123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- /*
- * General Purpose functions for the global management of the
- * Communication Processor Module.
- *
- * Copyright (c) 2000 Michael Leslie <mleslie@lineo.com>
- * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
- *
- * In addition to the individual control of the communication
- * channels, there are a few functions that globally affect the
- * communication processor.
- *
- * Buffer descriptors must be allocated from the dual ported memory
- * space. The allocator for that is here. When the communication
- * process is reset, we reclaim the memory available. There is
- * currently no deallocator for this memory.
- * The amount of space available is platform dependent. On the
- * MBX, the EPPC software loads additional microcode into the
- * communication processor, and uses some of the DP ram for this
- * purpose. Current, the first 512 bytes and the last 256 bytes of
- * memory are used. Right now I am conservative and only use the
- * memory that can never be used for microcode. If there are
- * applications that require more DP ram, we can expand the boundaries
- * but then we have to be careful of any downloaded microcode.
- *
- */
- /*
- * Michael Leslie <mleslie@lineo.com>
- * adapted Dan Malek's ppc8xx drivers to M68360
- *
- */
- #include <linux/errno.h>
- #include <linux/init.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/interrupt.h>
- #include <asm/irq.h>
- #include <asm/m68360.h>
- #include <asm/commproc.h>
- /* #include <asm/page.h> */
- /* #include <asm/pgtable.h> */
- extern void *_quicc_base;
- extern unsigned int system_clock;
- static uint dp_alloc_base; /* Starting offset in DP ram */
- static uint dp_alloc_top; /* Max offset + 1 */
- #if 0
- static void *host_buffer; /* One page of host buffer */
- static void *host_end; /* end + 1 */
- #endif
- /* struct cpm360_t *cpmp; */ /* Pointer to comm processor space */
- QUICC *pquicc;
- /* QUICC *quicc_dpram; */ /* mleslie - temporary; use extern pquicc elsewhere instead */
- /* CPM interrupt vector functions. */
- struct cpm_action {
- irq_handler_t handler;
- void *dev_id;
- };
- static struct cpm_action cpm_vecs[CPMVEC_NR];
- static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
- static void cpm_error_interrupt(void *);
- /* prototypes: */
- void cpm_install_handler(int vec, irq_handler_t handler, void *dev_id);
- void m360_cpm_reset(void);
- void __init m360_cpm_reset()
- {
- /* pte_t *pte; */
- pquicc = (struct quicc *)(_quicc_base); /* initialized in crt0_rXm.S */
- /* Perform a CPM reset. */
- pquicc->cp_cr = (SOFTWARE_RESET | CMD_FLAG);
- /* Wait for CPM to become ready (should be 2 clocks). */
- while (pquicc->cp_cr & CMD_FLAG);
- /* On the recommendation of the 68360 manual, p. 7-60
- * - Set sdma interrupt service mask to 7
- * - Set sdma arbitration ID to 4
- */
- pquicc->sdma_sdcr = 0x0740;
- /* Claim the DP memory for our use.
- */
- dp_alloc_base = CPM_DATAONLY_BASE;
- dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE;
- /* Set the host page for allocation.
- */
- /* host_buffer = host_page_addr; */
- /* host_end = host_page_addr + PAGE_SIZE; */
- /* pte = find_pte(&init_mm, host_page_addr); */
- /* pte_val(*pte) |= _PAGE_NO_CACHE; */
- /* flush_tlb_page(current->mm->mmap, host_buffer); */
- /* Tell everyone where the comm processor resides.
- */
- /* cpmp = (cpm360_t *)commproc; */
- }
- /* This is called during init_IRQ. We used to do it above, but this
- * was too early since init_IRQ was not yet called.
- */
- void
- cpm_interrupt_init(void)
- {
- /* Initialize the CPM interrupt controller.
- * NOTE THAT pquicc had better have been initialized!
- * reference: MC68360UM p. 7-377
- */
- pquicc->intr_cicr =
- (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
- (CPM_INTERRUPT << 13) |
- CICR_HP_MASK |
- (CPM_VECTOR_BASE << 5) |
- CICR_SPS;
- /* mask all CPM interrupts from reaching the cpu32 core: */
- pquicc->intr_cimr = 0;
- /* mles - If I understand correctly, the 360 just pops over to the CPM
- * specific vector, obviating the necessity to vector through the IRQ
- * whose priority the CPM is set to. This needs a closer look, though.
- */
- /* Set our interrupt handler with the core CPU. */
- /* if (request_irq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) */
- /* panic("Could not allocate CPM IRQ!"); */
- /* Install our own error handler.
- */
- /* I think we want to hold off on this one for the moment - mles */
- /* cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); */
- /* master CPM interrupt enable */
- /* pquicc->intr_cicr |= CICR_IEN; */ /* no such animal for 360 */
- }
- /* CPM interrupt controller interrupt.
- */
- static void
- cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
- {
- /* uint vec; */
- /* mles: Note that this stuff is currently being performed by
- * M68360_do_irq(int vec, struct pt_regs *fp), in ../ints.c */
- /* figure out the vector */
- /* call that vector's handler */
- /* clear the irq's bit in the service register */
- #if 0 /* old 860 stuff: */
- /* Get the vector by setting the ACK bit and then reading
- * the register.
- */
- ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
- vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
- vec >>= 11;
- if (cpm_vecs[vec].handler != 0)
- (*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id);
- else
- ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec);
- /* After servicing the interrupt, we have to remove the status
- * indicator.
- */
- ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr |= (1 << vec);
- #endif
- }
- /* The CPM can generate the error interrupt when there is a race condition
- * between generating and masking interrupts. All we have to do is ACK it
- * and return. This is a no-op function so we don't need any special
- * tests in the interrupt handler.
- */
- static void
- cpm_error_interrupt(void *dev)
- {
- }
- /* Install a CPM interrupt handler.
- */
- void
- cpm_install_handler(int vec, irq_handler_t handler, void *dev_id)
- {
- request_irq(vec, handler, 0, "timer", dev_id);
- /* if (cpm_vecs[vec].handler != 0) */
- /* printk(KERN_INFO "CPM interrupt %x replacing %x\n", */
- /* (uint)handler, (uint)cpm_vecs[vec].handler); */
- /* cpm_vecs[vec].handler = handler; */
- /* cpm_vecs[vec].dev_id = dev_id; */
- /* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); */
- /* pquicc->intr_cimr |= (1 << vec); */
- }
- /* Free a CPM interrupt handler.
- */
- void
- cpm_free_handler(int vec)
- {
- cpm_vecs[vec].handler = NULL;
- cpm_vecs[vec].dev_id = NULL;
- /* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); */
- pquicc->intr_cimr &= ~(1 << vec);
- }
- /* Allocate some memory from the dual ported ram. We may want to
- * enforce alignment restrictions, but right now everyone is a good
- * citizen.
- */
- uint
- m360_cpm_dpalloc(uint size)
- {
- uint retloc;
- if ((dp_alloc_base + size) >= dp_alloc_top)
- return(CPM_DP_NOSPACE);
- retloc = dp_alloc_base;
- dp_alloc_base += size;
- return(retloc);
- }
- #if 0 /* mleslie - for now these are simply kmalloc'd */
- /* We also own one page of host buffer space for the allocation of
- * UART "fifos" and the like.
- */
- uint
- m360_cpm_hostalloc(uint size)
- {
- uint retloc;
- if ((host_buffer + size) >= host_end)
- return(0);
- retloc = host_buffer;
- host_buffer += size;
- return(retloc);
- }
- #endif
- /* Set a baud rate generator. This needs lots of work. There are
- * four BRGs, any of which can be wired to any channel.
- * The internal baud rate clock is the system clock divided by 16.
- * This assumes the baudrate is 16x oversampled by the uart.
- */
- /* #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq * 1000000) */
- #define BRG_INT_CLK system_clock
- #define BRG_UART_CLK (BRG_INT_CLK/16)
- void
- m360_cpm_setbrg(uint brg, uint rate)
- {
- volatile uint *bp;
- /* This is good enough to get SMCs running.....
- */
- /* bp = (uint *)&cpmp->cp_brgc1; */
- bp = (volatile uint *)(&pquicc->brgc[0].l);
- bp += brg;
- *bp = ((BRG_UART_CLK / rate - 1) << 1) | CPM_BRG_EN;
- }
- /*
- * Local variables:
- * c-indent-level: 4
- * c-basic-offset: 4
- * tab-width: 4
- * End:
- */
|