123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829 |
- #include <linux/moduleloader.h>
- #include <linux/workqueue.h>
- #include <linux/netdevice.h>
- #include <linux/filter.h>
- #include <linux/cache.h>
- #include <linux/if_vlan.h>
- #include <asm/cacheflush.h>
- #include <asm/ptrace.h>
- #include "bpf_jit.h"
- int bpf_jit_enable __read_mostly;
- static inline bool is_simm13(unsigned int value)
- {
- return value + 0x1000 < 0x2000;
- }
- static void bpf_flush_icache(void *start_, void *end_)
- {
- #ifdef CONFIG_SPARC64
- /* Cheetah's I-cache is fully coherent. */
- if (tlb_type == spitfire) {
- unsigned long start = (unsigned long) start_;
- unsigned long end = (unsigned long) end_;
- start &= ~7UL;
- end = (end + 7UL) & ~7UL;
- while (start < end) {
- flushi(start);
- start += 32;
- }
- }
- #endif
- }
- #define SEEN_DATAREF 1 /* might call external helpers */
- #define SEEN_XREG 2 /* ebx is used */
- #define SEEN_MEM 4 /* use mem[] for temporary storage */
- #define S13(X) ((X) & 0x1fff)
- #define IMMED 0x00002000
- #define RD(X) ((X) << 25)
- #define RS1(X) ((X) << 14)
- #define RS2(X) ((X))
- #define OP(X) ((X) << 30)
- #define OP2(X) ((X) << 22)
- #define OP3(X) ((X) << 19)
- #define COND(X) ((X) << 25)
- #define F1(X) OP(X)
- #define F2(X, Y) (OP(X) | OP2(Y))
- #define F3(X, Y) (OP(X) | OP3(Y))
- #define CONDN COND(0x0)
- #define CONDE COND(0x1)
- #define CONDLE COND(0x2)
- #define CONDL COND(0x3)
- #define CONDLEU COND(0x4)
- #define CONDCS COND(0x5)
- #define CONDNEG COND(0x6)
- #define CONDVC COND(0x7)
- #define CONDA COND(0x8)
- #define CONDNE COND(0x9)
- #define CONDG COND(0xa)
- #define CONDGE COND(0xb)
- #define CONDGU COND(0xc)
- #define CONDCC COND(0xd)
- #define CONDPOS COND(0xe)
- #define CONDVS COND(0xf)
- #define CONDGEU CONDCC
- #define CONDLU CONDCS
- #define WDISP22(X) (((X) >> 2) & 0x3fffff)
- #define BA (F2(0, 2) | CONDA)
- #define BGU (F2(0, 2) | CONDGU)
- #define BLEU (F2(0, 2) | CONDLEU)
- #define BGEU (F2(0, 2) | CONDGEU)
- #define BLU (F2(0, 2) | CONDLU)
- #define BE (F2(0, 2) | CONDE)
- #define BNE (F2(0, 2) | CONDNE)
- #ifdef CONFIG_SPARC64
- #define BE_PTR (F2(0, 1) | CONDE | (2 << 20))
- #else
- #define BE_PTR BE
- #endif
- #define SETHI(K, REG) \
- (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
- #define OR_LO(K, REG) \
- (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
- #define ADD F3(2, 0x00)
- #define AND F3(2, 0x01)
- #define ANDCC F3(2, 0x11)
- #define OR F3(2, 0x02)
- #define XOR F3(2, 0x03)
- #define SUB F3(2, 0x04)
- #define SUBCC F3(2, 0x14)
- #define MUL F3(2, 0x0a) /* umul */
- #define DIV F3(2, 0x0e) /* udiv */
- #define SLL F3(2, 0x25)
- #define SRL F3(2, 0x26)
- #define JMPL F3(2, 0x38)
- #define CALL F1(1)
- #define BR F2(0, 0x01)
- #define RD_Y F3(2, 0x28)
- #define WR_Y F3(2, 0x30)
- #define LD32 F3(3, 0x00)
- #define LD8 F3(3, 0x01)
- #define LD16 F3(3, 0x02)
- #define LD64 F3(3, 0x0b)
- #define ST32 F3(3, 0x04)
- #ifdef CONFIG_SPARC64
- #define LDPTR LD64
- #define BASE_STACKFRAME 176
- #else
- #define LDPTR LD32
- #define BASE_STACKFRAME 96
- #endif
- #define LD32I (LD32 | IMMED)
- #define LD8I (LD8 | IMMED)
- #define LD16I (LD16 | IMMED)
- #define LD64I (LD64 | IMMED)
- #define LDPTRI (LDPTR | IMMED)
- #define ST32I (ST32 | IMMED)
- #define emit_nop() \
- do { \
- *prog++ = SETHI(0, G0); \
- } while (0)
- #define emit_neg() \
- do { /* sub %g0, r_A, r_A */ \
- *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
- } while (0)
- #define emit_reg_move(FROM, TO) \
- do { /* or %g0, FROM, TO */ \
- *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
- } while (0)
- #define emit_clear(REG) \
- do { /* or %g0, %g0, REG */ \
- *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
- } while (0)
- #define emit_set_const(K, REG) \
- do { /* sethi %hi(K), REG */ \
- *prog++ = SETHI(K, REG); \
- /* or REG, %lo(K), REG */ \
- *prog++ = OR_LO(K, REG); \
- } while (0)
- /* Emit
- *
- * OP r_A, r_X, r_A
- */
- #define emit_alu_X(OPCODE) \
- do { \
- seen |= SEEN_XREG; \
- *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
- } while (0)
- /* Emit either:
- *
- * OP r_A, K, r_A
- *
- * or
- *
- * sethi %hi(K), r_TMP
- * or r_TMP, %lo(K), r_TMP
- * OP r_A, r_TMP, r_A
- *
- * depending upon whether K fits in a signed 13-bit
- * immediate instruction field. Emit nothing if K
- * is zero.
- */
- #define emit_alu_K(OPCODE, K) \
- do { \
- if (K || OPCODE == AND || OPCODE == MUL) { \
- unsigned int _insn = OPCODE; \
- _insn |= RS1(r_A) | RD(r_A); \
- if (is_simm13(K)) { \
- *prog++ = _insn | IMMED | S13(K); \
- } else { \
- emit_set_const(K, r_TMP); \
- *prog++ = _insn | RS2(r_TMP); \
- } \
- } \
- } while (0)
- #define emit_loadimm(K, DEST) \
- do { \
- if (is_simm13(K)) { \
- /* or %g0, K, DEST */ \
- *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
- } else { \
- emit_set_const(K, DEST); \
- } \
- } while (0)
- #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
- do { unsigned int _off = offsetof(STRUCT, FIELD); \
- BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
- *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
- } while (0)
- #define emit_load32(BASE, STRUCT, FIELD, DEST) \
- do { unsigned int _off = offsetof(STRUCT, FIELD); \
- BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
- *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
- } while (0)
- #define emit_load16(BASE, STRUCT, FIELD, DEST) \
- do { unsigned int _off = offsetof(STRUCT, FIELD); \
- BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
- *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
- } while (0)
- #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
- do { unsigned int _off = offsetof(STRUCT, FIELD); \
- *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
- } while (0)
- #define emit_load8(BASE, STRUCT, FIELD, DEST) \
- do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
- __emit_load8(BASE, STRUCT, FIELD, DEST); \
- } while (0)
- #ifdef CONFIG_SPARC64
- #define BIAS (STACK_BIAS - 4)
- #else
- #define BIAS (-4)
- #endif
- #define emit_ldmem(OFF, DEST) \
- do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
- } while (0)
- #define emit_stmem(OFF, SRC) \
- do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
- } while (0)
- #ifdef CONFIG_SMP
- #ifdef CONFIG_SPARC64
- #define emit_load_cpu(REG) \
- emit_load16(G6, struct thread_info, cpu, REG)
- #else
- #define emit_load_cpu(REG) \
- emit_load32(G6, struct thread_info, cpu, REG)
- #endif
- #else
- #define emit_load_cpu(REG) emit_clear(REG)
- #endif
- #define emit_skb_loadptr(FIELD, DEST) \
- emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
- #define emit_skb_load32(FIELD, DEST) \
- emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
- #define emit_skb_load16(FIELD, DEST) \
- emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
- #define __emit_skb_load8(FIELD, DEST) \
- __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
- #define emit_skb_load8(FIELD, DEST) \
- emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
- #define emit_jmpl(BASE, IMM_OFF, LREG) \
- *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
- #define emit_call(FUNC) \
- do { void *_here = image + addrs[i] - 8; \
- unsigned int _off = (void *)(FUNC) - _here; \
- *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
- emit_nop(); \
- } while (0)
- #define emit_branch(BR_OPC, DEST) \
- do { unsigned int _here = addrs[i] - 8; \
- *prog++ = BR_OPC | WDISP22((DEST) - _here); \
- } while (0)
- #define emit_branch_off(BR_OPC, OFF) \
- do { *prog++ = BR_OPC | WDISP22(OFF); \
- } while (0)
- #define emit_jump(DEST) emit_branch(BA, DEST)
- #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
- #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
- #define emit_cmp(R1, R2) \
- *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
- #define emit_cmpi(R1, IMM) \
- *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
- #define emit_btst(R1, R2) \
- *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
- #define emit_btsti(R1, IMM) \
- *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
- #define emit_sub(R1, R2, R3) \
- *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
- #define emit_subi(R1, IMM, R3) \
- *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
- #define emit_add(R1, R2, R3) \
- *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
- #define emit_addi(R1, IMM, R3) \
- *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
- #define emit_and(R1, R2, R3) \
- *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
- #define emit_andi(R1, IMM, R3) \
- *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
- #define emit_alloc_stack(SZ) \
- *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
- #define emit_release_stack(SZ) \
- *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
- /* A note about branch offset calculations. The addrs[] array,
- * indexed by BPF instruction, records the address after all the
- * sparc instructions emitted for that BPF instruction.
- *
- * The most common case is to emit a branch at the end of such
- * a code sequence. So this would be two instructions, the
- * branch and it's delay slot.
- *
- * Therefore by default the branch emitters calculate the branch
- * offset field as:
- *
- * destination - (addrs[i] - 8)
- *
- * This "addrs[i] - 8" is the address of the branch itself or
- * what "." would be in assembler notation. The "8" part is
- * how we take into consideration the branch and it's delay
- * slot mentioned above.
- *
- * Sometimes we need to emit a branch earlier in the code
- * sequence. And in these situations we adjust "destination"
- * to accomodate this difference. For example, if we needed
- * to emit a branch (and it's delay slot) right before the
- * final instruction emitted for a BPF opcode, we'd use
- * "destination + 4" instead of just plain "destination" above.
- *
- * This is why you see all of these funny emit_branch() and
- * emit_jump() calls with adjusted offsets.
- */
- void bpf_jit_compile(struct bpf_prog *fp)
- {
- unsigned int cleanup_addr, proglen, oldproglen = 0;
- u32 temp[8], *prog, *func, seen = 0, pass;
- const struct sock_filter *filter = fp->insns;
- int i, flen = fp->len, pc_ret0 = -1;
- unsigned int *addrs;
- void *image;
- if (!bpf_jit_enable)
- return;
- addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
- if (addrs == NULL)
- return;
- /* Before first pass, make a rough estimation of addrs[]
- * each bpf instruction is translated to less than 64 bytes
- */
- for (proglen = 0, i = 0; i < flen; i++) {
- proglen += 64;
- addrs[i] = proglen;
- }
- cleanup_addr = proglen; /* epilogue address */
- image = NULL;
- for (pass = 0; pass < 10; pass++) {
- u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
- /* no prologue/epilogue for trivial filters (RET something) */
- proglen = 0;
- prog = temp;
- /* Prologue */
- if (seen_or_pass0) {
- if (seen_or_pass0 & SEEN_MEM) {
- unsigned int sz = BASE_STACKFRAME;
- sz += BPF_MEMWORDS * sizeof(u32);
- emit_alloc_stack(sz);
- }
- /* Make sure we dont leek kernel memory. */
- if (seen_or_pass0 & SEEN_XREG)
- emit_clear(r_X);
- /* If this filter needs to access skb data,
- * load %o4 and %o5 with:
- * %o4 = skb->len - skb->data_len
- * %o5 = skb->data
- * And also back up %o7 into r_saved_O7 so we can
- * invoke the stubs using 'call'.
- */
- if (seen_or_pass0 & SEEN_DATAREF) {
- emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
- emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
- emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
- emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
- }
- }
- emit_reg_move(O7, r_saved_O7);
- switch (filter[0].code) {
- case BPF_RET | BPF_K:
- case BPF_LD | BPF_W | BPF_LEN:
- case BPF_LD | BPF_W | BPF_ABS:
- case BPF_LD | BPF_H | BPF_ABS:
- case BPF_LD | BPF_B | BPF_ABS:
- /* The first instruction sets the A register (or is
- * a "RET 'constant'")
- */
- break;
- default:
- /* Make sure we dont leak kernel information to the
- * user.
- */
- emit_clear(r_A); /* A = 0 */
- }
- for (i = 0; i < flen; i++) {
- unsigned int K = filter[i].k;
- unsigned int t_offset;
- unsigned int f_offset;
- u32 t_op, f_op;
- u16 code = bpf_anc_helper(&filter[i]);
- int ilen;
- switch (code) {
- case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
- emit_alu_X(ADD);
- break;
- case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
- emit_alu_K(ADD, K);
- break;
- case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
- emit_alu_X(SUB);
- break;
- case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
- emit_alu_K(SUB, K);
- break;
- case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
- emit_alu_X(AND);
- break;
- case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
- emit_alu_K(AND, K);
- break;
- case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
- emit_alu_X(OR);
- break;
- case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
- emit_alu_K(OR, K);
- break;
- case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
- case BPF_ALU | BPF_XOR | BPF_X:
- emit_alu_X(XOR);
- break;
- case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
- emit_alu_K(XOR, K);
- break;
- case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
- emit_alu_X(SLL);
- break;
- case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
- emit_alu_K(SLL, K);
- break;
- case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
- emit_alu_X(SRL);
- break;
- case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
- emit_alu_K(SRL, K);
- break;
- case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
- emit_alu_X(MUL);
- break;
- case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
- emit_alu_K(MUL, K);
- break;
- case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
- if (K == 1)
- break;
- emit_write_y(G0);
- #ifdef CONFIG_SPARC32
- /* The Sparc v8 architecture requires
- * three instructions between a %y
- * register write and the first use.
- */
- emit_nop();
- emit_nop();
- emit_nop();
- #endif
- emit_alu_K(DIV, K);
- break;
- case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
- emit_cmpi(r_X, 0);
- if (pc_ret0 > 0) {
- t_offset = addrs[pc_ret0 - 1];
- #ifdef CONFIG_SPARC32
- emit_branch(BE, t_offset + 20);
- #else
- emit_branch(BE, t_offset + 8);
- #endif
- emit_nop(); /* delay slot */
- } else {
- emit_branch_off(BNE, 16);
- emit_nop();
- #ifdef CONFIG_SPARC32
- emit_jump(cleanup_addr + 20);
- #else
- emit_jump(cleanup_addr + 8);
- #endif
- emit_clear(r_A);
- }
- emit_write_y(G0);
- #ifdef CONFIG_SPARC32
- /* The Sparc v8 architecture requires
- * three instructions between a %y
- * register write and the first use.
- */
- emit_nop();
- emit_nop();
- emit_nop();
- #endif
- emit_alu_X(DIV);
- break;
- case BPF_ALU | BPF_NEG:
- emit_neg();
- break;
- case BPF_RET | BPF_K:
- if (!K) {
- if (pc_ret0 == -1)
- pc_ret0 = i;
- emit_clear(r_A);
- } else {
- emit_loadimm(K, r_A);
- }
- /* Fallthrough */
- case BPF_RET | BPF_A:
- if (seen_or_pass0) {
- if (i != flen - 1) {
- emit_jump(cleanup_addr);
- emit_nop();
- break;
- }
- if (seen_or_pass0 & SEEN_MEM) {
- unsigned int sz = BASE_STACKFRAME;
- sz += BPF_MEMWORDS * sizeof(u32);
- emit_release_stack(sz);
- }
- }
- /* jmpl %r_saved_O7 + 8, %g0 */
- emit_jmpl(r_saved_O7, 8, G0);
- emit_reg_move(r_A, O0); /* delay slot */
- break;
- case BPF_MISC | BPF_TAX:
- seen |= SEEN_XREG;
- emit_reg_move(r_A, r_X);
- break;
- case BPF_MISC | BPF_TXA:
- seen |= SEEN_XREG;
- emit_reg_move(r_X, r_A);
- break;
- case BPF_ANC | SKF_AD_CPU:
- emit_load_cpu(r_A);
- break;
- case BPF_ANC | SKF_AD_PROTOCOL:
- emit_skb_load16(protocol, r_A);
- break;
- case BPF_ANC | SKF_AD_PKTTYPE:
- __emit_skb_load8(__pkt_type_offset, r_A);
- emit_andi(r_A, PKT_TYPE_MAX, r_A);
- emit_alu_K(SRL, 5);
- break;
- case BPF_ANC | SKF_AD_IFINDEX:
- emit_skb_loadptr(dev, r_A);
- emit_cmpi(r_A, 0);
- emit_branch(BE_PTR, cleanup_addr + 4);
- emit_nop();
- emit_load32(r_A, struct net_device, ifindex, r_A);
- break;
- case BPF_ANC | SKF_AD_MARK:
- emit_skb_load32(mark, r_A);
- break;
- case BPF_ANC | SKF_AD_QUEUE:
- emit_skb_load16(queue_mapping, r_A);
- break;
- case BPF_ANC | SKF_AD_HATYPE:
- emit_skb_loadptr(dev, r_A);
- emit_cmpi(r_A, 0);
- emit_branch(BE_PTR, cleanup_addr + 4);
- emit_nop();
- emit_load16(r_A, struct net_device, type, r_A);
- break;
- case BPF_ANC | SKF_AD_RXHASH:
- emit_skb_load32(hash, r_A);
- break;
- case BPF_ANC | SKF_AD_VLAN_TAG:
- case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
- emit_skb_load16(vlan_tci, r_A);
- if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
- emit_alu_K(SRL, 12);
- emit_andi(r_A, 1, r_A);
- } else {
- emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
- emit_and(r_A, r_TMP, r_A);
- }
- break;
- case BPF_LD | BPF_W | BPF_LEN:
- emit_skb_load32(len, r_A);
- break;
- case BPF_LDX | BPF_W | BPF_LEN:
- emit_skb_load32(len, r_X);
- break;
- case BPF_LD | BPF_IMM:
- emit_loadimm(K, r_A);
- break;
- case BPF_LDX | BPF_IMM:
- emit_loadimm(K, r_X);
- break;
- case BPF_LD | BPF_MEM:
- seen |= SEEN_MEM;
- emit_ldmem(K * 4, r_A);
- break;
- case BPF_LDX | BPF_MEM:
- seen |= SEEN_MEM | SEEN_XREG;
- emit_ldmem(K * 4, r_X);
- break;
- case BPF_ST:
- seen |= SEEN_MEM;
- emit_stmem(K * 4, r_A);
- break;
- case BPF_STX:
- seen |= SEEN_MEM | SEEN_XREG;
- emit_stmem(K * 4, r_X);
- break;
- #define CHOOSE_LOAD_FUNC(K, func) \
- ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
- case BPF_LD | BPF_W | BPF_ABS:
- func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
- common_load: seen |= SEEN_DATAREF;
- emit_loadimm(K, r_OFF);
- emit_call(func);
- break;
- case BPF_LD | BPF_H | BPF_ABS:
- func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
- goto common_load;
- case BPF_LD | BPF_B | BPF_ABS:
- func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
- goto common_load;
- case BPF_LDX | BPF_B | BPF_MSH:
- func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
- goto common_load;
- case BPF_LD | BPF_W | BPF_IND:
- func = bpf_jit_load_word;
- common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
- if (K) {
- if (is_simm13(K)) {
- emit_addi(r_X, K, r_OFF);
- } else {
- emit_loadimm(K, r_TMP);
- emit_add(r_X, r_TMP, r_OFF);
- }
- } else {
- emit_reg_move(r_X, r_OFF);
- }
- emit_call(func);
- break;
- case BPF_LD | BPF_H | BPF_IND:
- func = bpf_jit_load_half;
- goto common_load_ind;
- case BPF_LD | BPF_B | BPF_IND:
- func = bpf_jit_load_byte;
- goto common_load_ind;
- case BPF_JMP | BPF_JA:
- emit_jump(addrs[i + K]);
- emit_nop();
- break;
- #define COND_SEL(CODE, TOP, FOP) \
- case CODE: \
- t_op = TOP; \
- f_op = FOP; \
- goto cond_branch
- COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
- COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
- COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
- COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
- COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
- COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
- COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
- COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
- cond_branch: f_offset = addrs[i + filter[i].jf];
- t_offset = addrs[i + filter[i].jt];
- /* same targets, can avoid doing the test :) */
- if (filter[i].jt == filter[i].jf) {
- emit_jump(t_offset);
- emit_nop();
- break;
- }
- switch (code) {
- case BPF_JMP | BPF_JGT | BPF_X:
- case BPF_JMP | BPF_JGE | BPF_X:
- case BPF_JMP | BPF_JEQ | BPF_X:
- seen |= SEEN_XREG;
- emit_cmp(r_A, r_X);
- break;
- case BPF_JMP | BPF_JSET | BPF_X:
- seen |= SEEN_XREG;
- emit_btst(r_A, r_X);
- break;
- case BPF_JMP | BPF_JEQ | BPF_K:
- case BPF_JMP | BPF_JGT | BPF_K:
- case BPF_JMP | BPF_JGE | BPF_K:
- if (is_simm13(K)) {
- emit_cmpi(r_A, K);
- } else {
- emit_loadimm(K, r_TMP);
- emit_cmp(r_A, r_TMP);
- }
- break;
- case BPF_JMP | BPF_JSET | BPF_K:
- if (is_simm13(K)) {
- emit_btsti(r_A, K);
- } else {
- emit_loadimm(K, r_TMP);
- emit_btst(r_A, r_TMP);
- }
- break;
- }
- if (filter[i].jt != 0) {
- if (filter[i].jf)
- t_offset += 8;
- emit_branch(t_op, t_offset);
- emit_nop(); /* delay slot */
- if (filter[i].jf) {
- emit_jump(f_offset);
- emit_nop();
- }
- break;
- }
- emit_branch(f_op, f_offset);
- emit_nop(); /* delay slot */
- break;
- default:
- /* hmm, too complex filter, give up with jit compiler */
- goto out;
- }
- ilen = (void *) prog - (void *) temp;
- if (image) {
- if (unlikely(proglen + ilen > oldproglen)) {
- pr_err("bpb_jit_compile fatal error\n");
- kfree(addrs);
- module_memfree(image);
- return;
- }
- memcpy(image + proglen, temp, ilen);
- }
- proglen += ilen;
- addrs[i] = proglen;
- prog = temp;
- }
- /* last bpf instruction is always a RET :
- * use it to give the cleanup instruction(s) addr
- */
- cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
- if (seen_or_pass0 & SEEN_MEM)
- cleanup_addr -= 4; /* add %sp, X, %sp; */
- if (image) {
- if (proglen != oldproglen)
- pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
- proglen, oldproglen);
- break;
- }
- if (proglen == oldproglen) {
- image = module_alloc(proglen);
- if (!image)
- goto out;
- }
- oldproglen = proglen;
- }
- if (bpf_jit_enable > 1)
- bpf_jit_dump(flen, proglen, pass, image);
- if (image) {
- bpf_flush_icache(image, image + proglen);
- fp->bpf_func = (void *)image;
- fp->jited = true;
- }
- out:
- kfree(addrs);
- return;
- }
- void bpf_jit_free(struct bpf_prog *fp)
- {
- if (fp->jited)
- module_memfree(fp->bpf_func);
- bpf_prog_unlock_free(fp);
- }
|