boot.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in tools/lguest/lguest.c) is called the Launcher.
  11. *
  12. * Secondly, we only run specially modified Guests, not normal kernels: setting
  13. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  14. * how to be a Guest at boot time. This means that you can use the same kernel
  15. * you boot normally (ie. as a Host) as a Guest.
  16. *
  17. * These Guests know that they cannot do privileged operations, such as disable
  18. * interrupts, and that they have to ask the Host to do such things explicitly.
  19. * This file consists of all the replacements for such low-level native
  20. * hardware operations: these special Guest versions call the Host.
  21. *
  22. * So how does the kernel know it's a Guest? We'll see that later, but let's
  23. * just say that we end up here where we replace the native functions various
  24. * "paravirt" structures with our Guest versions, then boot like normal.
  25. :*/
  26. /*
  27. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  28. *
  29. * This program is free software; you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation; either version 2 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * This program is distributed in the hope that it will be useful, but
  35. * WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  37. * NON INFRINGEMENT. See the GNU General Public License for more
  38. * details.
  39. *
  40. * You should have received a copy of the GNU General Public License
  41. * along with this program; if not, write to the Free Software
  42. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  43. */
  44. #include <linux/kernel.h>
  45. #include <linux/start_kernel.h>
  46. #include <linux/string.h>
  47. #include <linux/console.h>
  48. #include <linux/screen_info.h>
  49. #include <linux/irq.h>
  50. #include <linux/interrupt.h>
  51. #include <linux/clocksource.h>
  52. #include <linux/clockchips.h>
  53. #include <linux/lguest.h>
  54. #include <linux/lguest_launcher.h>
  55. #include <linux/virtio_console.h>
  56. #include <linux/pm.h>
  57. #include <linux/export.h>
  58. #include <linux/pci.h>
  59. #include <linux/virtio_pci.h>
  60. #include <asm/acpi.h>
  61. #include <asm/apic.h>
  62. #include <asm/lguest.h>
  63. #include <asm/paravirt.h>
  64. #include <asm/param.h>
  65. #include <asm/page.h>
  66. #include <asm/pgtable.h>
  67. #include <asm/desc.h>
  68. #include <asm/setup.h>
  69. #include <asm/e820.h>
  70. #include <asm/mce.h>
  71. #include <asm/io.h>
  72. #include <asm/fpu/api.h>
  73. #include <asm/stackprotector.h>
  74. #include <asm/reboot.h> /* for struct machine_ops */
  75. #include <asm/kvm_para.h>
  76. #include <asm/pci_x86.h>
  77. #include <asm/pci-direct.h>
  78. /*G:010
  79. * Welcome to the Guest!
  80. *
  81. * The Guest in our tale is a simple creature: identical to the Host but
  82. * behaving in simplified but equivalent ways. In particular, the Guest is the
  83. * same kernel as the Host (or at least, built from the same source code).
  84. :*/
  85. struct lguest_data lguest_data = {
  86. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  87. .noirq_iret = (u32)lguest_noirq_iret,
  88. .kernel_address = PAGE_OFFSET,
  89. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  90. .syscall_vec = IA32_SYSCALL_VECTOR,
  91. };
  92. /*G:037
  93. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  94. * ring buffer of stored hypercalls which the Host will run though next time we
  95. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  96. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  97. * and 255 once the Host has finished with it.
  98. *
  99. * If we come around to a slot which hasn't been finished, then the table is
  100. * full and we just make the hypercall directly. This has the nice side
  101. * effect of causing the Host to run all the stored calls in the ring buffer
  102. * which empties it for next time!
  103. */
  104. static void async_hcall(unsigned long call, unsigned long arg1,
  105. unsigned long arg2, unsigned long arg3,
  106. unsigned long arg4)
  107. {
  108. /* Note: This code assumes we're uniprocessor. */
  109. static unsigned int next_call;
  110. unsigned long flags;
  111. /*
  112. * Disable interrupts if not already disabled: we don't want an
  113. * interrupt handler making a hypercall while we're already doing
  114. * one!
  115. */
  116. local_irq_save(flags);
  117. if (lguest_data.hcall_status[next_call] != 0xFF) {
  118. /* Table full, so do normal hcall which will flush table. */
  119. hcall(call, arg1, arg2, arg3, arg4);
  120. } else {
  121. lguest_data.hcalls[next_call].arg0 = call;
  122. lguest_data.hcalls[next_call].arg1 = arg1;
  123. lguest_data.hcalls[next_call].arg2 = arg2;
  124. lguest_data.hcalls[next_call].arg3 = arg3;
  125. lguest_data.hcalls[next_call].arg4 = arg4;
  126. /* Arguments must all be written before we mark it to go */
  127. wmb();
  128. lguest_data.hcall_status[next_call] = 0;
  129. if (++next_call == LHCALL_RING_SIZE)
  130. next_call = 0;
  131. }
  132. local_irq_restore(flags);
  133. }
  134. /*G:035
  135. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  136. * optimization trick!
  137. *
  138. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  139. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  140. * are reasonably expensive, batching them up makes sense. For example, a
  141. * large munmap might update dozens of page table entries: that code calls
  142. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  143. * lguest_leave_lazy_mode().
  144. *
  145. * So, when we're in lazy mode, we call async_hcall() to store the call for
  146. * future processing:
  147. */
  148. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  149. {
  150. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  151. hcall(call, arg1, 0, 0, 0);
  152. else
  153. async_hcall(call, arg1, 0, 0, 0);
  154. }
  155. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  156. static void lazy_hcall2(unsigned long call,
  157. unsigned long arg1,
  158. unsigned long arg2)
  159. {
  160. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  161. hcall(call, arg1, arg2, 0, 0);
  162. else
  163. async_hcall(call, arg1, arg2, 0, 0);
  164. }
  165. static void lazy_hcall3(unsigned long call,
  166. unsigned long arg1,
  167. unsigned long arg2,
  168. unsigned long arg3)
  169. {
  170. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  171. hcall(call, arg1, arg2, arg3, 0);
  172. else
  173. async_hcall(call, arg1, arg2, arg3, 0);
  174. }
  175. #ifdef CONFIG_X86_PAE
  176. static void lazy_hcall4(unsigned long call,
  177. unsigned long arg1,
  178. unsigned long arg2,
  179. unsigned long arg3,
  180. unsigned long arg4)
  181. {
  182. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  183. hcall(call, arg1, arg2, arg3, arg4);
  184. else
  185. async_hcall(call, arg1, arg2, arg3, arg4);
  186. }
  187. #endif
  188. /*G:036
  189. * When lazy mode is turned off, we issue the do-nothing hypercall to
  190. * flush any stored calls, and call the generic helper to reset the
  191. * per-cpu lazy mode variable.
  192. */
  193. static void lguest_leave_lazy_mmu_mode(void)
  194. {
  195. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  196. paravirt_leave_lazy_mmu();
  197. }
  198. /*
  199. * We also catch the end of context switch; we enter lazy mode for much of
  200. * that too, so again we need to flush here.
  201. *
  202. * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
  203. * mode, but unlike Xen, lguest doesn't care about the difference).
  204. */
  205. static void lguest_end_context_switch(struct task_struct *next)
  206. {
  207. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  208. paravirt_end_context_switch(next);
  209. }
  210. /*G:032
  211. * After that diversion we return to our first native-instruction
  212. * replacements: four functions for interrupt control.
  213. *
  214. * The simplest way of implementing these would be to have "turn interrupts
  215. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  216. * these are by far the most commonly called functions of those we override.
  217. *
  218. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  219. * which the Guest can update with a single instruction. The Host knows to
  220. * check there before it tries to deliver an interrupt.
  221. */
  222. /*
  223. * save_flags() is expected to return the processor state (ie. "flags"). The
  224. * flags word contains all kind of stuff, but in practice Linux only cares
  225. * about the interrupt flag. Our "save_flags()" just returns that.
  226. */
  227. asmlinkage __visible unsigned long lguest_save_fl(void)
  228. {
  229. return lguest_data.irq_enabled;
  230. }
  231. /* Interrupts go off... */
  232. asmlinkage __visible void lguest_irq_disable(void)
  233. {
  234. lguest_data.irq_enabled = 0;
  235. }
  236. /*
  237. * Let's pause a moment. Remember how I said these are called so often?
  238. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  239. * break some rules. In particular, these functions are assumed to save their
  240. * own registers if they need to: normal C functions assume they can trash the
  241. * eax register. To use normal C functions, we use
  242. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  243. * C function, then restores it.
  244. */
  245. PV_CALLEE_SAVE_REGS_THUNK(lguest_save_fl);
  246. PV_CALLEE_SAVE_REGS_THUNK(lguest_irq_disable);
  247. /*:*/
  248. /* These are in head_32.S */
  249. extern void lg_irq_enable(void);
  250. extern void lg_restore_fl(unsigned long flags);
  251. /*M:003
  252. * We could be more efficient in our checking of outstanding interrupts, rather
  253. * than using a branch. One way would be to put the "irq_enabled" field in a
  254. * page by itself, and have the Host write-protect it when an interrupt comes
  255. * in when irqs are disabled. There will then be a page fault as soon as
  256. * interrupts are re-enabled.
  257. *
  258. * A better method is to implement soft interrupt disable generally for x86:
  259. * instead of disabling interrupts, we set a flag. If an interrupt does come
  260. * in, we then disable them for real. This is uncommon, so we could simply use
  261. * a hypercall for interrupt control and not worry about efficiency.
  262. :*/
  263. /*G:034
  264. * The Interrupt Descriptor Table (IDT).
  265. *
  266. * The IDT tells the processor what to do when an interrupt comes in. Each
  267. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  268. * address of the handler, and... well, who cares? The Guest just asks the
  269. * Host to make the change anyway, because the Host controls the real IDT.
  270. */
  271. static void lguest_write_idt_entry(gate_desc *dt,
  272. int entrynum, const gate_desc *g)
  273. {
  274. /*
  275. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  276. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  277. * around like this; typesafety wasn't a big concern in Linux's early
  278. * years.
  279. */
  280. u32 *desc = (u32 *)g;
  281. /* Keep the local copy up to date. */
  282. native_write_idt_entry(dt, entrynum, g);
  283. /* Tell Host about this new entry. */
  284. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  285. }
  286. /*
  287. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  288. * time it is written, so we can simply loop through all entries and tell the
  289. * Host about them.
  290. */
  291. static void lguest_load_idt(const struct desc_ptr *desc)
  292. {
  293. unsigned int i;
  294. struct desc_struct *idt = (void *)desc->address;
  295. for (i = 0; i < (desc->size+1)/8; i++)
  296. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  297. }
  298. /*
  299. * The Global Descriptor Table.
  300. *
  301. * The Intel architecture defines another table, called the Global Descriptor
  302. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  303. * instruction, and then several other instructions refer to entries in the
  304. * table. There are three entries which the Switcher needs, so the Host simply
  305. * controls the entire thing and the Guest asks it to make changes using the
  306. * LOAD_GDT hypercall.
  307. *
  308. * This is the exactly like the IDT code.
  309. */
  310. static void lguest_load_gdt(const struct desc_ptr *desc)
  311. {
  312. unsigned int i;
  313. struct desc_struct *gdt = (void *)desc->address;
  314. for (i = 0; i < (desc->size+1)/8; i++)
  315. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  316. }
  317. /*
  318. * For a single GDT entry which changes, we simply change our copy and
  319. * then tell the host about it.
  320. */
  321. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  322. const void *desc, int type)
  323. {
  324. native_write_gdt_entry(dt, entrynum, desc, type);
  325. /* Tell Host about this new entry. */
  326. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  327. dt[entrynum].a, dt[entrynum].b, 0);
  328. }
  329. /*
  330. * There are three "thread local storage" GDT entries which change
  331. * on every context switch (these three entries are how glibc implements
  332. * __thread variables). As an optimization, we have a hypercall
  333. * specifically for this case.
  334. *
  335. * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
  336. * which took a range of entries?
  337. */
  338. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  339. {
  340. /*
  341. * There's one problem which normal hardware doesn't have: the Host
  342. * can't handle us removing entries we're currently using. So we clear
  343. * the GS register here: if it's needed it'll be reloaded anyway.
  344. */
  345. lazy_load_gs(0);
  346. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  347. }
  348. /*G:038
  349. * That's enough excitement for now, back to ploughing through each of the
  350. * different pv_ops structures (we're about 1/3 of the way through).
  351. *
  352. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  353. * uses this for some strange applications like Wine. We don't do anything
  354. * here, so they'll get an informative and friendly Segmentation Fault.
  355. */
  356. static void lguest_set_ldt(const void *addr, unsigned entries)
  357. {
  358. }
  359. /*
  360. * This loads a GDT entry into the "Task Register": that entry points to a
  361. * structure called the Task State Segment. Some comments scattered though the
  362. * kernel code indicate that this used for task switching in ages past, along
  363. * with blood sacrifice and astrology.
  364. *
  365. * Now there's nothing interesting in here that we don't get told elsewhere.
  366. * But the native version uses the "ltr" instruction, which makes the Host
  367. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  368. * override the native version with a do-nothing version.
  369. */
  370. static void lguest_load_tr_desc(void)
  371. {
  372. }
  373. /*
  374. * The "cpuid" instruction is a way of querying both the CPU identity
  375. * (manufacturer, model, etc) and its features. It was introduced before the
  376. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  377. * As you might imagine, after a decade and a half this treatment, it is now a
  378. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  379. *
  380. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  381. * has been translated into 6 languages. I am not making this up!
  382. *
  383. * We could get funky here and identify ourselves as "GenuineLguest", but
  384. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  385. * off feature bits until the Guest booted. (Don't say that: you'll damage
  386. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  387. * hardly future proof.) No one's listening! They don't like you anyway,
  388. * parenthetic weirdo!
  389. *
  390. * Replacing the cpuid so we can turn features off is great for the kernel, but
  391. * anyone (including userspace) can just use the raw "cpuid" instruction and
  392. * the Host won't even notice since it isn't privileged. So we try not to get
  393. * too worked up about it.
  394. */
  395. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  396. unsigned int *cx, unsigned int *dx)
  397. {
  398. int function = *ax;
  399. native_cpuid(ax, bx, cx, dx);
  400. switch (function) {
  401. /*
  402. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  403. * We futureproof our code a little by sticking to known CPUID values.
  404. */
  405. case 0:
  406. if (*ax > 5)
  407. *ax = 5;
  408. break;
  409. /*
  410. * CPUID 1 is a basic feature request.
  411. *
  412. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  413. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  414. */
  415. case 1:
  416. *cx &= 0x00002201;
  417. *dx &= 0x07808151;
  418. /*
  419. * The Host can do a nice optimization if it knows that the
  420. * kernel mappings (addresses above 0xC0000000 or whatever
  421. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  422. * flush_tlb_user() for both user and kernel mappings unless
  423. * the Page Global Enable (PGE) feature bit is set.
  424. */
  425. *dx |= 0x00002000;
  426. /*
  427. * We also lie, and say we're family id 5. 6 or greater
  428. * leads to a rdmsr in early_init_intel which we can't handle.
  429. * Family ID is returned as bits 8-12 in ax.
  430. */
  431. *ax &= 0xFFFFF0FF;
  432. *ax |= 0x00000500;
  433. break;
  434. /*
  435. * This is used to detect if we're running under KVM. We might be,
  436. * but that's a Host matter, not us. So say we're not.
  437. */
  438. case KVM_CPUID_SIGNATURE:
  439. *bx = *cx = *dx = 0;
  440. break;
  441. /*
  442. * 0x80000000 returns the highest Extended Function, so we futureproof
  443. * like we do above by limiting it to known fields.
  444. */
  445. case 0x80000000:
  446. if (*ax > 0x80000008)
  447. *ax = 0x80000008;
  448. break;
  449. /*
  450. * PAE systems can mark pages as non-executable. Linux calls this the
  451. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  452. * Virus Protection). We just switch it off here, since we don't
  453. * support it.
  454. */
  455. case 0x80000001:
  456. *dx &= ~(1 << 20);
  457. break;
  458. }
  459. }
  460. /*
  461. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  462. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  463. * it. The Host needs to know when the Guest wants to change them, so we have
  464. * a whole series of functions like read_cr0() and write_cr0().
  465. *
  466. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  467. * features, but Linux only really cares about one: the horrifically-named Task
  468. * Switched (TS) bit at bit 3 (ie. 8)
  469. *
  470. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  471. * the floating point unit is used. Which allows us to restore FPU state
  472. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  473. * name like "FPUTRAP bit" be a little less cryptic?
  474. *
  475. * We store cr0 locally because the Host never changes it. The Guest sometimes
  476. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  477. */
  478. static unsigned long current_cr0;
  479. static void lguest_write_cr0(unsigned long val)
  480. {
  481. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  482. current_cr0 = val;
  483. }
  484. static unsigned long lguest_read_cr0(void)
  485. {
  486. return current_cr0;
  487. }
  488. /*
  489. * Intel provided a special instruction to clear the TS bit for people too cool
  490. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  491. * the vowels have been optimized out.
  492. */
  493. static void lguest_clts(void)
  494. {
  495. lazy_hcall1(LHCALL_TS, 0);
  496. current_cr0 &= ~X86_CR0_TS;
  497. }
  498. /*
  499. * cr2 is the virtual address of the last page fault, which the Guest only ever
  500. * reads. The Host kindly writes this into our "struct lguest_data", so we
  501. * just read it out of there.
  502. */
  503. static unsigned long lguest_read_cr2(void)
  504. {
  505. return lguest_data.cr2;
  506. }
  507. /* See lguest_set_pte() below. */
  508. static bool cr3_changed = false;
  509. static unsigned long current_cr3;
  510. /*
  511. * cr3 is the current toplevel pagetable page: the principle is the same as
  512. * cr0. Keep a local copy, and tell the Host when it changes.
  513. */
  514. static void lguest_write_cr3(unsigned long cr3)
  515. {
  516. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  517. current_cr3 = cr3;
  518. /* These two page tables are simple, linear, and used during boot */
  519. if (cr3 != __pa_symbol(swapper_pg_dir) &&
  520. cr3 != __pa_symbol(initial_page_table))
  521. cr3_changed = true;
  522. }
  523. static unsigned long lguest_read_cr3(void)
  524. {
  525. return current_cr3;
  526. }
  527. /* cr4 is used to enable and disable PGE, but we don't care. */
  528. static unsigned long lguest_read_cr4(void)
  529. {
  530. return 0;
  531. }
  532. static void lguest_write_cr4(unsigned long val)
  533. {
  534. }
  535. /*
  536. * Page Table Handling.
  537. *
  538. * Now would be a good time to take a rest and grab a coffee or similarly
  539. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  540. * winds uphill from here.
  541. *
  542. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  543. * maps virtual addresses to physical addresses using "page tables". We could
  544. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  545. * 1024 pages just to hold the page tables. But since most virtual addresses
  546. * are unused, we use a two level index which saves space. The cr3 register
  547. * contains the physical address of the top level "page directory" page, which
  548. * contains physical addresses of up to 1024 second-level pages. Each of these
  549. * second level pages contains up to 1024 physical addresses of actual pages,
  550. * or Page Table Entries (PTEs).
  551. *
  552. * Here's a diagram, where arrows indicate physical addresses:
  553. *
  554. * cr3 ---> +---------+
  555. * | --------->+---------+
  556. * | | | PADDR1 |
  557. * Mid-level | | PADDR2 |
  558. * (PMD) page | | |
  559. * | | Lower-level |
  560. * | | (PTE) page |
  561. * | | | |
  562. * .... ....
  563. *
  564. * So to convert a virtual address to a physical address, we look up the top
  565. * level, which points us to the second level, which gives us the physical
  566. * address of that page. If the top level entry was not present, or the second
  567. * level entry was not present, then the virtual address is invalid (we
  568. * say "the page was not mapped").
  569. *
  570. * Put another way, a 32-bit virtual address is divided up like so:
  571. *
  572. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  573. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  574. * Index into top Index into second Offset within page
  575. * page directory page pagetable page
  576. *
  577. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  578. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  579. * These are held in 64-bit page table entries, so we can now only fit 512
  580. * entries in a page, and the neat three-level tree breaks down.
  581. *
  582. * The result is a four level page table:
  583. *
  584. * cr3 --> [ 4 Upper ]
  585. * [ Level ]
  586. * [ Entries ]
  587. * [(PUD Page)]---> +---------+
  588. * | --------->+---------+
  589. * | | | PADDR1 |
  590. * Mid-level | | PADDR2 |
  591. * (PMD) page | | |
  592. * | | Lower-level |
  593. * | | (PTE) page |
  594. * | | | |
  595. * .... ....
  596. *
  597. *
  598. * And the virtual address is decoded as:
  599. *
  600. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  601. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  602. * Index into Index into mid Index into lower Offset within page
  603. * top entries directory page pagetable page
  604. *
  605. * It's too hard to switch between these two formats at runtime, so Linux only
  606. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  607. * distributions turn it on, and not just for people with silly amounts of
  608. * memory: the larger PTE entries allow room for the NX bit, which lets the
  609. * kernel disable execution of pages and increase security.
  610. *
  611. * This was a problem for lguest, which couldn't run on these distributions;
  612. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  613. * handful of puppies were crushed in the process!
  614. *
  615. * Back to our point: the kernel spends a lot of time changing both the
  616. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  617. * know physical addresses, so while it maintains these page tables exactly
  618. * like normal, it also needs to keep the Host informed whenever it makes a
  619. * change: the Host will create the real page tables based on the Guests'.
  620. */
  621. /*
  622. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  623. * a page into a process' address space. We tell the Host the toplevel and
  624. * address this corresponds to. The Guest uses one pagetable per process, so
  625. * we need to tell the Host which one we're changing (mm->pgd).
  626. */
  627. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  628. pte_t *ptep)
  629. {
  630. #ifdef CONFIG_X86_PAE
  631. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  632. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  633. ptep->pte_low, ptep->pte_high);
  634. #else
  635. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  636. #endif
  637. }
  638. /* This is the "set and update" combo-meal-deal version. */
  639. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  640. pte_t *ptep, pte_t pteval)
  641. {
  642. native_set_pte(ptep, pteval);
  643. lguest_pte_update(mm, addr, ptep);
  644. }
  645. /*
  646. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  647. * to set a middle-level entry when PAE is activated.
  648. *
  649. * Again, we set the entry then tell the Host which page we changed,
  650. * and the index of the entry we changed.
  651. */
  652. #ifdef CONFIG_X86_PAE
  653. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  654. {
  655. native_set_pud(pudp, pudval);
  656. /* 32 bytes aligned pdpt address and the index. */
  657. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  658. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  659. }
  660. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  661. {
  662. native_set_pmd(pmdp, pmdval);
  663. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  664. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  665. }
  666. #else
  667. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  668. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  669. {
  670. native_set_pmd(pmdp, pmdval);
  671. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  672. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  673. }
  674. #endif
  675. /*
  676. * There are a couple of legacy places where the kernel sets a PTE, but we
  677. * don't know the top level any more. This is useless for us, since we don't
  678. * know which pagetable is changing or what address, so we just tell the Host
  679. * to forget all of them. Fortunately, this is very rare.
  680. *
  681. * ... except in early boot when the kernel sets up the initial pagetables,
  682. * which makes booting astonishingly slow: 48 seconds! So we don't even tell
  683. * the Host anything changed until we've done the first real page table switch,
  684. * which brings boot back to 4.3 seconds.
  685. */
  686. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  687. {
  688. native_set_pte(ptep, pteval);
  689. if (cr3_changed)
  690. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  691. }
  692. #ifdef CONFIG_X86_PAE
  693. /*
  694. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  695. * bits at a time, the hardware could see a weird half-set entry. These
  696. * versions ensure we update all 64 bits at once.
  697. */
  698. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  699. {
  700. native_set_pte_atomic(ptep, pte);
  701. if (cr3_changed)
  702. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  703. }
  704. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  705. pte_t *ptep)
  706. {
  707. native_pte_clear(mm, addr, ptep);
  708. lguest_pte_update(mm, addr, ptep);
  709. }
  710. static void lguest_pmd_clear(pmd_t *pmdp)
  711. {
  712. lguest_set_pmd(pmdp, __pmd(0));
  713. }
  714. #endif
  715. /*
  716. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  717. * native page table operations. On native hardware you can set a new page
  718. * table entry whenever you want, but if you want to remove one you have to do
  719. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  720. *
  721. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  722. * called when a valid entry is written, not when it's removed (ie. marked not
  723. * present). Instead, this is where we come when the Guest wants to remove a
  724. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  725. * bit is zero).
  726. */
  727. static void lguest_flush_tlb_single(unsigned long addr)
  728. {
  729. /* Simply set it to zero: if it was not, it will fault back in. */
  730. lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
  731. }
  732. /*
  733. * This is what happens after the Guest has removed a large number of entries.
  734. * This tells the Host that any of the page table entries for userspace might
  735. * have changed, ie. virtual addresses below PAGE_OFFSET.
  736. */
  737. static void lguest_flush_tlb_user(void)
  738. {
  739. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  740. }
  741. /*
  742. * This is called when the kernel page tables have changed. That's not very
  743. * common (unless the Guest is using highmem, which makes the Guest extremely
  744. * slow), so it's worth separating this from the user flushing above.
  745. */
  746. static void lguest_flush_tlb_kernel(void)
  747. {
  748. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  749. }
  750. /*
  751. * The Unadvanced Programmable Interrupt Controller.
  752. *
  753. * This is an attempt to implement the simplest possible interrupt controller.
  754. * I spent some time looking though routines like set_irq_chip_and_handler,
  755. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  756. * I *think* this is as simple as it gets.
  757. *
  758. * We can tell the Host what interrupts we want blocked ready for using the
  759. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  760. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  761. * just mask and unmask them. I wonder if we should be cleverer?
  762. */
  763. static void disable_lguest_irq(struct irq_data *data)
  764. {
  765. set_bit(data->irq, lguest_data.blocked_interrupts);
  766. }
  767. static void enable_lguest_irq(struct irq_data *data)
  768. {
  769. clear_bit(data->irq, lguest_data.blocked_interrupts);
  770. }
  771. /* This structure describes the lguest IRQ controller. */
  772. static struct irq_chip lguest_irq_controller = {
  773. .name = "lguest",
  774. .irq_mask = disable_lguest_irq,
  775. .irq_mask_ack = disable_lguest_irq,
  776. .irq_unmask = enable_lguest_irq,
  777. };
  778. static int lguest_enable_irq(struct pci_dev *dev)
  779. {
  780. u8 line = 0;
  781. /* We literally use the PCI interrupt line as the irq number. */
  782. pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &line);
  783. irq_set_chip_and_handler_name(line, &lguest_irq_controller,
  784. handle_level_irq, "level");
  785. dev->irq = line;
  786. return 0;
  787. }
  788. /* We don't do hotplug PCI, so this shouldn't be called. */
  789. static void lguest_disable_irq(struct pci_dev *dev)
  790. {
  791. WARN_ON(1);
  792. }
  793. /*
  794. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  795. * interrupt (except 128, which is used for system calls), and then tells the
  796. * Linux infrastructure that each interrupt is controlled by our level-based
  797. * lguest interrupt controller.
  798. */
  799. static void __init lguest_init_IRQ(void)
  800. {
  801. unsigned int i;
  802. for (i = FIRST_EXTERNAL_VECTOR; i < FIRST_SYSTEM_VECTOR; i++) {
  803. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  804. __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
  805. if (i != IA32_SYSCALL_VECTOR)
  806. set_intr_gate(i, irq_entries_start +
  807. 8 * (i - FIRST_EXTERNAL_VECTOR));
  808. }
  809. /*
  810. * This call is required to set up for 4k stacks, where we have
  811. * separate stacks for hard and soft interrupts.
  812. */
  813. irq_ctx_init(smp_processor_id());
  814. }
  815. /*
  816. * Interrupt descriptors are allocated as-needed, but low-numbered ones are
  817. * reserved by the generic x86 code. So we ignore irq_alloc_desc_at if it
  818. * tells us the irq is already used: other errors (ie. ENOMEM) we take
  819. * seriously.
  820. */
  821. int lguest_setup_irq(unsigned int irq)
  822. {
  823. int err;
  824. /* Returns -ve error or vector number. */
  825. err = irq_alloc_desc_at(irq, 0);
  826. if (err < 0 && err != -EEXIST)
  827. return err;
  828. irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
  829. handle_level_irq, "level");
  830. return 0;
  831. }
  832. /*
  833. * Time.
  834. *
  835. * It would be far better for everyone if the Guest had its own clock, but
  836. * until then the Host gives us the time on every interrupt.
  837. */
  838. static void lguest_get_wallclock(struct timespec *now)
  839. {
  840. *now = lguest_data.time;
  841. }
  842. /*
  843. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  844. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  845. * This matches what we want here: if we return 0 from this function, the x86
  846. * TSC clock will give up and not register itself.
  847. */
  848. static unsigned long lguest_tsc_khz(void)
  849. {
  850. return lguest_data.tsc_khz;
  851. }
  852. /*
  853. * If we can't use the TSC, the kernel falls back to our lower-priority
  854. * "lguest_clock", where we read the time value given to us by the Host.
  855. */
  856. static cycle_t lguest_clock_read(struct clocksource *cs)
  857. {
  858. unsigned long sec, nsec;
  859. /*
  860. * Since the time is in two parts (seconds and nanoseconds), we risk
  861. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  862. * and getting 99 and 0. As Linux tends to come apart under the stress
  863. * of time travel, we must be careful:
  864. */
  865. do {
  866. /* First we read the seconds part. */
  867. sec = lguest_data.time.tv_sec;
  868. /*
  869. * This read memory barrier tells the compiler and the CPU that
  870. * this can't be reordered: we have to complete the above
  871. * before going on.
  872. */
  873. rmb();
  874. /* Now we read the nanoseconds part. */
  875. nsec = lguest_data.time.tv_nsec;
  876. /* Make sure we've done that. */
  877. rmb();
  878. /* Now if the seconds part has changed, try again. */
  879. } while (unlikely(lguest_data.time.tv_sec != sec));
  880. /* Our lguest clock is in real nanoseconds. */
  881. return sec*1000000000ULL + nsec;
  882. }
  883. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  884. static struct clocksource lguest_clock = {
  885. .name = "lguest",
  886. .rating = 200,
  887. .read = lguest_clock_read,
  888. .mask = CLOCKSOURCE_MASK(64),
  889. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  890. };
  891. /*
  892. * We also need a "struct clock_event_device": Linux asks us to set it to go
  893. * off some time in the future. Actually, James Morris figured all this out, I
  894. * just applied the patch.
  895. */
  896. static int lguest_clockevent_set_next_event(unsigned long delta,
  897. struct clock_event_device *evt)
  898. {
  899. /* FIXME: I don't think this can ever happen, but James tells me he had
  900. * to put this code in. Maybe we should remove it now. Anyone? */
  901. if (delta < LG_CLOCK_MIN_DELTA) {
  902. if (printk_ratelimit())
  903. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  904. __func__, delta);
  905. return -ETIME;
  906. }
  907. /* Please wake us this far in the future. */
  908. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  909. return 0;
  910. }
  911. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  912. struct clock_event_device *evt)
  913. {
  914. switch (mode) {
  915. case CLOCK_EVT_MODE_UNUSED:
  916. case CLOCK_EVT_MODE_SHUTDOWN:
  917. /* A 0 argument shuts the clock down. */
  918. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  919. break;
  920. case CLOCK_EVT_MODE_ONESHOT:
  921. /* This is what we expect. */
  922. break;
  923. case CLOCK_EVT_MODE_PERIODIC:
  924. BUG();
  925. case CLOCK_EVT_MODE_RESUME:
  926. break;
  927. }
  928. }
  929. /* This describes our primitive timer chip. */
  930. static struct clock_event_device lguest_clockevent = {
  931. .name = "lguest",
  932. .features = CLOCK_EVT_FEAT_ONESHOT,
  933. .set_next_event = lguest_clockevent_set_next_event,
  934. .set_mode = lguest_clockevent_set_mode,
  935. .rating = INT_MAX,
  936. .mult = 1,
  937. .shift = 0,
  938. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  939. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  940. };
  941. /*
  942. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  943. * call the clockevent infrastructure and it does whatever needs doing.
  944. */
  945. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  946. {
  947. unsigned long flags;
  948. /* Don't interrupt us while this is running. */
  949. local_irq_save(flags);
  950. lguest_clockevent.event_handler(&lguest_clockevent);
  951. local_irq_restore(flags);
  952. }
  953. /*
  954. * At some point in the boot process, we get asked to set up our timing
  955. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  956. * we cleverly initialized the "blocked_interrupts" field of "struct
  957. * lguest_data" so that timer interrupts were blocked until now.
  958. */
  959. static void lguest_time_init(void)
  960. {
  961. /* Set up the timer interrupt (0) to go to our simple timer routine */
  962. lguest_setup_irq(0);
  963. irq_set_handler(0, lguest_time_irq);
  964. clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
  965. /* We can't set cpumask in the initializer: damn C limitations! Set it
  966. * here and register our timer device. */
  967. lguest_clockevent.cpumask = cpumask_of(0);
  968. clockevents_register_device(&lguest_clockevent);
  969. /* Finally, we unblock the timer interrupt. */
  970. clear_bit(0, lguest_data.blocked_interrupts);
  971. }
  972. /*
  973. * Miscellaneous bits and pieces.
  974. *
  975. * Here is an oddball collection of functions which the Guest needs for things
  976. * to work. They're pretty simple.
  977. */
  978. /*
  979. * The Guest needs to tell the Host what stack it expects traps to use. For
  980. * native hardware, this is part of the Task State Segment mentioned above in
  981. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  982. *
  983. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  984. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  985. * will not tolerate us trying to use that), the stack pointer, and the number
  986. * of pages in the stack.
  987. */
  988. static void lguest_load_sp0(struct tss_struct *tss,
  989. struct thread_struct *thread)
  990. {
  991. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  992. THREAD_SIZE / PAGE_SIZE);
  993. tss->x86_tss.sp0 = thread->sp0;
  994. }
  995. /* Let's just say, I wouldn't do debugging under a Guest. */
  996. static unsigned long lguest_get_debugreg(int regno)
  997. {
  998. /* FIXME: Implement */
  999. return 0;
  1000. }
  1001. static void lguest_set_debugreg(int regno, unsigned long value)
  1002. {
  1003. /* FIXME: Implement */
  1004. }
  1005. /*
  1006. * There are times when the kernel wants to make sure that no memory writes are
  1007. * caught in the cache (that they've all reached real hardware devices). This
  1008. * doesn't matter for the Guest which has virtual hardware.
  1009. *
  1010. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  1011. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  1012. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  1013. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  1014. * ignore clflush, but replace wbinvd.
  1015. */
  1016. static void lguest_wbinvd(void)
  1017. {
  1018. }
  1019. /*
  1020. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  1021. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  1022. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  1023. * code qualifies for Advanced. It will also never interrupt anything. It
  1024. * does, however, allow us to get through the Linux boot code.
  1025. */
  1026. #ifdef CONFIG_X86_LOCAL_APIC
  1027. static void lguest_apic_write(u32 reg, u32 v)
  1028. {
  1029. }
  1030. static u32 lguest_apic_read(u32 reg)
  1031. {
  1032. return 0;
  1033. }
  1034. static u64 lguest_apic_icr_read(void)
  1035. {
  1036. return 0;
  1037. }
  1038. static void lguest_apic_icr_write(u32 low, u32 id)
  1039. {
  1040. /* Warn to see if there's any stray references */
  1041. WARN_ON(1);
  1042. }
  1043. static void lguest_apic_wait_icr_idle(void)
  1044. {
  1045. return;
  1046. }
  1047. static u32 lguest_apic_safe_wait_icr_idle(void)
  1048. {
  1049. return 0;
  1050. }
  1051. static void set_lguest_basic_apic_ops(void)
  1052. {
  1053. apic->read = lguest_apic_read;
  1054. apic->write = lguest_apic_write;
  1055. apic->icr_read = lguest_apic_icr_read;
  1056. apic->icr_write = lguest_apic_icr_write;
  1057. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1058. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1059. };
  1060. #endif
  1061. /* STOP! Until an interrupt comes in. */
  1062. static void lguest_safe_halt(void)
  1063. {
  1064. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1065. }
  1066. /*
  1067. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1068. * an argument which says whether this to restart (reboot) the Guest or not.
  1069. *
  1070. * Note that the Host always prefers that the Guest speak in physical addresses
  1071. * rather than virtual addresses, so we use __pa() here.
  1072. */
  1073. static void lguest_power_off(void)
  1074. {
  1075. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1076. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1077. }
  1078. /*
  1079. * Panicing.
  1080. *
  1081. * Don't. But if you did, this is what happens.
  1082. */
  1083. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1084. {
  1085. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1086. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1087. return NOTIFY_DONE;
  1088. }
  1089. static struct notifier_block paniced = {
  1090. .notifier_call = lguest_panic
  1091. };
  1092. /* Setting up memory is fairly easy. */
  1093. static __init char *lguest_memory_setup(void)
  1094. {
  1095. /*
  1096. * The Linux bootloader header contains an "e820" memory map: the
  1097. * Launcher populated the first entry with our memory limit.
  1098. */
  1099. e820_add_region(boot_params.e820_map[0].addr,
  1100. boot_params.e820_map[0].size,
  1101. boot_params.e820_map[0].type);
  1102. /* This string is for the boot messages. */
  1103. return "LGUEST";
  1104. }
  1105. /* Offset within PCI config space of BAR access capability. */
  1106. static int console_cfg_offset = 0;
  1107. static int console_access_cap;
  1108. /* Set up so that we access off in bar0 (on bus 0, device 1, function 0) */
  1109. static void set_cfg_window(u32 cfg_offset, u32 off)
  1110. {
  1111. write_pci_config_byte(0, 1, 0,
  1112. cfg_offset + offsetof(struct virtio_pci_cap, bar),
  1113. 0);
  1114. write_pci_config(0, 1, 0,
  1115. cfg_offset + offsetof(struct virtio_pci_cap, length),
  1116. 4);
  1117. write_pci_config(0, 1, 0,
  1118. cfg_offset + offsetof(struct virtio_pci_cap, offset),
  1119. off);
  1120. }
  1121. static void write_bar_via_cfg(u32 cfg_offset, u32 off, u32 val)
  1122. {
  1123. /*
  1124. * We could set this up once, then leave it; nothing else in the *
  1125. * kernel should touch these registers. But if it went wrong, that
  1126. * would be a horrible bug to find.
  1127. */
  1128. set_cfg_window(cfg_offset, off);
  1129. write_pci_config(0, 1, 0,
  1130. cfg_offset + sizeof(struct virtio_pci_cap), val);
  1131. }
  1132. static void probe_pci_console(void)
  1133. {
  1134. u8 cap, common_cap = 0, device_cap = 0;
  1135. /* Offset within BAR0 */
  1136. u32 device_offset;
  1137. u32 device_len;
  1138. /* Avoid recursive printk into here. */
  1139. console_cfg_offset = -1;
  1140. if (!early_pci_allowed()) {
  1141. printk(KERN_ERR "lguest: early PCI access not allowed!\n");
  1142. return;
  1143. }
  1144. /* We expect a console PCI device at BUS0, slot 1. */
  1145. if (read_pci_config(0, 1, 0, 0) != 0x10431AF4) {
  1146. printk(KERN_ERR "lguest: PCI device is %#x!\n",
  1147. read_pci_config(0, 1, 0, 0));
  1148. return;
  1149. }
  1150. /* Find the capabilities we need (must be in bar0) */
  1151. cap = read_pci_config_byte(0, 1, 0, PCI_CAPABILITY_LIST);
  1152. while (cap) {
  1153. u8 vndr = read_pci_config_byte(0, 1, 0, cap);
  1154. if (vndr == PCI_CAP_ID_VNDR) {
  1155. u8 type, bar;
  1156. u32 offset, length;
  1157. type = read_pci_config_byte(0, 1, 0,
  1158. cap + offsetof(struct virtio_pci_cap, cfg_type));
  1159. bar = read_pci_config_byte(0, 1, 0,
  1160. cap + offsetof(struct virtio_pci_cap, bar));
  1161. offset = read_pci_config(0, 1, 0,
  1162. cap + offsetof(struct virtio_pci_cap, offset));
  1163. length = read_pci_config(0, 1, 0,
  1164. cap + offsetof(struct virtio_pci_cap, length));
  1165. switch (type) {
  1166. case VIRTIO_PCI_CAP_DEVICE_CFG:
  1167. if (bar == 0) {
  1168. device_cap = cap;
  1169. device_offset = offset;
  1170. device_len = length;
  1171. }
  1172. break;
  1173. case VIRTIO_PCI_CAP_PCI_CFG:
  1174. console_access_cap = cap;
  1175. break;
  1176. }
  1177. }
  1178. cap = read_pci_config_byte(0, 1, 0, cap + PCI_CAP_LIST_NEXT);
  1179. }
  1180. if (!device_cap || !console_access_cap) {
  1181. printk(KERN_ERR "lguest: No caps (%u/%u/%u) in console!\n",
  1182. common_cap, device_cap, console_access_cap);
  1183. return;
  1184. }
  1185. /*
  1186. * Note that we can't check features, until we've set the DRIVER
  1187. * status bit. We don't want to do that until we have a real driver,
  1188. * so we just check that the device-specific config has room for
  1189. * emerg_wr. If it doesn't support VIRTIO_CONSOLE_F_EMERG_WRITE
  1190. * it should ignore the access.
  1191. */
  1192. if (device_len < (offsetof(struct virtio_console_config, emerg_wr)
  1193. + sizeof(u32))) {
  1194. printk(KERN_ERR "lguest: console missing emerg_wr field\n");
  1195. return;
  1196. }
  1197. console_cfg_offset = device_offset;
  1198. printk(KERN_INFO "lguest: Console via virtio-pci emerg_wr\n");
  1199. }
  1200. /*
  1201. * We will eventually use the virtio console device to produce console output,
  1202. * but before that is set up we use the virtio PCI console's backdoor mmio
  1203. * access and the "emergency" write facility (which is legal even before the
  1204. * device is configured).
  1205. */
  1206. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1207. {
  1208. /* If we couldn't find PCI console, forget it. */
  1209. if (console_cfg_offset < 0)
  1210. return count;
  1211. if (unlikely(!console_cfg_offset)) {
  1212. probe_pci_console();
  1213. if (console_cfg_offset < 0)
  1214. return count;
  1215. }
  1216. write_bar_via_cfg(console_access_cap,
  1217. console_cfg_offset
  1218. + offsetof(struct virtio_console_config, emerg_wr),
  1219. buf[0]);
  1220. return 1;
  1221. }
  1222. /*
  1223. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1224. * Launcher to reboot us.
  1225. */
  1226. static void lguest_restart(char *reason)
  1227. {
  1228. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1229. }
  1230. /*G:050
  1231. * Patching (Powerfully Placating Performance Pedants)
  1232. *
  1233. * We have already seen that pv_ops structures let us replace simple native
  1234. * instructions with calls to the appropriate back end all throughout the
  1235. * kernel. This allows the same kernel to run as a Guest and as a native
  1236. * kernel, but it's slow because of all the indirect branches.
  1237. *
  1238. * Remember that David Wheeler quote about "Any problem in computer science can
  1239. * be solved with another layer of indirection"? The rest of that quote is
  1240. * "... But that usually will create another problem." This is the first of
  1241. * those problems.
  1242. *
  1243. * Our current solution is to allow the paravirt back end to optionally patch
  1244. * over the indirect calls to replace them with something more efficient. We
  1245. * patch two of the simplest of the most commonly called functions: disable
  1246. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1247. * into: the Guest versions of these operations are small enough that we can
  1248. * fit comfortably.
  1249. *
  1250. * First we need assembly templates of each of the patchable Guest operations,
  1251. * and these are in head_32.S.
  1252. */
  1253. /*G:060 We construct a table from the assembler templates: */
  1254. static const struct lguest_insns
  1255. {
  1256. const char *start, *end;
  1257. } lguest_insns[] = {
  1258. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1259. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1260. };
  1261. /*
  1262. * Now our patch routine is fairly simple (based on the native one in
  1263. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1264. * the available space we used.
  1265. */
  1266. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1267. unsigned long addr, unsigned len)
  1268. {
  1269. unsigned int insn_len;
  1270. /* Don't do anything special if we don't have a replacement */
  1271. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1272. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1273. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1274. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1275. if (len < insn_len)
  1276. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1277. /* Copy in our instructions. */
  1278. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1279. return insn_len;
  1280. }
  1281. /*G:029
  1282. * Once we get to lguest_init(), we know we're a Guest. The various
  1283. * pv_ops structures in the kernel provide points for (almost) every routine we
  1284. * have to override to avoid privileged instructions.
  1285. */
  1286. __init void lguest_init(void)
  1287. {
  1288. /* We're under lguest. */
  1289. pv_info.name = "lguest";
  1290. /* Paravirt is enabled. */
  1291. pv_info.paravirt_enabled = 1;
  1292. /* We're running at privilege level 1, not 0 as normal. */
  1293. pv_info.kernel_rpl = 1;
  1294. /* Everyone except Xen runs with this set. */
  1295. pv_info.shared_kernel_pmd = 1;
  1296. /*
  1297. * We set up all the lguest overrides for sensitive operations. These
  1298. * are detailed with the operations themselves.
  1299. */
  1300. /* Interrupt-related operations */
  1301. pv_irq_ops.save_fl = PV_CALLEE_SAVE(lguest_save_fl);
  1302. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1303. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(lguest_irq_disable);
  1304. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1305. pv_irq_ops.safe_halt = lguest_safe_halt;
  1306. /* Setup operations */
  1307. pv_init_ops.patch = lguest_patch;
  1308. /* Intercepts of various CPU instructions */
  1309. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1310. pv_cpu_ops.cpuid = lguest_cpuid;
  1311. pv_cpu_ops.load_idt = lguest_load_idt;
  1312. pv_cpu_ops.iret = lguest_iret;
  1313. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1314. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1315. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1316. pv_cpu_ops.load_tls = lguest_load_tls;
  1317. pv_cpu_ops.get_debugreg = lguest_get_debugreg;
  1318. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1319. pv_cpu_ops.clts = lguest_clts;
  1320. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1321. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1322. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1323. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1324. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1325. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1326. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1327. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1328. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1329. /* Pagetable management */
  1330. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1331. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1332. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1333. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1334. pv_mmu_ops.set_pte = lguest_set_pte;
  1335. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1336. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1337. #ifdef CONFIG_X86_PAE
  1338. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1339. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1340. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1341. pv_mmu_ops.set_pud = lguest_set_pud;
  1342. #endif
  1343. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1344. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1345. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1346. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1347. pv_mmu_ops.lazy_mode.flush = paravirt_flush_lazy_mmu;
  1348. pv_mmu_ops.pte_update = lguest_pte_update;
  1349. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1350. #ifdef CONFIG_X86_LOCAL_APIC
  1351. /* APIC read/write intercepts */
  1352. set_lguest_basic_apic_ops();
  1353. #endif
  1354. x86_init.resources.memory_setup = lguest_memory_setup;
  1355. x86_init.irqs.intr_init = lguest_init_IRQ;
  1356. x86_init.timers.timer_init = lguest_time_init;
  1357. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1358. x86_platform.get_wallclock = lguest_get_wallclock;
  1359. /*
  1360. * Now is a good time to look at the implementations of these functions
  1361. * before returning to the rest of lguest_init().
  1362. */
  1363. /*G:070
  1364. * Now we've seen all the paravirt_ops, we return to
  1365. * lguest_init() where the rest of the fairly chaotic boot setup
  1366. * occurs.
  1367. */
  1368. /*
  1369. * The stack protector is a weird thing where gcc places a canary
  1370. * value on the stack and then checks it on return. This file is
  1371. * compiled with -fno-stack-protector it, so we got this far without
  1372. * problems. The value of the canary is kept at offset 20 from the
  1373. * %gs register, so we need to set that up before calling C functions
  1374. * in other files.
  1375. */
  1376. setup_stack_canary_segment(0);
  1377. /*
  1378. * We could just call load_stack_canary_segment(), but we might as well
  1379. * call switch_to_new_gdt() which loads the whole table and sets up the
  1380. * per-cpu segment descriptor register %fs as well.
  1381. */
  1382. switch_to_new_gdt(0);
  1383. /*
  1384. * The Host<->Guest Switcher lives at the top of our address space, and
  1385. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1386. * it put the answer in lguest_data.reserve_mem
  1387. */
  1388. reserve_top_address(lguest_data.reserve_mem);
  1389. /*
  1390. * If we don't initialize the lock dependency checker now, it crashes
  1391. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1392. */
  1393. lockdep_init();
  1394. /* Hook in our special panic hypercall code. */
  1395. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1396. /*
  1397. * This is messy CPU setup stuff which the native boot code does before
  1398. * start_kernel, so we have to do, too:
  1399. */
  1400. cpu_detect(&new_cpu_data);
  1401. /* head.S usually sets up the first capability word, so do it here. */
  1402. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1403. /* Math is always hard! */
  1404. set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
  1405. /* We don't have features. We have puppies! Puppies! */
  1406. #ifdef CONFIG_X86_MCE
  1407. mca_cfg.disabled = true;
  1408. #endif
  1409. #ifdef CONFIG_ACPI
  1410. acpi_disabled = 1;
  1411. #endif
  1412. /*
  1413. * We set the preferred console to "hvc". This is the "hypervisor
  1414. * virtual console" driver written by the PowerPC people, which we also
  1415. * adapted for lguest's use.
  1416. */
  1417. add_preferred_console("hvc", 0, NULL);
  1418. /* Register our very early console. */
  1419. virtio_cons_early_init(early_put_chars);
  1420. /* Don't let ACPI try to control our PCI interrupts. */
  1421. disable_acpi();
  1422. /* We control them ourselves, by overriding these two hooks. */
  1423. pcibios_enable_irq = lguest_enable_irq;
  1424. pcibios_disable_irq = lguest_disable_irq;
  1425. /*
  1426. * Last of all, we set the power management poweroff hook to point to
  1427. * the Guest routine to power off, and the reboot hook to our restart
  1428. * routine.
  1429. */
  1430. pm_power_off = lguest_power_off;
  1431. machine_ops.restart = lguest_restart;
  1432. /*
  1433. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1434. * to boot as normal. It never returns.
  1435. */
  1436. i386_start_kernel();
  1437. }
  1438. /*
  1439. * This marks the end of stage II of our journey, The Guest.
  1440. *
  1441. * It is now time for us to explore the layer of virtual drivers and complete
  1442. * our understanding of the Guest in "make Drivers".
  1443. */