pgtable.h 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Derived from include/asm-i386/pgtable.h
  5. * Licensed under the GPL
  6. */
  7. #ifndef __UM_PGTABLE_H
  8. #define __UM_PGTABLE_H
  9. #include <asm/fixmap.h>
  10. #define _PAGE_PRESENT 0x001
  11. #define _PAGE_NEWPAGE 0x002
  12. #define _PAGE_NEWPROT 0x004
  13. #define _PAGE_RW 0x020
  14. #define _PAGE_USER 0x040
  15. #define _PAGE_ACCESSED 0x080
  16. #define _PAGE_DIRTY 0x100
  17. /* If _PAGE_PRESENT is clear, we use these: */
  18. #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
  19. pte_present gives true */
  20. #ifdef CONFIG_3_LEVEL_PGTABLES
  21. #include <asm/pgtable-3level.h>
  22. #else
  23. #include <asm/pgtable-2level.h>
  24. #endif
  25. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  26. /* zero page used for uninitialized stuff */
  27. extern unsigned long *empty_zero_page;
  28. #define pgtable_cache_init() do ; while (0)
  29. /* Just any arbitrary offset to the start of the vmalloc VM area: the
  30. * current 8MB value just means that there will be a 8MB "hole" after the
  31. * physical memory until the kernel virtual memory starts. That means that
  32. * any out-of-bounds memory accesses will hopefully be caught.
  33. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  34. * area for the same reason. ;)
  35. */
  36. extern unsigned long end_iomem;
  37. #define VMALLOC_OFFSET (__va_space)
  38. #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  39. #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
  40. #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
  41. #define MODULES_VADDR VMALLOC_START
  42. #define MODULES_END VMALLOC_END
  43. #define MODULES_LEN (MODULES_VADDR - MODULES_END)
  44. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
  45. #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
  46. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  47. #define __PAGE_KERNEL_EXEC \
  48. (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  49. #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
  50. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
  51. #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  52. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  53. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  54. #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
  55. /*
  56. * The i386 can't do page protection for execute, and considers that the same
  57. * are read.
  58. * Also, write permissions imply read permissions. This is the closest we can
  59. * get..
  60. */
  61. #define __P000 PAGE_NONE
  62. #define __P001 PAGE_READONLY
  63. #define __P010 PAGE_COPY
  64. #define __P011 PAGE_COPY
  65. #define __P100 PAGE_READONLY
  66. #define __P101 PAGE_READONLY
  67. #define __P110 PAGE_COPY
  68. #define __P111 PAGE_COPY
  69. #define __S000 PAGE_NONE
  70. #define __S001 PAGE_READONLY
  71. #define __S010 PAGE_SHARED
  72. #define __S011 PAGE_SHARED
  73. #define __S100 PAGE_READONLY
  74. #define __S101 PAGE_READONLY
  75. #define __S110 PAGE_SHARED
  76. #define __S111 PAGE_SHARED
  77. /*
  78. * ZERO_PAGE is a global shared page that is always zero: used
  79. * for zero-mapped memory areas etc..
  80. */
  81. #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
  82. #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
  83. #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
  84. #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  85. #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
  86. #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
  87. #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
  88. #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
  89. #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
  90. #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
  91. #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
  92. #define pte_page(x) pfn_to_page(pte_pfn(x))
  93. #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
  94. /*
  95. * =================================
  96. * Flags checking section.
  97. * =================================
  98. */
  99. static inline int pte_none(pte_t pte)
  100. {
  101. return pte_is_zero(pte);
  102. }
  103. /*
  104. * The following only work if pte_present() is true.
  105. * Undefined behaviour if not..
  106. */
  107. static inline int pte_read(pte_t pte)
  108. {
  109. return((pte_get_bits(pte, _PAGE_USER)) &&
  110. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  111. }
  112. static inline int pte_exec(pte_t pte){
  113. return((pte_get_bits(pte, _PAGE_USER)) &&
  114. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  115. }
  116. static inline int pte_write(pte_t pte)
  117. {
  118. return((pte_get_bits(pte, _PAGE_RW)) &&
  119. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  120. }
  121. static inline int pte_dirty(pte_t pte)
  122. {
  123. return pte_get_bits(pte, _PAGE_DIRTY);
  124. }
  125. static inline int pte_young(pte_t pte)
  126. {
  127. return pte_get_bits(pte, _PAGE_ACCESSED);
  128. }
  129. static inline int pte_newpage(pte_t pte)
  130. {
  131. return pte_get_bits(pte, _PAGE_NEWPAGE);
  132. }
  133. static inline int pte_newprot(pte_t pte)
  134. {
  135. return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
  136. }
  137. static inline int pte_special(pte_t pte)
  138. {
  139. return 0;
  140. }
  141. /*
  142. * =================================
  143. * Flags setting section.
  144. * =================================
  145. */
  146. static inline pte_t pte_mknewprot(pte_t pte)
  147. {
  148. pte_set_bits(pte, _PAGE_NEWPROT);
  149. return(pte);
  150. }
  151. static inline pte_t pte_mkclean(pte_t pte)
  152. {
  153. pte_clear_bits(pte, _PAGE_DIRTY);
  154. return(pte);
  155. }
  156. static inline pte_t pte_mkold(pte_t pte)
  157. {
  158. pte_clear_bits(pte, _PAGE_ACCESSED);
  159. return(pte);
  160. }
  161. static inline pte_t pte_wrprotect(pte_t pte)
  162. {
  163. pte_clear_bits(pte, _PAGE_RW);
  164. return(pte_mknewprot(pte));
  165. }
  166. static inline pte_t pte_mkread(pte_t pte)
  167. {
  168. pte_set_bits(pte, _PAGE_USER);
  169. return(pte_mknewprot(pte));
  170. }
  171. static inline pte_t pte_mkdirty(pte_t pte)
  172. {
  173. pte_set_bits(pte, _PAGE_DIRTY);
  174. return(pte);
  175. }
  176. static inline pte_t pte_mkyoung(pte_t pte)
  177. {
  178. pte_set_bits(pte, _PAGE_ACCESSED);
  179. return(pte);
  180. }
  181. static inline pte_t pte_mkwrite(pte_t pte)
  182. {
  183. pte_set_bits(pte, _PAGE_RW);
  184. return(pte_mknewprot(pte));
  185. }
  186. static inline pte_t pte_mkuptodate(pte_t pte)
  187. {
  188. pte_clear_bits(pte, _PAGE_NEWPAGE);
  189. if(pte_present(pte))
  190. pte_clear_bits(pte, _PAGE_NEWPROT);
  191. return(pte);
  192. }
  193. static inline pte_t pte_mknewpage(pte_t pte)
  194. {
  195. pte_set_bits(pte, _PAGE_NEWPAGE);
  196. return(pte);
  197. }
  198. static inline pte_t pte_mkspecial(pte_t pte)
  199. {
  200. return(pte);
  201. }
  202. static inline void set_pte(pte_t *pteptr, pte_t pteval)
  203. {
  204. pte_copy(*pteptr, pteval);
  205. /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
  206. * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
  207. * mapped pages.
  208. */
  209. *pteptr = pte_mknewpage(*pteptr);
  210. if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
  211. }
  212. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  213. #define __HAVE_ARCH_PTE_SAME
  214. static inline int pte_same(pte_t pte_a, pte_t pte_b)
  215. {
  216. return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
  217. }
  218. /*
  219. * Conversion functions: convert a page and protection to a page entry,
  220. * and a page entry and page directory to the page they refer to.
  221. */
  222. #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
  223. #define __virt_to_page(virt) phys_to_page(__pa(virt))
  224. #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
  225. #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
  226. #define mk_pte(page, pgprot) \
  227. ({ pte_t pte; \
  228. \
  229. pte_set_val(pte, page_to_phys(page), (pgprot)); \
  230. if (pte_present(pte)) \
  231. pte_mknewprot(pte_mknewpage(pte)); \
  232. pte;})
  233. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  234. {
  235. pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
  236. return pte;
  237. }
  238. /*
  239. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  240. *
  241. * this macro returns the index of the entry in the pgd page which would
  242. * control the given virtual address
  243. */
  244. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  245. /*
  246. * pgd_offset() returns a (pgd_t *)
  247. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  248. */
  249. #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
  250. /*
  251. * a shortcut which implies the use of the kernel's pgd, instead
  252. * of a process's
  253. */
  254. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  255. /*
  256. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  257. *
  258. * this macro returns the index of the entry in the pmd page which would
  259. * control the given virtual address
  260. */
  261. #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  262. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  263. #define pmd_page_vaddr(pmd) \
  264. ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  265. /*
  266. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  267. *
  268. * this macro returns the index of the entry in the pte page which would
  269. * control the given virtual address
  270. */
  271. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  272. #define pte_offset_kernel(dir, address) \
  273. ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
  274. #define pte_offset_map(dir, address) \
  275. ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
  276. #define pte_unmap(pte) do { } while (0)
  277. struct mm_struct;
  278. extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
  279. #define update_mmu_cache(vma,address,ptep) do ; while (0)
  280. /* Encode and de-code a swap entry */
  281. #define __swp_type(x) (((x).val >> 5) & 0x1f)
  282. #define __swp_offset(x) ((x).val >> 11)
  283. #define __swp_entry(type, offset) \
  284. ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
  285. #define __pte_to_swp_entry(pte) \
  286. ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
  287. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  288. #define kern_addr_valid(addr) (1)
  289. #include <asm-generic/pgtable.h>
  290. /* Clear a kernel PTE and flush it from the TLB */
  291. #define kpte_clear_flush(ptep, vaddr) \
  292. do { \
  293. pte_clear(&init_mm, (vaddr), (ptep)); \
  294. __flush_tlb_one((vaddr)); \
  295. } while (0)
  296. #endif