
  257. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  258. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  259. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  260. #endif
  261. if (start_pfn < end_pfn) {
  262. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  263. page_size_mask & (1<<PG_LEVEL_2M));
  264. pfn = end_pfn;
  265. }
  266. #ifdef CONFIG_X86_64
  267. /* big page (1G) range */
  268. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  269. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  270. if (start_pfn < end_pfn) {
  271. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  272. page_size_mask &
  273. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  274. pfn = end_pfn;
  275. }
  276. /* tail is not big page (1G) alignment */
  277. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  278. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  279. if (start_pfn < end_pfn) {
  280. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  281. page_size_mask & (1<<PG_LEVEL_2M));
  282. pfn = end_pfn;
  283. }
  284. #endif
  285. /* tail is not big page (2M) alignment */
  286. start_pfn = pfn;
  287. end_pfn = limit_pfn;
  288. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  289. if (!after_bootmem)
  290. adjust_range_page_size_mask(mr, nr_range);
  291. /* try to merge same page size and continuous */
  292. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  293. unsigned long old_start;
  294. if (mr[i].end != mr[i+1].start ||
  295. mr[i].page_size_mask != mr[i+1].page_size_mask)
  296. continue;
  297. /* move it */
  298. old_start = mr[i].start;
  299. memmove(&mr[i], &mr[i+1],
  300. (nr_range - 1 - i) * sizeof(struct map_range));
  301. mr[i--].start = old_start;
  302. nr_range--;
  303. }
  304. for (i = 0; i < nr_range; i++)
  305. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  306. mr[i].start, mr[i].end - 1,
  307. page_size_string(&mr[i]));
  308. return nr_range;
  309. }
  310. struct range pfn_mapped[E820_X_MAX];
  311. int nr_pfn_mapped;
  312. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  313. {
  314. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  315. nr_pfn_mapped, start_pfn, end_pfn);
  316. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  317. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  318. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  319. max_low_pfn_mapped = max(max_low_pfn_mapped,
  320. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  321. }
  322. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  323. {
  324. int i;
  325. for (i = 0; i < nr_pfn_mapped; i++)
  326. if ((start_pfn >= pfn_mapped[i].start) &&
  327. (end_pfn <= pfn_mapped[i].end))
  328. return true;
  329. return false;
  330. }
  331. /*
  332. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  333. * This runs before bootmem is initialized and gets pages directly from
  334. * the physical memory. To access them they are temporarily mapped.
  335. */
  336. unsigned long __init_refok init_memory_mapping(unsigned long start,
  337. unsigned long end)
  338. {
  339. struct map_range mr[NR_RANGE_MR];
  340. unsigned long ret = 0;
  341. int nr_range, i;
  342. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  343. start, end - 1);
  344. memset(mr, 0, sizeof(mr));
  345. nr_range = split_mem_range(mr, 0, start, end);
  346. for (i = 0; i < nr_range; i++)
  347. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  348. mr[i].page_size_mask);
  349. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  350. return ret >> PAGE_SHIFT;
  351. }
  352. /*
  353. * We need to iterate through the E820 memory map and create direct mappings
  354. * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  355. * create direct mappings for all pfns from [0 to max_low_pfn) and
  356. * [4GB to max_pfn) because of possible memory holes in high addresses
  357. * that cannot be marked as UC by fixed/variable range MTRRs.
  358. * Depending on the alignment of E820 ranges, this may possibly result
  359. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  360. *
  361. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  362. * That range would have hole in the middle or ends, and only ram parts
  363. * will be mapped in init_range_memory_mapping().
  364. */
  365. static unsigned long __init init_range_memory_mapping(
  366. unsigned long r_start,
  367. unsigned long r_end)
  368. {
  369. unsigned long start_pfn, end_pfn;
  370. unsigned long mapped_ram_size = 0;
  371. int i;
  372. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  373. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  374. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  375. if (start >= end)
  376. continue;
  377. /*
  378. * if it is overlapping with brk pgt, we need to
  379. * alloc pgt buf from memblock instead.
  380. */
  381. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  382. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  383. init_memory_mapping(start, end);
  384. mapped_ram_size += end - start;
  385. can_use_brk_pgt = true;
  386. }
  387. return mapped_ram_size;
  388. }
  389. static unsigned long __init get_new_step_size(unsigned long step_size)
  390. {
  391. /*
  392. * Initial mapped size is PMD_SIZE (2M).
  393. * We can not set step_size to be PUD_SIZE (1G) yet.
  394. * In worse case, when we cross the 1G boundary, and
  395. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  396. * to map 1G range with PTE. Hence we use one less than the
  397. * difference of page table level shifts.
  398. *
  399. * Don't need to worry about overflow in the top-down case, on 32bit,
  400. * when step_size is 0, round_down() returns 0 for start, and that
  401. * turns it into 0x100000000ULL.
  402. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  403. * needs to be taken into consideration by the code below.
  404. */
  405. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  406. }
  407. /**
  408. * memory_map_top_down - Map [map_start, map_end) top down
  409. * @map_start: start address of the target memory range
  410. * @map_end: end address of the target memory range
  411. *
  412. * This function will setup direct mapping for memory range
  413. * [map_start, map_end) in top-down. That said, the page tables
  414. * will be allocated at the end of the memory, and we map the
  415. * memory in top-down.
  416. */
  417. static void __init memory_map_top_down(unsigned long map_start,
  418. unsigned long map_end)
  419. {
  420. unsigned long real_end, start, last_start;
  421. unsigned long step_size;
  422. unsigned long addr;
  423. unsigned long mapped_ram_size = 0;
  424. /* xen has big range in reserved near end of ram, skip it at first.*/
  425. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  426. real_end = addr + PMD_SIZE;
  427. /* step_size need to be small so pgt_buf from BRK could cover it */
  428. step_size = PMD_SIZE;
  429. max_pfn_mapped = 0; /* will get exact value next */
  430. min_pfn_mapped = real_end >> PAGE_SHIFT;
  431. last_start = start = real_end;
  432. /*
  433. * We start from the top (end of memory) and go to the bottom.
  434. * The memblock_find_in_range() gets us a block of RAM from the
  435. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  436. * for page table.
  437. */
  438. while (last_start > map_start) {
  439. if (last_start > step_size) {
  440. start = round_down(last_start - 1, step_size);
  441. if (start < map_start)
  442. start = map_start;
  443. } else
  444. start = map_start;
  445. mapped_ram_size += init_range_memory_mapping(start,
  446. last_start);
  447. last_start = start;
  448. min_pfn_mapped = last_start >> PAGE_SHIFT;
  449. if (mapped_ram_size >= step_size)
  450. step_size = get_new_step_size(step_size);
  451. }
  452. if (real_end < map_end)
  453. init_range_memory_mapping(real_end, map_end);
  454. }
  455. /**
  456. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  457. * @map_start: start address of the target memory range
  458. * @map_end: end address of the target memory range
  459. *
  460. * This function will setup direct mapping for memory range
  461. * [map_start, map_end) in bottom-up. Since we have limited the
  462. * bottom-up allocation above the kernel, the page tables will
  463. * be allocated just above the kernel and we map the memory
  464. * in [map_start, map_end) in bottom-up.
  465. */
  466. static void __init memory_map_bottom_up(unsigned long map_start,
  467. unsigned long map_end)
  468. {
  469. unsigned long next, start;
  470. unsigned long mapped_ram_size = 0;
  471. /* step_size need to be small so pgt_buf from BRK could cover it */
  472. unsigned long step_size = PMD_SIZE;
  473. start = map_start;
  474. min_pfn_mapped = start >> PAGE_SHIFT;
  475. /*
  476. * We start from the bottom (@map_start) and go to the top (@map_end).
  477. * The memblock_find_in_range() gets us a block of RAM from the
  478. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  479. * for page table.
  480. */
  481. while (start < map_end) {
  482. if (step_size && map_end - start > step_size) {
  483. next = round_up(start + 1, step_size);
  484. if (next > map_end)
  485. next = map_end;
  486. } else {
  487. next = map_end;
  488. }
  489. mapped_ram_size += init_range_memory_mapping(start, next);
  490. start = next;
  491. if (mapped_ram_size >= step_size)
  492. step_size = get_new_step_size(step_size);
  493. }
  494. }
  495. void __init init_mem_mapping(void)
  496. {
  497. unsigned long end;
  498. probe_page_size_mask();
  499. #ifdef CONFIG_X86_64
  500. end = max_pfn << PAGE_SHIFT;
  501. #else
  502. end = max_low_pfn << PAGE_SHIFT;
  503. #endif
  504. /* the ISA range is always mapped regardless of memory holes */
  505. init_memory_mapping(0, ISA_END_ADDRESS);
  506. /*
  507. * If the allocation is in bottom-up direction, we setup direct mapping
  508. * in bottom-up, otherwise we setup direct mapping in top-down.
  509. */
  510. if (memblock_bottom_up()) {
  511. unsigned long kernel_end = __pa_symbol(_end);
  512. /*
  513. * we need two separate calls here. This is because we want to
  514. * allocate page tables above the kernel. So we first map
  515. * [kernel_end, end) to make memory above the kernel be mapped
  516. * as soon as possible. And then use page tables allocated above
  517. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  518. */
  519. memory_map_bottom_up(kernel_end, end);
  520. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  521. } else {
  522. memory_map_top_down(ISA_END_ADDRESS, end);
  523. }
  524. #ifdef CONFIG_X86_64
  525. if (max_pfn > max_low_pfn) {
  526. /* can we preseve max_low_pfn ?*/
  527. max_low_pfn = max_pfn;
  528. }
  529. #else
  530. early_ioremap_page_table_range_init();
  531. #endif
  532. load_cr3(swapper_pg_dir);
  533. __flush_tlb_all();
  534. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  535. }
  536. /*
  537. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  538. * is valid. The argument is a physical page number.
  539. *
  540. *
  541. * On x86, access has to be given to the first megabyte of ram because that area
  542. * contains BIOS code and data regions used by X and dosemu and similar apps.
  543. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  544. * mmio resources as well as potential bios/acpi data regions.
  545. */
  546. int devmem_is_allowed(unsigned long pagenr)
  547. {
  548. if (pagenr < 256)
  549. return 1;
  550. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  551. return 0;
  552. if (!page_is_ram(pagenr))
  553. return 1;
  554. return 0;
  555. }
  556. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  557. {
  558. unsigned long begin_aligned, end_aligned;
  559. /* Make sure boundaries are page aligned */
  560. begin_aligned = PAGE_ALIGN(begin);
  561. end_aligned = end & PAGE_MASK;
  562. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  563. begin = begin_aligned;
  564. end = end_aligned;
  565. }
  566. if (begin >= end)
  567. return;
  568. /*
  569. * If debugging page accesses then do not free this memory but
  570. * mark them not present - any buggy init-section access will
  571. * create a kernel page fault:
  572. */
  573. #ifdef CONFIG_DEBUG_PAGEALLOC
  574. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  575. begin, end - 1);
  576. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  577. #else
  578. /*
  579. * We just marked the kernel text read only above, now that
  580. * we are going to free part of that, we need to make that
  581. * writeable and non-executable first.
  582. */
  583. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  584. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  585. free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
  586. #endif
  587. }
  588. void free_initmem(void)
  589. {
  590. free_init_pages("unused kernel",
  591. (unsigned long)(&__init_begin),
  592. (unsigned long)(&__init_end));
  593. }
  594. #ifdef CONFIG_BLK_DEV_INITRD
  595. void __init free_initrd_mem(unsigned long start, unsigned long end)
  596. {
  597. #ifdef CONFIG_MICROCODE_EARLY
  598. /*
  599. * Remember, initrd memory may contain microcode or other useful things.
  600. * Before we lose initrd mem, we need to find a place to hold them
  601. * now that normal virtual memory is enabled.
  602. */
  603. save_microcode_in_initrd();
  604. #endif
  605. /*
  606. * end could be not aligned, and We can not align that,
  607. * decompresser could be confused by aligned initrd_end
  608. * We already reserve the end partial page before in
  609. * - i386_start_kernel()
  610. * - x86_64_start_kernel()
  611. * - relocate_initrd()
  612. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  613. */
  614. free_init_pages("initrd", start, PAGE_ALIGN(end));
  615. }
  616. #endif
  617. void __init zone_sizes_init(void)
  618. {
  619. unsigned long max_zone_pfns[MAX_NR_ZONES];
  620. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  621. #ifdef CONFIG_ZONE_DMA
  622. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  623. #endif
  624. #ifdef CONFIG_ZONE_DMA32
  625. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  626. #endif
  627. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  628. #ifdef CONFIG_HIGHMEM
  629. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  630. #endif
  631. free_area_init_nodes(max_zone_pfns);
  632. }
  633. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  634. #ifdef CONFIG_SMP
  635. .active_mm = &init_mm,
  636. .state = 0,
  637. #endif
  638. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  639. };
  640. EXPORT_SYMBOL_GPL(cpu_tlbstate);
  641. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  642. {
  643. /* entry 0 MUST be WB (hardwired to speed up translations) */
  644. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  645. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  646. __pte2cachemode_tbl[entry] = cache;
  647. }