process.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/wait.h>
  12. #include <asm/unistd.h>
  13. #include <as-layout.h>
  14. #include <init.h>
  15. #include <kern_util.h>
  16. #include <mem.h>
  17. #include <os.h>
  18. #include <ptrace_user.h>
  19. #include <registers.h>
  20. #include <skas.h>
  21. #include <sysdep/stub.h>
  22. int is_skas_winch(int pid, int fd, void *data)
  23. {
  24. return pid == getpgrp();
  25. }
  26. static int ptrace_dump_regs(int pid)
  27. {
  28. unsigned long regs[MAX_REG_NR];
  29. int i;
  30. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  31. return -errno;
  32. printk(UM_KERN_ERR "Stub registers -\n");
  33. for (i = 0; i < ARRAY_SIZE(regs); i++)
  34. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  35. return 0;
  36. }
  37. /*
  38. * Signals that are OK to receive in the stub - we'll just continue it.
  39. * SIGWINCH will happen when UML is inside a detached screen.
  40. */
  41. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  42. /* Signals that the stub will finish with - anything else is an error */
  43. #define STUB_DONE_MASK (1 << SIGTRAP)
  44. void wait_stub_done(int pid)
  45. {
  46. int n, status, err;
  47. while (1) {
  48. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  49. if ((n < 0) || !WIFSTOPPED(status))
  50. goto bad_wait;
  51. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  52. break;
  53. err = ptrace(PTRACE_CONT, pid, 0, 0);
  54. if (err) {
  55. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  56. "errno = %d\n", errno);
  57. fatal_sigsegv();
  58. }
  59. }
  60. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  61. return;
  62. bad_wait:
  63. err = ptrace_dump_regs(pid);
  64. if (err)
  65. printk(UM_KERN_ERR "Failed to get registers from stub, "
  66. "errno = %d\n", -err);
  67. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  68. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  69. status);
  70. fatal_sigsegv();
  71. }
  72. extern unsigned long current_stub_stack(void);
  73. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  74. {
  75. int err;
  76. unsigned long fpregs[FP_SIZE];
  77. err = get_fp_registers(pid, fpregs);
  78. if (err < 0) {
  79. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  80. err);
  81. fatal_sigsegv();
  82. }
  83. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  84. if (err) {
  85. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  86. "errno = %d\n", pid, errno);
  87. fatal_sigsegv();
  88. }
  89. wait_stub_done(pid);
  90. /*
  91. * faultinfo is prepared by the stub-segv-handler at start of
  92. * the stub stack page. We just have to copy it.
  93. */
  94. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  95. err = put_fp_registers(pid, fpregs);
  96. if (err < 0) {
  97. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  98. err);
  99. fatal_sigsegv();
  100. }
  101. }
  102. static void handle_segv(int pid, struct uml_pt_regs * regs)
  103. {
  104. get_skas_faultinfo(pid, &regs->faultinfo);
  105. segv(regs->faultinfo, 0, 1, NULL);
  106. }
  107. /*
  108. * To use the same value of using_sysemu as the caller, ask it that value
  109. * (in local_using_sysemu
  110. */
  111. static void handle_trap(int pid, struct uml_pt_regs *regs,
  112. int local_using_sysemu)
  113. {
  114. int err, status;
  115. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  116. fatal_sigsegv();
  117. /* Mark this as a syscall */
  118. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  119. if (!local_using_sysemu)
  120. {
  121. err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
  122. __NR_getpid);
  123. if (err < 0) {
  124. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  125. "failed, errno = %d\n", errno);
  126. fatal_sigsegv();
  127. }
  128. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  129. if (err < 0) {
  130. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  131. "syscall failed, errno = %d\n", errno);
  132. fatal_sigsegv();
  133. }
  134. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  135. if ((err < 0) || !WIFSTOPPED(status) ||
  136. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  137. err = ptrace_dump_regs(pid);
  138. if (err)
  139. printk(UM_KERN_ERR "Failed to get registers "
  140. "from process, errno = %d\n", -err);
  141. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  142. "end of syscall, errno = %d, status = %d\n",
  143. errno, status);
  144. fatal_sigsegv();
  145. }
  146. }
  147. handle_syscall(regs);
  148. }
  149. extern char __syscall_stub_start[];
  150. static int userspace_tramp(void *stack)
  151. {
  152. void *addr;
  153. int err, fd;
  154. unsigned long long offset;
  155. ptrace(PTRACE_TRACEME, 0, 0, 0);
  156. signal(SIGTERM, SIG_DFL);
  157. signal(SIGWINCH, SIG_IGN);
  158. err = set_interval();
  159. if (err) {
  160. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  161. "errno = %d\n", err);
  162. exit(1);
  163. }
  164. /*
  165. * This has a pte, but it can't be mapped in with the usual
  166. * tlb_flush mechanism because this is part of that mechanism
  167. */
  168. fd = phys_mapping(to_phys(__syscall_stub_start), &offset);
  169. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  170. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  171. if (addr == MAP_FAILED) {
  172. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  173. "errno = %d\n", STUB_CODE, errno);
  174. exit(1);
  175. }
  176. if (stack != NULL) {
  177. fd = phys_mapping(to_phys(stack), &offset);
  178. addr = mmap((void *) STUB_DATA,
  179. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  180. MAP_FIXED | MAP_SHARED, fd, offset);
  181. if (addr == MAP_FAILED) {
  182. printk(UM_KERN_ERR "mapping segfault stack "
  183. "at 0x%lx failed, errno = %d\n",
  184. STUB_DATA, errno);
  185. exit(1);
  186. }
  187. }
  188. if (stack != NULL) {
  189. struct sigaction sa;
  190. unsigned long v = STUB_CODE +
  191. (unsigned long) stub_segv_handler -
  192. (unsigned long) __syscall_stub_start;
  193. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  194. sigemptyset(&sa.sa_mask);
  195. sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
  196. sa.sa_sigaction = (void *) v;
  197. sa.sa_restorer = NULL;
  198. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  199. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  200. "handler failed - errno = %d\n", errno);
  201. exit(1);
  202. }
  203. }
  204. kill(os_getpid(), SIGSTOP);
  205. return 0;
  206. }
  207. /* Each element set once, and only accessed by a single processor anyway */
  208. #undef NR_CPUS
  209. #define NR_CPUS 1
  210. int userspace_pid[NR_CPUS];
  211. int start_userspace(unsigned long stub_stack)
  212. {
  213. void *stack;
  214. unsigned long sp;
  215. int pid, status, n, flags, err;
  216. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  217. PROT_READ | PROT_WRITE | PROT_EXEC,
  218. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  219. if (stack == MAP_FAILED) {
  220. err = -errno;
  221. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  222. "errno = %d\n", errno);
  223. return err;
  224. }
  225. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  226. flags = CLONE_FILES | SIGCHLD;
  227. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  228. if (pid < 0) {
  229. err = -errno;
  230. printk(UM_KERN_ERR "start_userspace : clone failed, "
  231. "errno = %d\n", errno);
  232. return err;
  233. }
  234. do {
  235. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  236. if (n < 0) {
  237. err = -errno;
  238. printk(UM_KERN_ERR "start_userspace : wait failed, "
  239. "errno = %d\n", errno);
  240. goto out_kill;
  241. }
  242. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  243. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  244. err = -EINVAL;
  245. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  246. "status = %d\n", status);
  247. goto out_kill;
  248. }
  249. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  250. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  251. err = -errno;
  252. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  253. "failed, errno = %d\n", errno);
  254. goto out_kill;
  255. }
  256. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  257. err = -errno;
  258. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  259. "errno = %d\n", errno);
  260. goto out_kill;
  261. }
  262. return pid;
  263. out_kill:
  264. os_kill_ptraced_process(pid, 1);
  265. return err;
  266. }
  267. void userspace(struct uml_pt_regs *regs)
  268. {
  269. struct itimerval timer;
  270. unsigned long long nsecs, now;
  271. int err, status, op, pid = userspace_pid[0];
  272. /* To prevent races if using_sysemu changes under us.*/
  273. int local_using_sysemu;
  274. siginfo_t si;
  275. /* Handle any immediate reschedules or signals */
  276. interrupt_end();
  277. if (getitimer(ITIMER_VIRTUAL, &timer))
  278. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  279. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  280. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  281. nsecs += os_nsecs();
  282. while (1) {
  283. /*
  284. * This can legitimately fail if the process loads a
  285. * bogus value into a segment register. It will
  286. * segfault and PTRACE_GETREGS will read that value
  287. * out of the process. However, PTRACE_SETREGS will
  288. * fail. In this case, there is nothing to do but
  289. * just kill the process.
  290. */
  291. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  292. fatal_sigsegv();
  293. if (put_fp_registers(pid, regs->fp))
  294. fatal_sigsegv();
  295. /* Now we set local_using_sysemu to be used for one loop */
  296. local_using_sysemu = get_using_sysemu();
  297. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  298. singlestepping(NULL));
  299. if (ptrace(op, pid, 0, 0)) {
  300. printk(UM_KERN_ERR "userspace - ptrace continue "
  301. "failed, op = %d, errno = %d\n", op, errno);
  302. fatal_sigsegv();
  303. }
  304. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  305. if (err < 0) {
  306. printk(UM_KERN_ERR "userspace - wait failed, "
  307. "errno = %d\n", errno);
  308. fatal_sigsegv();
  309. }
  310. regs->is_user = 1;
  311. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  312. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  313. "errno = %d\n", errno);
  314. fatal_sigsegv();
  315. }
  316. if (get_fp_registers(pid, regs->fp)) {
  317. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  318. "errno = %d\n", errno);
  319. fatal_sigsegv();
  320. }
  321. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  322. if (WIFSTOPPED(status)) {
  323. int sig = WSTOPSIG(status);
  324. ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
  325. switch (sig) {
  326. case SIGSEGV:
  327. if (PTRACE_FULL_FAULTINFO) {
  328. get_skas_faultinfo(pid,
  329. &regs->faultinfo);
  330. (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
  331. regs);
  332. }
  333. else handle_segv(pid, regs);
  334. break;
  335. case SIGTRAP + 0x80:
  336. handle_trap(pid, regs, local_using_sysemu);
  337. break;
  338. case SIGTRAP:
  339. relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
  340. break;
  341. case SIGVTALRM:
  342. now = os_nsecs();
  343. if (now < nsecs)
  344. break;
  345. block_signals();
  346. (*sig_info[sig])(sig, (struct siginfo *)&si, regs);
  347. unblock_signals();
  348. nsecs = timer.it_value.tv_sec *
  349. UM_NSEC_PER_SEC +
  350. timer.it_value.tv_usec *
  351. UM_NSEC_PER_USEC;
  352. nsecs += os_nsecs();
  353. break;
  354. case SIGIO:
  355. case SIGILL:
  356. case SIGBUS:
  357. case SIGFPE:
  358. case SIGWINCH:
  359. block_signals();
  360. (*sig_info[sig])(sig, (struct siginfo *)&si, regs);
  361. unblock_signals();
  362. break;
  363. default:
  364. printk(UM_KERN_ERR "userspace - child stopped "
  365. "with signal %d\n", sig);
  366. fatal_sigsegv();
  367. }
  368. pid = userspace_pid[0];
  369. interrupt_end();
  370. /* Avoid -ERESTARTSYS handling in host */
  371. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  372. PT_SYSCALL_NR(regs->gp) = -1;
  373. }
  374. }
  375. }
  376. static unsigned long thread_regs[MAX_REG_NR];
  377. static unsigned long thread_fp_regs[FP_SIZE];
  378. static int __init init_thread_regs(void)
  379. {
  380. get_safe_registers(thread_regs, thread_fp_regs);
  381. /* Set parent's instruction pointer to start of clone-stub */
  382. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  383. (unsigned long) stub_clone_handler -
  384. (unsigned long) __syscall_stub_start;
  385. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  386. sizeof(void *);
  387. #ifdef __SIGNAL_FRAMESIZE
  388. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  389. #endif
  390. return 0;
  391. }
  392. __initcall(init_thread_regs);
  393. int copy_context_skas0(unsigned long new_stack, int pid)
  394. {
  395. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  396. int err;
  397. unsigned long current_stack = current_stub_stack();
  398. struct stub_data *data = (struct stub_data *) current_stack;
  399. struct stub_data *child_data = (struct stub_data *) new_stack;
  400. unsigned long long new_offset;
  401. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  402. /*
  403. * prepare offset and fd of child's stack as argument for parent's
  404. * and child's mmap2 calls
  405. */
  406. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  407. .fd = new_fd,
  408. .timer = ((struct itimerval)
  409. { .it_value = tv,
  410. .it_interval = tv }) });
  411. err = ptrace_setregs(pid, thread_regs);
  412. if (err < 0) {
  413. err = -errno;
  414. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  415. "failed, pid = %d, errno = %d\n", pid, -err);
  416. return err;
  417. }
  418. err = put_fp_registers(pid, thread_fp_regs);
  419. if (err < 0) {
  420. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  421. "failed, pid = %d, err = %d\n", pid, err);
  422. return err;
  423. }
  424. /* set a well known return code for detection of child write failure */
  425. child_data->err = 12345678;
  426. /*
  427. * Wait, until parent has finished its work: read child's pid from
  428. * parent's stack, and check, if bad result.
  429. */
  430. err = ptrace(PTRACE_CONT, pid, 0, 0);
  431. if (err) {
  432. err = -errno;
  433. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  434. "errno = %d\n", pid, errno);
  435. return err;
  436. }
  437. wait_stub_done(pid);
  438. pid = data->err;
  439. if (pid < 0) {
  440. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  441. "error %d\n", -pid);
  442. return pid;
  443. }
  444. /*
  445. * Wait, until child has finished too: read child's result from
  446. * child's stack and check it.
  447. */
  448. wait_stub_done(pid);
  449. if (child_data->err != STUB_DATA) {
  450. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  451. "error %ld\n", child_data->err);
  452. err = child_data->err;
  453. goto out_kill;
  454. }
  455. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  456. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  457. err = -errno;
  458. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  459. "failed, errno = %d\n", errno);
  460. goto out_kill;
  461. }
  462. return pid;
  463. out_kill:
  464. os_kill_ptraced_process(pid, 1);
  465. return err;
  466. }
  467. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  468. {
  469. (*buf)[0].JB_IP = (unsigned long) handler;
  470. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  471. sizeof(void *);
  472. }
  473. #define INIT_JMP_NEW_THREAD 0
  474. #define INIT_JMP_CALLBACK 1
  475. #define INIT_JMP_HALT 2
  476. #define INIT_JMP_REBOOT 3
  477. void switch_threads(jmp_buf *me, jmp_buf *you)
  478. {
  479. if (UML_SETJMP(me) == 0)
  480. UML_LONGJMP(you, 1);
  481. }
  482. static jmp_buf initial_jmpbuf;
  483. /* XXX Make these percpu */
  484. static void (*cb_proc)(void *arg);
  485. static void *cb_arg;
  486. static jmp_buf *cb_back;
  487. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  488. {
  489. int n;
  490. set_handler(SIGWINCH);
  491. /*
  492. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  493. * and restore signals, with the possible side-effect of
  494. * trying to handle any signals which came when they were
  495. * blocked, which can't be done on this stack.
  496. * Signals must be blocked when jumping back here and restored
  497. * after returning to the jumper.
  498. */
  499. n = setjmp(initial_jmpbuf);
  500. switch (n) {
  501. case INIT_JMP_NEW_THREAD:
  502. (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
  503. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  504. UM_THREAD_SIZE - sizeof(void *);
  505. break;
  506. case INIT_JMP_CALLBACK:
  507. (*cb_proc)(cb_arg);
  508. longjmp(*cb_back, 1);
  509. break;
  510. case INIT_JMP_HALT:
  511. kmalloc_ok = 0;
  512. return 0;
  513. case INIT_JMP_REBOOT:
  514. kmalloc_ok = 0;
  515. return 1;
  516. default:
  517. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  518. "start_idle_thread - %d\n", n);
  519. fatal_sigsegv();
  520. }
  521. longjmp(*switch_buf, 1);
  522. }
  523. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  524. {
  525. jmp_buf here;
  526. cb_proc = proc;
  527. cb_arg = arg;
  528. cb_back = &here;
  529. block_signals();
  530. if (UML_SETJMP(&here) == 0)
  531. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  532. unblock_signals();
  533. cb_proc = NULL;
  534. cb_arg = NULL;
  535. cb_back = NULL;
  536. }
  537. void halt_skas(void)
  538. {
  539. block_signals();
  540. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  541. }
  542. void reboot_skas(void)
  543. {
  544. block_signals();
  545. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  546. }
  547. void __switch_mm(struct mm_id *mm_idp)
  548. {
  549. userspace_pid[0] = mm_idp->u.pid;
  550. }