process.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * Based on arch/arm/kernel/process.c
  3. *
  4. * Original Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6. * Copyright (C) 2012 ARM Ltd.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <stdarg.h>
  21. #include <linux/compat.h>
  22. #include <linux/efi.h>
  23. #include <linux/export.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/mm.h>
  27. #include <linux/stddef.h>
  28. #include <linux/unistd.h>
  29. #include <linux/user.h>
  30. #include <linux/delay.h>
  31. #include <linux/reboot.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/init.h>
  35. #include <linux/cpu.h>
  36. #include <linux/elfcore.h>
  37. #include <linux/pm.h>
  38. #include <linux/tick.h>
  39. #include <linux/utsname.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/random.h>
  42. #include <linux/hw_breakpoint.h>
  43. #include <linux/personality.h>
  44. #include <linux/notifier.h>
  45. #include <asm/compat.h>
  46. #include <asm/cacheflush.h>
  47. #include <asm/fpsimd.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/processor.h>
  50. #include <asm/stacktrace.h>
  51. #ifdef CONFIG_CC_STACKPROTECTOR
  52. #include <linux/stackprotector.h>
  53. unsigned long __stack_chk_guard __read_mostly;
  54. EXPORT_SYMBOL(__stack_chk_guard);
  55. #endif
  56. /*
  57. * Function pointers to optional machine specific functions
  58. */
  59. void (*pm_power_off)(void);
  60. EXPORT_SYMBOL_GPL(pm_power_off);
  61. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  62. /*
  63. * This is our default idle handler.
  64. */
  65. void arch_cpu_idle(void)
  66. {
  67. /*
  68. * This should do all the clock switching and wait for interrupt
  69. * tricks
  70. */
  71. cpu_do_idle();
  72. local_irq_enable();
  73. }
  74. #ifdef CONFIG_HOTPLUG_CPU
  75. void arch_cpu_idle_dead(void)
  76. {
  77. cpu_die();
  78. }
  79. #endif
  80. /*
  81. * Called by kexec, immediately prior to machine_kexec().
  82. *
  83. * This must completely disable all secondary CPUs; simply causing those CPUs
  84. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  85. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  86. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  87. * functionality embodied in disable_nonboot_cpus() to achieve this.
  88. */
  89. void machine_shutdown(void)
  90. {
  91. disable_nonboot_cpus();
  92. }
  93. /*
  94. * Halting simply requires that the secondary CPUs stop performing any
  95. * activity (executing tasks, handling interrupts). smp_send_stop()
  96. * achieves this.
  97. */
  98. void machine_halt(void)
  99. {
  100. local_irq_disable();
  101. smp_send_stop();
  102. while (1);
  103. }
  104. /*
  105. * Power-off simply requires that the secondary CPUs stop performing any
  106. * activity (executing tasks, handling interrupts). smp_send_stop()
  107. * achieves this. When the system power is turned off, it will take all CPUs
  108. * with it.
  109. */
  110. void machine_power_off(void)
  111. {
  112. local_irq_disable();
  113. smp_send_stop();
  114. if (pm_power_off)
  115. pm_power_off();
  116. }
  117. /*
  118. * Restart requires that the secondary CPUs stop performing any activity
  119. * while the primary CPU resets the system. Systems with multiple CPUs must
  120. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  121. * This is required so that any code running after reset on the primary CPU
  122. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  123. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  124. * to use. Implementing such co-ordination would be essentially impossible.
  125. */
  126. void machine_restart(char *cmd)
  127. {
  128. /* Disable interrupts first */
  129. local_irq_disable();
  130. smp_send_stop();
  131. /*
  132. * UpdateCapsule() depends on the system being reset via
  133. * ResetSystem().
  134. */
  135. if (efi_enabled(EFI_RUNTIME_SERVICES))
  136. efi_reboot(reboot_mode, NULL);
  137. /* Now call the architecture specific reboot code. */
  138. if (arm_pm_restart)
  139. arm_pm_restart(reboot_mode, cmd);
  140. else
  141. do_kernel_restart(cmd);
  142. /*
  143. * Whoops - the architecture was unable to reboot.
  144. */
  145. printk("Reboot failed -- System halted\n");
  146. while (1);
  147. }
  148. void __show_regs(struct pt_regs *regs)
  149. {
  150. int i, top_reg;
  151. u64 lr, sp;
  152. if (compat_user_mode(regs)) {
  153. lr = regs->compat_lr;
  154. sp = regs->compat_sp;
  155. top_reg = 12;
  156. } else {
  157. lr = regs->regs[30];
  158. sp = regs->sp;
  159. top_reg = 29;
  160. }
  161. show_regs_print_info(KERN_DEFAULT);
  162. print_symbol("PC is at %s\n", instruction_pointer(regs));
  163. print_symbol("LR is at %s\n", lr);
  164. printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
  165. regs->pc, lr, regs->pstate);
  166. printk("sp : %016llx\n", sp);
  167. for (i = top_reg; i >= 0; i--) {
  168. printk("x%-2d: %016llx ", i, regs->regs[i]);
  169. if (i % 2 == 0)
  170. printk("\n");
  171. }
  172. printk("\n");
  173. }
  174. void show_regs(struct pt_regs * regs)
  175. {
  176. printk("\n");
  177. __show_regs(regs);
  178. }
  179. /*
  180. * Free current thread data structures etc..
  181. */
  182. void exit_thread(void)
  183. {
  184. }
  185. static void tls_thread_flush(void)
  186. {
  187. asm ("msr tpidr_el0, xzr");
  188. if (is_compat_task()) {
  189. current->thread.tp_value = 0;
  190. /*
  191. * We need to ensure ordering between the shadow state and the
  192. * hardware state, so that we don't corrupt the hardware state
  193. * with a stale shadow state during context switch.
  194. */
  195. barrier();
  196. asm ("msr tpidrro_el0, xzr");
  197. }
  198. }
  199. void flush_thread(void)
  200. {
  201. fpsimd_flush_thread();
  202. tls_thread_flush();
  203. flush_ptrace_hw_breakpoint(current);
  204. }
  205. void release_thread(struct task_struct *dead_task)
  206. {
  207. }
  208. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  209. {
  210. if (current->mm)
  211. fpsimd_preserve_current_state();
  212. *dst = *src;
  213. return 0;
  214. }
  215. asmlinkage void ret_from_fork(void) asm("ret_from_fork");
  216. int copy_thread(unsigned long clone_flags, unsigned long stack_start,
  217. unsigned long stk_sz, struct task_struct *p)
  218. {
  219. struct pt_regs *childregs = task_pt_regs(p);
  220. memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
  221. if (likely(!(p->flags & PF_KTHREAD))) {
  222. *childregs = *current_pt_regs();
  223. childregs->regs[0] = 0;
  224. /*
  225. * Read the current TLS pointer from tpidr_el0 as it may be
  226. * out-of-sync with the saved value.
  227. */
  228. asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
  229. if (stack_start) {
  230. if (is_compat_thread(task_thread_info(p)))
  231. childregs->compat_sp = stack_start;
  232. /* 16-byte aligned stack mandatory on AArch64 */
  233. else if (stack_start & 15)
  234. return -EINVAL;
  235. else
  236. childregs->sp = stack_start;
  237. }
  238. /*
  239. * If a TLS pointer was passed to clone (4th argument), use it
  240. * for the new thread.
  241. */
  242. if (clone_flags & CLONE_SETTLS)
  243. p->thread.tp_value = childregs->regs[3];
  244. } else {
  245. memset(childregs, 0, sizeof(struct pt_regs));
  246. childregs->pstate = PSR_MODE_EL1h;
  247. p->thread.cpu_context.x19 = stack_start;
  248. p->thread.cpu_context.x20 = stk_sz;
  249. }
  250. p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
  251. p->thread.cpu_context.sp = (unsigned long)childregs;
  252. ptrace_hw_copy_thread(p);
  253. return 0;
  254. }
  255. static void tls_thread_switch(struct task_struct *next)
  256. {
  257. unsigned long tpidr, tpidrro;
  258. asm("mrs %0, tpidr_el0" : "=r" (tpidr));
  259. *task_user_tls(current) = tpidr;
  260. tpidr = *task_user_tls(next);
  261. tpidrro = is_compat_thread(task_thread_info(next)) ?
  262. next->thread.tp_value : 0;
  263. asm(
  264. " msr tpidr_el0, %0\n"
  265. " msr tpidrro_el0, %1"
  266. : : "r" (tpidr), "r" (tpidrro));
  267. }
  268. /*
  269. * Thread switching.
  270. */
  271. struct task_struct *__switch_to(struct task_struct *prev,
  272. struct task_struct *next)
  273. {
  274. struct task_struct *last;
  275. fpsimd_thread_switch(next);
  276. tls_thread_switch(next);
  277. hw_breakpoint_thread_switch(next);
  278. contextidr_thread_switch(next);
  279. /*
  280. * Complete any pending TLB or cache maintenance on this CPU in case
  281. * the thread migrates to a different CPU.
  282. */
  283. dsb(ish);
  284. /* the actual thread switch */
  285. last = cpu_switch_to(prev, next);
  286. return last;
  287. }
  288. unsigned long get_wchan(struct task_struct *p)
  289. {
  290. struct stackframe frame;
  291. unsigned long stack_page;
  292. int count = 0;
  293. if (!p || p == current || p->state == TASK_RUNNING)
  294. return 0;
  295. frame.fp = thread_saved_fp(p);
  296. frame.sp = thread_saved_sp(p);
  297. frame.pc = thread_saved_pc(p);
  298. stack_page = (unsigned long)task_stack_page(p);
  299. do {
  300. if (frame.sp < stack_page ||
  301. frame.sp >= stack_page + THREAD_SIZE ||
  302. unwind_frame(&frame))
  303. return 0;
  304. if (!in_sched_functions(frame.pc))
  305. return frame.pc;
  306. } while (count ++ < 16);
  307. return 0;
  308. }
  309. unsigned long arch_align_stack(unsigned long sp)
  310. {
  311. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  312. sp -= get_random_int() & ~PAGE_MASK;
  313. return sp & ~0xf;
  314. }
  315. static unsigned long randomize_base(unsigned long base)
  316. {
  317. unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
  318. return randomize_range(base, range_end, 0) ? : base;
  319. }
  320. unsigned long arch_randomize_brk(struct mm_struct *mm)
  321. {
  322. return randomize_base(mm->brk);
  323. }