12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376 |
- /*
- * MP3 huffman table selecting and bit counting
- *
- * Copyright (c) 1999-2005 Takehiro TOMINAGA
- * Copyright (c) 2002-2005 Gabriel Bouvigne
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- */
- /* $Id: takehiro.c,v 1.80 2017/09/06 15:07:30 robert Exp $ */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include "lame.h"
- #include "machine.h"
- #include "encoder.h"
- #include "util.h"
- #include "quantize_pvt.h"
- #include "tables.h"
- static const struct {
- const int region0_count;
- const int region1_count;
- } subdv_table[23] = {
- {
- 0, 0}, /* 0 bands */
- {
- 0, 0}, /* 1 bands */
- {
- 0, 0}, /* 2 bands */
- {
- 0, 0}, /* 3 bands */
- {
- 0, 0}, /* 4 bands */
- {
- 0, 1}, /* 5 bands */
- {
- 1, 1}, /* 6 bands */
- {
- 1, 1}, /* 7 bands */
- {
- 1, 2}, /* 8 bands */
- {
- 2, 2}, /* 9 bands */
- {
- 2, 3}, /* 10 bands */
- {
- 2, 3}, /* 11 bands */
- {
- 3, 4}, /* 12 bands */
- {
- 3, 4}, /* 13 bands */
- {
- 3, 4}, /* 14 bands */
- {
- 4, 5}, /* 15 bands */
- {
- 4, 5}, /* 16 bands */
- {
- 4, 6}, /* 17 bands */
- {
- 5, 6}, /* 18 bands */
- {
- 5, 6}, /* 19 bands */
- {
- 5, 7}, /* 20 bands */
- {
- 6, 7}, /* 21 bands */
- {
- 6, 7}, /* 22 bands */
- };
- /*********************************************************************
- * nonlinear quantization of xr
- * More accurate formula than the ISO formula. Takes into account
- * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
- * as close as possible to x^4/3. (taking the nearest int would mean
- * ix is as close as possible to xr, which is different.)
- *
- * From Segher Boessenkool <segher@eastsite.nl> 11/1999
- *
- * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
- * Tominaga. If you need the ASM code, check CVS circa Aug 2000.
- *
- * 01/2004: Optimizations by Gabriel Bouvigne
- *********************************************************************/
- static void
- quantize_lines_xrpow_01(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
- {
- const FLOAT compareval0 = (1.0f - 0.4054f) / istep;
- unsigned int i;
- assert(l > 0);
- assert(l % 2 == 0);
- for (i = 0; i < l; i += 2) {
- FLOAT const xr_0 = xr[i+0];
- FLOAT const xr_1 = xr[i+1];
- int const ix_0 = (compareval0 > xr_0) ? 0 : 1;
- int const ix_1 = (compareval0 > xr_1) ? 0 : 1;
- ix[i+0] = ix_0;
- ix[i+1] = ix_1;
- }
- }
- #ifdef TAKEHIRO_IEEE754_HACK
- typedef union {
- float f;
- int i;
- } fi_union;
- #define MAGIC_FLOAT (65536*(128))
- #define MAGIC_INT 0x4b000000
- static void
- quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xp, int *pi)
- {
- fi_union *fi;
- unsigned int remaining;
- assert(l > 0);
- fi = (fi_union *) pi;
- l = l >> 1;
- remaining = l % 2;
- l = l >> 1;
- while (l--) {
- double x0 = istep * xp[0];
- double x1 = istep * xp[1];
- double x2 = istep * xp[2];
- double x3 = istep * xp[3];
- x0 += MAGIC_FLOAT;
- fi[0].f = x0;
- x1 += MAGIC_FLOAT;
- fi[1].f = x1;
- x2 += MAGIC_FLOAT;
- fi[2].f = x2;
- x3 += MAGIC_FLOAT;
- fi[3].f = x3;
- fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
- fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
- fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT];
- fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT];
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- fi[2].i -= MAGIC_INT;
- fi[3].i -= MAGIC_INT;
- fi += 4;
- xp += 4;
- };
- if (remaining) {
- double x0 = istep * xp[0];
- double x1 = istep * xp[1];
- x0 += MAGIC_FLOAT;
- fi[0].f = x0;
- x1 += MAGIC_FLOAT;
- fi[1].f = x1;
- fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
- fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- }
- }
- #else
- /*********************************************************************
- * XRPOW_FTOI is a macro to convert floats to ints.
- * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
- * ROUNDFAC= -0.0946
- *
- * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
- * ROUNDFAC=0.4054
- *
- * Note: using floor() or (int) is extremely slow. On machines where
- * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
- * to write some ASM for XRPOW_FTOI().
- *********************************************************************/
- #define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
- #define QUANTFAC(rx) adj43[rx]
- #define ROUNDFAC 0.4054
- static void
- quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
- {
- unsigned int remaining;
- assert(l > 0);
- l = l >> 1;
- remaining = l % 2;
- l = l >> 1;
- while (l--) {
- FLOAT x0, x1, x2, x3;
- int rx0, rx1, rx2, rx3;
- x0 = *xr++ * istep;
- x1 = *xr++ * istep;
- XRPOW_FTOI(x0, rx0);
- x2 = *xr++ * istep;
- XRPOW_FTOI(x1, rx1);
- x3 = *xr++ * istep;
- XRPOW_FTOI(x2, rx2);
- x0 += QUANTFAC(rx0);
- XRPOW_FTOI(x3, rx3);
- x1 += QUANTFAC(rx1);
- XRPOW_FTOI(x0, *ix++);
- x2 += QUANTFAC(rx2);
- XRPOW_FTOI(x1, *ix++);
- x3 += QUANTFAC(rx3);
- XRPOW_FTOI(x2, *ix++);
- XRPOW_FTOI(x3, *ix++);
- };
- if (remaining) {
- FLOAT x0, x1;
- int rx0, rx1;
- x0 = *xr++ * istep;
- x1 = *xr++ * istep;
- XRPOW_FTOI(x0, rx0);
- XRPOW_FTOI(x1, rx1);
- x0 += QUANTFAC(rx0);
- x1 += QUANTFAC(rx1);
- XRPOW_FTOI(x0, *ix++);
- XRPOW_FTOI(x1, *ix++);
- }
- }
- #endif
- /*********************************************************************
- * Quantization function
- * This function will select which lines to quantize and call the
- * proper quantization function
- *********************************************************************/
- static void
- quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info,
- calc_noise_data const *prev_noise)
- {
- /* quantize on xr^(3/4) instead of xr */
- int sfb;
- int sfbmax;
- int j = 0;
- int prev_data_use;
- int *iData;
- int accumulate = 0;
- int accumulate01 = 0;
- int *acc_iData;
- const FLOAT *acc_xp;
- iData = pi;
- acc_xp = xp;
- acc_iData = iData;
- /* Reusing previously computed data does not seems to work if global gain
- is changed. Finding why it behaves this way would allow to use a cache of
- previously computed values (let's 10 cached values per sfb) that would
- probably provide a noticeable speedup */
- prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain));
- if (cod_info->block_type == SHORT_TYPE)
- sfbmax = 38;
- else
- sfbmax = 21;
- for (sfb = 0; sfb <= sfbmax; sfb++) {
- int step = -1;
- if (prev_data_use || cod_info->block_type == NORM_TYPE) {
- step =
- cod_info->global_gain
- - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
- << (cod_info->scalefac_scale + 1))
- - cod_info->subblock_gain[cod_info->window[sfb]] * 8;
- }
- assert(cod_info->width[sfb] >= 0);
- if (prev_data_use && (prev_noise->step[sfb] == step)) {
- /* do not recompute this part,
- but compute accumulated lines */
- if (accumulate) {
- quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
- }
- else { /*should compute this part */
- int l;
- l = cod_info->width[sfb];
- if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
- /*do not compute upper zero part */
- int usefullsize;
- usefullsize = cod_info->max_nonzero_coeff - j + 1;
- memset(&pi[cod_info->max_nonzero_coeff], 0,
- sizeof(int) * (576 - cod_info->max_nonzero_coeff));
- l = usefullsize;
- if (l < 0) {
- l = 0;
- }
- /* no need to compute higher sfb values */
- sfb = sfbmax + 1;
- }
- /*accumulate lines to quantize */
- if (!accumulate && !accumulate01) {
- acc_iData = iData;
- acc_xp = xp;
- }
- if (prev_noise &&
- prev_noise->sfb_count1 > 0 &&
- sfb >= prev_noise->sfb_count1 &&
- prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) {
- if (accumulate) {
- quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- acc_iData = iData;
- acc_xp = xp;
- }
- accumulate01 += l;
- }
- else {
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- acc_iData = iData;
- acc_xp = xp;
- }
- accumulate += l;
- }
- if (l <= 0) {
- /* rh: 20040215
- * may happen due to "prev_data_use" optimization
- */
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
- if (accumulate) {
- quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
- break; /* ends for-loop */
- }
- }
- if (sfb <= sfbmax) {
- iData += cod_info->width[sfb];
- xp += cod_info->width[sfb];
- j += cod_info->width[sfb];
- }
- }
- if (accumulate) { /*last data part */
- quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
- if (accumulate01) { /*last data part */
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
- }
- /*************************************************************************/
- /* ix_max */
- /*************************************************************************/
- static int
- ix_max(const int *ix, const int *end)
- {
- int max1 = 0, max2 = 0;
- do {
- int const x1 = *ix++;
- int const x2 = *ix++;
- if (max1 < x1)
- max1 = x1;
- if (max2 < x2)
- max2 = x2;
- } while (ix < end);
- if (max1 < max2)
- max1 = max2;
- return max1;
- }
- static int
- count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, unsigned int *const s)
- {
- /* ESC-table is used */
- unsigned int const linbits = ht[t1].xlen * 65536u + ht[t2].xlen;
- unsigned int sum = 0, sum2;
- do {
- unsigned int x = *ix++;
- unsigned int y = *ix++;
- if (x >= 15u) {
- x = 15u;
- sum += linbits;
- }
- if (y >= 15u) {
- y = 15u;
- sum += linbits;
- }
- x <<= 4u;
- x += y;
- sum += largetbl[x];
- } while (ix < end);
- sum2 = sum & 0xffffu;
- sum >>= 16u;
- if (sum > sum2) {
- sum = sum2;
- t1 = t2;
- }
- *s += sum;
- return t1;
- }
- static int
- count_bit_noESC(const int *ix, const int *end, int mx, unsigned int *s)
- {
- /* No ESC-words */
- unsigned int sum1 = 0;
- const uint8_t *const hlen1 = ht[1].hlen;
- (void) mx;
- do {
- unsigned int const x0 = *ix++;
- unsigned int const x1 = *ix++;
- sum1 += hlen1[ x0+x0 + x1 ];
- } while (ix < end);
- *s += sum1;
- return 1;
- }
- static const int huf_tbl_noESC[] = {
- 1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13
- };
- static int
- count_bit_noESC_from2(const int *ix, const int *end, int max, unsigned int *s)
- {
- int t1 = huf_tbl_noESC[max - 1];
- /* No ESC-words */
- const unsigned int xlen = ht[t1].xlen;
- uint32_t const* table = (t1 == 2) ? &table23[0] : &table56[0];
- unsigned int sum = 0, sum2;
- do {
- unsigned int const x0 = *ix++;
- unsigned int const x1 = *ix++;
- sum += table[ x0 * xlen + x1 ];
- } while (ix < end);
- sum2 = sum & 0xffffu;
- sum >>= 16u;
- if (sum > sum2) {
- sum = sum2;
- t1++;
- }
- *s += sum;
- return t1;
- }
- inline static int
- count_bit_noESC_from3(const int *ix, const int *end, int max, unsigned int * s)
- {
- int t1 = huf_tbl_noESC[max - 1];
- /* No ESC-words */
- unsigned int sum1 = 0;
- unsigned int sum2 = 0;
- unsigned int sum3 = 0;
- const unsigned int xlen = ht[t1].xlen;
- const uint8_t *const hlen1 = ht[t1].hlen;
- const uint8_t *const hlen2 = ht[t1 + 1].hlen;
- const uint8_t *const hlen3 = ht[t1 + 2].hlen;
- int t;
- do {
- unsigned int x0 = *ix++;
- unsigned int x1 = *ix++;
- unsigned int x = x0 * xlen + x1;
- sum1 += hlen1[x];
- sum2 += hlen2[x];
- sum3 += hlen3[x];
- } while (ix < end);
- t = t1;
- if (sum1 > sum2) {
- sum1 = sum2;
- t++;
- }
- if (sum1 > sum3) {
- sum1 = sum3;
- t = t1 + 2;
- }
- *s += sum1;
- return t;
- }
- /*************************************************************************/
- /* choose table */
- /*************************************************************************/
- /*
- Choose the Huffman table that will encode ix[begin..end] with
- the fewest bits.
- Note: This code contains knowledge about the sizes and characteristics
- of the Huffman tables as defined in the IS (Table B.7), and will not work
- with any arbitrary tables.
- */
- static int count_bit_null(const int* ix, const int* end, int max, unsigned int* s)
- {
- (void) ix;
- (void) end;
- (void) max;
- (void) s;
- return 0;
- }
- typedef int (*count_fnc)(const int* ix, const int* end, int max, unsigned int* s);
-
- static const count_fnc count_fncs[] =
- { &count_bit_null
- , &count_bit_noESC
- , &count_bit_noESC_from2
- , &count_bit_noESC_from2
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- , &count_bit_noESC_from3
- };
- static int
- choose_table_nonMMX(const int *ix, const int *const end, int *const _s)
- {
- unsigned int* s = (unsigned int*)_s;
- unsigned int max;
- int choice, choice2;
- max = ix_max(ix, end);
- if (max <= 15) {
- return count_fncs[max](ix, end, max, s);
- }
- /* try tables with linbits */
- if (max > IXMAX_VAL) {
- *s = LARGE_BITS;
- return -1;
- }
- max -= 15u;
- for (choice2 = 24; choice2 < 32; choice2++) {
- if (ht[choice2].linmax >= max) {
- break;
- }
- }
- for (choice = choice2 - 8; choice < 24; choice++) {
- if (ht[choice].linmax >= max) {
- break;
- }
- }
- return count_bit_ESC(ix, end, choice, choice2, s);
- }
- /*************************************************************************/
- /* count_bit */
- /*************************************************************************/
- int
- noquant_count_bits(lame_internal_flags const *const gfc,
- gr_info * const gi, calc_noise_data * prev_noise)
- {
- SessionConfig_t const *const cfg = &gfc->cfg;
- int bits = 0;
- int i, a1, a2;
- int const *const ix = gi->l3_enc;
- i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1);
- if (prev_noise)
- prev_noise->sfb_count1 = 0;
- /* Determine count1 region */
- for (; i > 1; i -= 2)
- if (ix[i - 1] | ix[i - 2])
- break;
- gi->count1 = i;
- /* Determines the number of bits to encode the quadruples. */
- a1 = a2 = 0;
- for (; i > 3; i -= 4) {
- int x4 = ix[i-4];
- int x3 = ix[i-3];
- int x2 = ix[i-2];
- int x1 = ix[i-1];
- int p;
- /* hack to check if all values <= 1 */
- if ((unsigned int) (x4 | x3 | x2 | x1) > 1)
- break;
- p = ((x4 * 2 + x3) * 2 + x2) * 2 + x1;
- a1 += t32l[p];
- a2 += t33l[p];
- }
- bits = a1;
- gi->count1table_select = 0;
- if (a1 > a2) {
- bits = a2;
- gi->count1table_select = 1;
- }
- gi->count1bits = bits;
- gi->big_values = i;
- if (i == 0)
- return bits;
- if (gi->block_type == SHORT_TYPE) {
- a1 = 3 * gfc->scalefac_band.s[3];
- if (a1 > gi->big_values)
- a1 = gi->big_values;
- a2 = gi->big_values;
- }
- else if (gi->block_type == NORM_TYPE) {
- assert(i <= 576); /* bv_scf has 576 entries (0..575) */
- a1 = gi->region0_count = gfc->sv_qnt.bv_scf[i - 2];
- a2 = gi->region1_count = gfc->sv_qnt.bv_scf[i - 1];
- assert(a1 + a2 + 2 < SBPSY_l);
- a2 = gfc->scalefac_band.l[a1 + a2 + 2];
- a1 = gfc->scalefac_band.l[a1 + 1];
- if (a2 < i)
- gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
- }
- else {
- gi->region0_count = 7;
- /*gi->region1_count = SBPSY_l - 7 - 1; */
- gi->region1_count = SBMAX_l - 1 - 7 - 1;
- a1 = gfc->scalefac_band.l[7 + 1];
- a2 = i;
- if (a1 > a2) {
- a1 = a2;
- }
- }
- /* have to allow for the case when bigvalues < region0 < region1 */
- /* (and region0, region1 are ignored) */
- a1 = Min(a1, i);
- a2 = Min(a2, i);
- assert(a1 >= 0);
- assert(a2 >= 0);
- /* Count the number of bits necessary to code the bigvalues region. */
- if (0 < a1)
- gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
- if (a1 < a2)
- gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
- if (cfg->use_best_huffman == 2) {
- gi->part2_3_length = bits;
- best_huffman_divide(gfc, gi);
- bits = gi->part2_3_length;
- }
- if (prev_noise) {
- if (gi->block_type == NORM_TYPE) {
- int sfb = 0;
- while (gfc->scalefac_band.l[sfb] < gi->big_values) {
- sfb++;
- }
- prev_noise->sfb_count1 = sfb;
- }
- }
- return bits;
- }
- int
- count_bits(lame_internal_flags const *const gfc,
- const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise)
- {
- int *const ix = gi->l3_enc;
- /* since quantize_xrpow uses table lookup, we need to check this first: */
- FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain);
- if (gi->xrpow_max > w)
- return LARGE_BITS;
- quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise);
- if (gfc->sv_qnt.substep_shaping & 2) {
- int sfb, j = 0;
- /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
- int const gain = gi->global_gain + gi->scalefac_scale;
- const FLOAT roundfac = 0.634521682242439 / IPOW20(gain);
- for (sfb = 0; sfb < gi->sfbmax; sfb++) {
- int const width = gi->width[sfb];
- assert(width >= 0);
- if (!gfc->sv_qnt.pseudohalf[sfb]) {
- j += width;
- }
- else {
- int k;
- for (k = j, j += width; k < j; ++k) {
- ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
- }
- }
- }
- }
- return noquant_count_bits(gfc, gi, prev_noise);
- }
- /***********************************************************************
- re-calculate the best scalefac_compress using scfsi
- the saved bits are kept in the bit reservoir.
- **********************************************************************/
- inline static void
- recalc_divide_init(const lame_internal_flags * const gfc,
- gr_info const *cod_info,
- int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[])
- {
- int r0, r1, bigv, r0t, r1t, bits;
- bigv = cod_info->big_values;
- for (r0 = 0; r0 <= 7 + 15; r0++) {
- r01_bits[r0] = LARGE_BITS;
- }
- for (r0 = 0; r0 < 16; r0++) {
- int const a1 = gfc->scalefac_band.l[r0 + 1];
- int r0bits;
- if (a1 >= bigv)
- break;
- r0bits = 0;
- r0t = gfc->choose_table(ix, ix + a1, &r0bits);
- for (r1 = 0; r1 < 8; r1++) {
- int const a2 = gfc->scalefac_band.l[r0 + r1 + 2];
- if (a2 >= bigv)
- break;
- bits = r0bits;
- r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
- if (r01_bits[r0 + r1] > bits) {
- r01_bits[r0 + r1] = bits;
- r01_div[r0 + r1] = r0;
- r0_tbl[r0 + r1] = r0t;
- r1_tbl[r0 + r1] = r1t;
- }
- }
- }
- }
- inline static void
- recalc_divide_sub(const lame_internal_flags * const gfc,
- const gr_info * cod_info2,
- gr_info * const gi,
- const int *const ix,
- const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[])
- {
- int bits, r2, a2, bigv, r2t;
- bigv = cod_info2->big_values;
- for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
- a2 = gfc->scalefac_band.l[r2];
- if (a2 >= bigv)
- break;
- bits = r01_bits[r2 - 2] + cod_info2->count1bits;
- if (gi->part2_3_length <= bits)
- break;
- r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
- if (gi->part2_3_length <= bits)
- continue;
- memcpy(gi, cod_info2, sizeof(gr_info));
- gi->part2_3_length = bits;
- gi->region0_count = r01_div[r2 - 2];
- gi->region1_count = r2 - 2 - r01_div[r2 - 2];
- gi->table_select[0] = r0_tbl[r2 - 2];
- gi->table_select[1] = r1_tbl[r2 - 2];
- gi->table_select[2] = r2t;
- }
- }
- void
- best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi)
- {
- SessionConfig_t const *const cfg = &gfc->cfg;
- int i, a1, a2;
- gr_info cod_info2;
- int const *const ix = gi->l3_enc;
- int r01_bits[7 + 15 + 1];
- int r01_div[7 + 15 + 1];
- int r0_tbl[7 + 15 + 1];
- int r1_tbl[7 + 15 + 1];
- /* SHORT BLOCK stuff fails for MPEG2 */
- if (gi->block_type == SHORT_TYPE && cfg->mode_gr == 1)
- return;
- memcpy(&cod_info2, gi, sizeof(gr_info));
- if (gi->block_type == NORM_TYPE) {
- recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
- recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
- }
- i = cod_info2.big_values;
- if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1)
- return;
- i = gi->count1 + 2;
- if (i > 576)
- return;
- /* Determines the number of bits to encode the quadruples. */
- memcpy(&cod_info2, gi, sizeof(gr_info));
- cod_info2.count1 = i;
- a1 = a2 = 0;
- assert(i <= 576);
- for (; i > cod_info2.big_values; i -= 4) {
- int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
- a1 += t32l[p];
- a2 += t33l[p];
- }
- cod_info2.big_values = i;
- cod_info2.count1table_select = 0;
- if (a1 > a2) {
- a1 = a2;
- cod_info2.count1table_select = 1;
- }
- cod_info2.count1bits = a1;
- if (cod_info2.block_type == NORM_TYPE)
- recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
- else {
- /* Count the number of bits necessary to code the bigvalues region. */
- cod_info2.part2_3_length = a1;
- a1 = gfc->scalefac_band.l[7 + 1];
- if (a1 > i) {
- a1 = i;
- }
- if (a1 > 0)
- cod_info2.table_select[0] =
- gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length);
- if (i > a1)
- cod_info2.table_select[1] =
- gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length);
- if (gi->part2_3_length > cod_info2.part2_3_length)
- memcpy(gi, &cod_info2, sizeof(gr_info));
- }
- }
- static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 };
- static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
- const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
- const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
- static void
- scfsi_calc(int ch, III_side_info_t * l3_side)
- {
- unsigned int i;
- int s1, s2, c1, c2;
- int sfb;
- gr_info *const gi = &l3_side->tt[1][ch];
- gr_info const *const g0 = &l3_side->tt[0][ch];
- for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
- for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
- if (g0->scalefac[sfb] != gi->scalefac[sfb]
- && gi->scalefac[sfb] >= 0)
- break;
- }
- if (sfb == scfsi_band[i + 1]) {
- for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
- gi->scalefac[sfb] = -1;
- }
- l3_side->scfsi[ch][i] = 1;
- }
- }
- s1 = c1 = 0;
- for (sfb = 0; sfb < 11; sfb++) {
- if (gi->scalefac[sfb] == -1)
- continue;
- c1++;
- if (s1 < gi->scalefac[sfb])
- s1 = gi->scalefac[sfb];
- }
- s2 = c2 = 0;
- for (; sfb < SBPSY_l; sfb++) {
- if (gi->scalefac[sfb] == -1)
- continue;
- c2++;
- if (s2 < gi->scalefac[sfb])
- s2 = gi->scalefac[sfb];
- }
- for (i = 0; i < 16; i++) {
- if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
- int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
- if (gi->part2_length > c) {
- gi->part2_length = c;
- gi->scalefac_compress = (int)i;
- }
- }
- }
- }
- /*
- Find the optimal way to store the scalefactors.
- Only call this routine after final scalefactors have been
- chosen and the channel/granule will not be re-encoded.
- */
- void
- best_scalefac_store(const lame_internal_flags * gfc,
- const int gr, const int ch, III_side_info_t * const l3_side)
- {
- SessionConfig_t const *const cfg = &gfc->cfg;
- /* use scalefac_scale if we can */
- gr_info *const gi = &l3_side->tt[gr][ch];
- int sfb, i, j, l;
- int recalc = 0;
- /* remove scalefacs from bands with ix=0. This idea comes
- * from the AAC ISO docs. added mt 3/00 */
- /* check if l3_enc=0 */
- j = 0;
- for (sfb = 0; sfb < gi->sfbmax; sfb++) {
- int const width = gi->width[sfb];
- assert(width >= 0);
- for (l = j, j += width; l < j; ++l) {
- if (gi->l3_enc[l] != 0)
- break;
- }
- if (l == j)
- gi->scalefac[sfb] = recalc = -2; /* anything goes. */
- /* only best_scalefac_store and calc_scfsi
- * know--and only they should know--about the magic number -2.
- */
- }
- if (!gi->scalefac_scale && !gi->preflag) {
- int s = 0;
- for (sfb = 0; sfb < gi->sfbmax; sfb++)
- if (gi->scalefac[sfb] > 0)
- s |= gi->scalefac[sfb];
- if (!(s & 1) && s != 0) {
- for (sfb = 0; sfb < gi->sfbmax; sfb++)
- if (gi->scalefac[sfb] > 0)
- gi->scalefac[sfb] >>= 1;
- gi->scalefac_scale = recalc = 1;
- }
- }
- if (!gi->preflag && gi->block_type != SHORT_TYPE && cfg->mode_gr == 2) {
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
- break;
- if (sfb == SBPSY_l) {
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- if (gi->scalefac[sfb] > 0)
- gi->scalefac[sfb] -= pretab[sfb];
- gi->preflag = recalc = 1;
- }
- }
- for (i = 0; i < 4; i++)
- l3_side->scfsi[ch][i] = 0;
- if (cfg->mode_gr == 2 && gr == 1
- && l3_side->tt[0][ch].block_type != SHORT_TYPE
- && l3_side->tt[1][ch].block_type != SHORT_TYPE) {
- scfsi_calc(ch, l3_side);
- recalc = 0;
- }
- for (sfb = 0; sfb < gi->sfbmax; sfb++) {
- if (gi->scalefac[sfb] == -2) {
- gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
- }
- }
- if (recalc) {
- (void) scale_bitcount(gfc, gi);
- }
- }
- #ifndef NDEBUG
- static int
- all_scalefactors_not_negative(int const *scalefac, int n)
- {
- int i;
- for (i = 0; i < n; ++i) {
- if (scalefac[i] < 0)
- return 0;
- }
- return 1;
- }
- #endif
- /* number of bits used to encode scalefacs */
- /* 18*slen1_tab[i] + 18*slen2_tab[i] */
- static const int scale_short[16] = {
- 0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126
- };
- /* 17*slen1_tab[i] + 18*slen2_tab[i] */
- static const int scale_mixed[16] = {
- 0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122
- };
- /* 11*slen1_tab[i] + 10*slen2_tab[i] */
- static const int scale_long[16] = {
- 0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74
- };
- /*************************************************************************/
- /* scale_bitcount */
- /*************************************************************************/
- /* Also calculates the number of bits necessary to code the scalefactors. */
- static int
- mpeg1_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
- {
- int k, sfb, max_slen1 = 0, max_slen2 = 0;
- /* maximum values */
- const int *tab;
- int *const scalefac = cod_info->scalefac;
- (void) gfc;
- assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax));
- if (cod_info->block_type == SHORT_TYPE) {
- tab = scale_short;
- if (cod_info->mixed_block_flag)
- tab = scale_mixed;
- }
- else { /* block_type == 1,2,or 3 */
- tab = scale_long;
- if (!cod_info->preflag) {
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- if (scalefac[sfb] < pretab[sfb])
- break;
- if (sfb == SBPSY_l) {
- cod_info->preflag = 1;
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- scalefac[sfb] -= pretab[sfb];
- }
- }
- }
- for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
- if (max_slen1 < scalefac[sfb])
- max_slen1 = scalefac[sfb];
- for (; sfb < cod_info->sfbmax; sfb++)
- if (max_slen2 < scalefac[sfb])
- max_slen2 = scalefac[sfb];
- /* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
- * loop over *all* posible values of scalefac_compress to find the
- * one which uses the smallest number of bits. ISO would stop
- * at first valid index */
- cod_info->part2_length = LARGE_BITS;
- for (k = 0; k < 16; k++) {
- if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
- && cod_info->part2_length > tab[k]) {
- cod_info->part2_length = tab[k];
- cod_info->scalefac_compress = k;
- }
- }
- return cod_info->part2_length == LARGE_BITS;
- }
- /*
- table of largest scalefactor values for MPEG2
- */
- static const int max_range_sfac_tab[6][4] = {
- {15, 15, 7, 7},
- {15, 15, 7, 0},
- {7, 3, 0, 0},
- {15, 31, 31, 0},
- {7, 7, 7, 0},
- {3, 3, 0, 0}
- };
- /*************************************************************************/
- /* scale_bitcount_lsf */
- /*************************************************************************/
- /* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
- /* Lower sampling frequencies (24, 22.05 and 16 kHz.) */
- /* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */
- /* "Audio Decoding Layer III" */
- static int
- mpeg2_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
- {
- int table_number, row_in_table, partition, nr_sfb, window, over;
- int i, sfb, max_sfac[4];
- const int *partition_table;
- int const *const scalefac = cod_info->scalefac;
- /*
- Set partition table. Note that should try to use table one,
- but do not yet...
- */
- if (cod_info->preflag)
- table_number = 2;
- else
- table_number = 0;
- for (i = 0; i < 4; i++)
- max_sfac[i] = 0;
- if (cod_info->block_type == SHORT_TYPE) {
- row_in_table = 1;
- partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
- for (sfb = 0, partition = 0; partition < 4; partition++) {
- nr_sfb = partition_table[partition] / 3;
- for (i = 0; i < nr_sfb; i++, sfb++)
- for (window = 0; window < 3; window++)
- if (scalefac[sfb * 3 + window] > max_sfac[partition])
- max_sfac[partition] = scalefac[sfb * 3 + window];
- }
- }
- else {
- row_in_table = 0;
- partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
- for (sfb = 0, partition = 0; partition < 4; partition++) {
- nr_sfb = partition_table[partition];
- for (i = 0; i < nr_sfb; i++, sfb++)
- if (scalefac[sfb] > max_sfac[partition])
- max_sfac[partition] = scalefac[sfb];
- }
- }
- for (over = 0, partition = 0; partition < 4; partition++) {
- if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
- over++;
- }
- if (!over) {
- /*
- Since no bands have been over-amplified, we can set scalefac_compress
- and slen[] for the formatter
- */
- static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
- int slen1, slen2, slen3, slen4;
- cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
- for (partition = 0; partition < 4; partition++)
- cod_info->slen[partition] = log2tab[max_sfac[partition]];
- /* set scalefac_compress */
- slen1 = cod_info->slen[0];
- slen2 = cod_info->slen[1];
- slen3 = cod_info->slen[2];
- slen4 = cod_info->slen[3];
- switch (table_number) {
- case 0:
- cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
- + (slen3 << 2)
- + slen4;
- break;
- case 1:
- cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
- + slen3;
- break;
- case 2:
- cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
- break;
- default:
- ERRORF(gfc, "intensity stereo not implemented yet\n");
- break;
- }
- }
- #ifdef DEBUG
- if (over)
- ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n");
- #endif
- if (!over) {
- assert(cod_info->sfb_partition_table);
- cod_info->part2_length = 0;
- for (partition = 0; partition < 4; partition++)
- cod_info->part2_length +=
- cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
- }
- return over;
- }
- int
- scale_bitcount(const lame_internal_flags * gfc, gr_info * cod_info)
- {
- if (gfc->cfg.mode_gr == 2) {
- return mpeg1_scale_bitcount(gfc, cod_info);
- }
- else {
- return mpeg2_scale_bitcount(gfc, cod_info);
- }
- }
- #ifdef MMX_choose_table
- extern int choose_table_MMX(const int *ix, const int *const end, int *const s);
- #endif
- void
- huffman_init(lame_internal_flags * const gfc)
- {
- int i;
- gfc->choose_table = choose_table_nonMMX;
- #ifdef MMX_choose_table
- if (gfc->CPU_features.MMX) {
- gfc->choose_table = choose_table_MMX;
- }
- #endif
- for (i = 2; i <= 576; i += 2) {
- int scfb_anz = 0, bv_index;
- while (gfc->scalefac_band.l[++scfb_anz] < i);
- bv_index = subdv_table[scfb_anz].region0_count;
- while (gfc->scalefac_band.l[bv_index + 1] > i)
- bv_index--;
- if (bv_index < 0) {
- /* this is an indication that everything is going to
- be encoded as region0: bigvalues < region0 < region1
- so lets set region0, region1 to some value larger
- than bigvalues */
- bv_index = subdv_table[scfb_anz].region0_count;
- }
- gfc->sv_qnt.bv_scf[i - 2] = bv_index;
- bv_index = subdv_table[scfb_anz].region1_count;
- while (gfc->scalefac_band.l[bv_index + gfc->sv_qnt.bv_scf[i - 2] + 2] > i)
- bv_index--;
- if (bv_index < 0) {
- bv_index = subdv_table[scfb_anz].region1_count;
- }
- gfc->sv_qnt.bv_scf[i - 1] = bv_index;
- }
- }
|