init_64.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/highmem.h>
  36. #include <linux/idr.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/module.h>
  39. #include <linux/poison.h>
  40. #include <linux/memblock.h>
  41. #include <linux/hugetlb.h>
  42. #include <linux/slab.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/page.h>
  45. #include <asm/prom.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/sections.h>
  60. #include <asm/iommu.h>
  61. #include <asm/vdso.h>
  62. #include "mmu_decl.h"
  63. #ifdef CONFIG_PPC_STD_MMU_64
  64. #if PGTABLE_RANGE > USER_VSID_RANGE
  65. #warning Limited user VSID range means pagetable space is wasted
  66. #endif
  67. #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  68. #warning TASK_SIZE is smaller than it needs to be.
  69. #endif
  70. #endif /* CONFIG_PPC_STD_MMU_64 */
  71. phys_addr_t memstart_addr = ~0;
  72. EXPORT_SYMBOL_GPL(memstart_addr);
  73. phys_addr_t kernstart_addr;
  74. EXPORT_SYMBOL_GPL(kernstart_addr);
  75. static void pgd_ctor(void *addr)
  76. {
  77. memset(addr, 0, PGD_TABLE_SIZE);
  78. }
  79. static void pmd_ctor(void *addr)
  80. {
  81. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  82. memset(addr, 0, PMD_TABLE_SIZE * 2);
  83. #else
  84. memset(addr, 0, PMD_TABLE_SIZE);
  85. #endif
  86. }
  87. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  88. /*
  89. * Create a kmem_cache() for pagetables. This is not used for PTE
  90. * pages - they're linked to struct page, come from the normal free
  91. * pages pool and have a different entry size (see real_pte_t) to
  92. * everything else. Caches created by this function are used for all
  93. * the higher level pagetables, and for hugepage pagetables.
  94. */
  95. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  96. {
  97. char *name;
  98. unsigned long table_size = sizeof(void *) << shift;
  99. unsigned long align = table_size;
  100. /* When batching pgtable pointers for RCU freeing, we store
  101. * the index size in the low bits. Table alignment must be
  102. * big enough to fit it.
  103. *
  104. * Likewise, hugeapge pagetable pointers contain a (different)
  105. * shift value in the low bits. All tables must be aligned so
  106. * as to leave enough 0 bits in the address to contain it. */
  107. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  108. HUGEPD_SHIFT_MASK + 1);
  109. struct kmem_cache *new;
  110. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  111. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  112. * constant expression, so so much for that. */
  113. BUG_ON(!is_power_of_2(minalign));
  114. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  115. if (PGT_CACHE(shift))
  116. return; /* Already have a cache of this size */
  117. align = max_t(unsigned long, align, minalign);
  118. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  119. new = kmem_cache_create(name, table_size, align, 0, ctor);
  120. kfree(name);
  121. pgtable_cache[shift - 1] = new;
  122. pr_debug("Allocated pgtable cache for order %d\n", shift);
  123. }
  124. void pgtable_cache_init(void)
  125. {
  126. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  127. pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
  128. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
  129. panic("Couldn't allocate pgtable caches");
  130. /* In all current configs, when the PUD index exists it's the
  131. * same size as either the pgd or pmd index. Verify that the
  132. * initialization above has also created a PUD cache. This
  133. * will need re-examiniation if we add new possibilities for
  134. * the pagetable layout. */
  135. BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
  136. }
  137. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  138. /*
  139. * Given an address within the vmemmap, determine the pfn of the page that
  140. * represents the start of the section it is within. Note that we have to
  141. * do this by hand as the proffered address may not be correctly aligned.
  142. * Subtraction of non-aligned pointers produces undefined results.
  143. */
  144. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  145. {
  146. unsigned long offset = page - ((unsigned long)(vmemmap));
  147. /* Return the pfn of the start of the section. */
  148. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  149. }
  150. /*
  151. * Check if this vmemmap page is already initialised. If any section
  152. * which overlaps this vmemmap page is initialised then this page is
  153. * initialised already.
  154. */
  155. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  156. {
  157. unsigned long end = start + page_size;
  158. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  159. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  160. if (pfn_valid(page_to_pfn((struct page *)start)))
  161. return 1;
  162. return 0;
  163. }
  164. /* On hash-based CPUs, the vmemmap is bolted in the hash table.
  165. *
  166. * On Book3E CPUs, the vmemmap is currently mapped in the top half of
  167. * the vmalloc space using normal page tables, though the size of
  168. * pages encoded in the PTEs can be different
  169. */
  170. #ifdef CONFIG_PPC_BOOK3E
  171. static void __meminit vmemmap_create_mapping(unsigned long start,
  172. unsigned long page_size,
  173. unsigned long phys)
  174. {
  175. /* Create a PTE encoding without page size */
  176. unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
  177. _PAGE_KERNEL_RW;
  178. /* PTEs only contain page size encodings up to 32M */
  179. BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
  180. /* Encode the size in the PTE */
  181. flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
  182. /* For each PTE for that area, map things. Note that we don't
  183. * increment phys because all PTEs are of the large size and
  184. * thus must have the low bits clear
  185. */
  186. for (i = 0; i < page_size; i += PAGE_SIZE)
  187. BUG_ON(map_kernel_page(start + i, phys, flags));
  188. }
  189. #ifdef CONFIG_MEMORY_HOTPLUG
  190. static void vmemmap_remove_mapping(unsigned long start,
  191. unsigned long page_size)
  192. {
  193. }
  194. #endif
  195. #else /* CONFIG_PPC_BOOK3E */
  196. static void __meminit vmemmap_create_mapping(unsigned long start,
  197. unsigned long page_size,
  198. unsigned long phys)
  199. {
  200. int mapped = htab_bolt_mapping(start, start + page_size, phys,
  201. pgprot_val(PAGE_KERNEL),
  202. mmu_vmemmap_psize,
  203. mmu_kernel_ssize);
  204. BUG_ON(mapped < 0);
  205. }
  206. #ifdef CONFIG_MEMORY_HOTPLUG
  207. static void vmemmap_remove_mapping(unsigned long start,
  208. unsigned long page_size)
  209. {
  210. int mapped = htab_remove_mapping(start, start + page_size,
  211. mmu_vmemmap_psize,
  212. mmu_kernel_ssize);
  213. BUG_ON(mapped < 0);
  214. }
  215. #endif
  216. #endif /* CONFIG_PPC_BOOK3E */
  217. struct vmemmap_backing *vmemmap_list;
  218. static struct vmemmap_backing *next;
  219. static int num_left;
  220. static int num_freed;
  221. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  222. {
  223. struct vmemmap_backing *vmem_back;
  224. /* get from freed entries first */
  225. if (num_freed) {
  226. num_freed--;
  227. vmem_back = next;
  228. next = next->list;
  229. return vmem_back;
  230. }
  231. /* allocate a page when required and hand out chunks */
  232. if (!num_left) {
  233. next = vmemmap_alloc_block(PAGE_SIZE, node);
  234. if (unlikely(!next)) {
  235. WARN_ON(1);
  236. return NULL;
  237. }
  238. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  239. }
  240. num_left--;
  241. return next++;
  242. }
  243. static __meminit void vmemmap_list_populate(unsigned long phys,
  244. unsigned long start,
  245. int node)
  246. {
  247. struct vmemmap_backing *vmem_back;
  248. vmem_back = vmemmap_list_alloc(node);
  249. if (unlikely(!vmem_back)) {
  250. WARN_ON(1);
  251. return;
  252. }
  253. vmem_back->phys = phys;
  254. vmem_back->virt_addr = start;
  255. vmem_back->list = vmemmap_list;
  256. vmemmap_list = vmem_back;
  257. }
  258. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  259. {
  260. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  261. /* Align to the page size of the linear mapping. */
  262. start = _ALIGN_DOWN(start, page_size);
  263. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  264. for (; start < end; start += page_size) {
  265. void *p;
  266. if (vmemmap_populated(start, page_size))
  267. continue;
  268. p = vmemmap_alloc_block(page_size, node);
  269. if (!p)
  270. return -ENOMEM;
  271. vmemmap_list_populate(__pa(p), start, node);
  272. pr_debug(" * %016lx..%016lx allocated at %p\n",
  273. start, start + page_size, p);
  274. vmemmap_create_mapping(start, page_size, __pa(p));
  275. }
  276. return 0;
  277. }
  278. #ifdef CONFIG_MEMORY_HOTPLUG
  279. static unsigned long vmemmap_list_free(unsigned long start)
  280. {
  281. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  282. vmem_back_prev = vmem_back = vmemmap_list;
  283. /* look for it with prev pointer recorded */
  284. for (; vmem_back; vmem_back = vmem_back->list) {
  285. if (vmem_back->virt_addr == start)
  286. break;
  287. vmem_back_prev = vmem_back;
  288. }
  289. if (unlikely(!vmem_back)) {
  290. WARN_ON(1);
  291. return 0;
  292. }
  293. /* remove it from vmemmap_list */
  294. if (vmem_back == vmemmap_list) /* remove head */
  295. vmemmap_list = vmem_back->list;
  296. else
  297. vmem_back_prev->list = vmem_back->list;
  298. /* next point to this freed entry */
  299. vmem_back->list = next;
  300. next = vmem_back;
  301. num_freed++;
  302. return vmem_back->phys;
  303. }
  304. void __ref vmemmap_free(unsigned long start, unsigned long end)
  305. {
  306. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  307. start = _ALIGN_DOWN(start, page_size);
  308. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  309. for (; start < end; start += page_size) {
  310. unsigned long addr;
  311. /*
  312. * the section has already be marked as invalid, so
  313. * vmemmap_populated() true means some other sections still
  314. * in this page, so skip it.
  315. */
  316. if (vmemmap_populated(start, page_size))
  317. continue;
  318. addr = vmemmap_list_free(start);
  319. if (addr) {
  320. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  321. if (PageReserved(page)) {
  322. /* allocated from bootmem */
  323. if (page_size < PAGE_SIZE) {
  324. /*
  325. * this shouldn't happen, but if it is
  326. * the case, leave the memory there
  327. */
  328. WARN_ON_ONCE(1);
  329. } else {
  330. unsigned int nr_pages =
  331. 1 << get_order(page_size);
  332. while (nr_pages--)
  333. free_reserved_page(page++);
  334. }
  335. } else
  336. free_pages((unsigned long)(__va(addr)),
  337. get_order(page_size));
  338. vmemmap_remove_mapping(start, page_size);
  339. }
  340. }
  341. }
  342. #endif
  343. void register_page_bootmem_memmap(unsigned long section_nr,
  344. struct page *start_page, unsigned long size)
  345. {
  346. }
  347. /*
  348. * We do not have access to the sparsemem vmemmap, so we fallback to
  349. * walking the list of sparsemem blocks which we already maintain for
  350. * the sake of crashdump. In the long run, we might want to maintain
  351. * a tree if performance of that linear walk becomes a problem.
  352. *
  353. * realmode_pfn_to_page functions can fail due to:
  354. * 1) As real sparsemem blocks do not lay in RAM continously (they
  355. * are in virtual address space which is not available in the real mode),
  356. * the requested page struct can be split between blocks so get_page/put_page
  357. * may fail.
  358. * 2) When huge pages are used, the get_page/put_page API will fail
  359. * in real mode as the linked addresses in the page struct are virtual
  360. * too.
  361. */
  362. struct page *realmode_pfn_to_page(unsigned long pfn)
  363. {
  364. struct vmemmap_backing *vmem_back;
  365. struct page *page;
  366. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  367. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  368. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  369. if (pg_va < vmem_back->virt_addr)
  370. continue;
  371. /* After vmemmap_list entry free is possible, need check all */
  372. if ((pg_va + sizeof(struct page)) <=
  373. (vmem_back->virt_addr + page_size)) {
  374. page = (struct page *) (vmem_back->phys + pg_va -
  375. vmem_back->virt_addr);
  376. return page;
  377. }
  378. }
  379. /* Probably that page struct is split between real pages */
  380. return NULL;
  381. }
  382. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  383. #elif defined(CONFIG_FLATMEM)
  384. struct page *realmode_pfn_to_page(unsigned long pfn)
  385. {
  386. struct page *page = pfn_to_page(pfn);
  387. return page;
  388. }
  389. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  390. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */