1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- #pragma once
- //table-driven galois field modulo 2
- //do not use with GF(2^17) or larger
- namespace nall {
- template<typename field, uint Elements, uint Polynomial>
- struct GaloisField {
- using type = GaloisField;
- GaloisField(uint x = 0) : x(x) {}
- operator field() const { return x; }
- auto operator^(field y) const -> type { return x ^ y; }
- auto operator+(field y) const -> type { return x ^ y; }
- auto operator-(field y) const -> type { return x ^ y; }
- auto operator*(field y) const -> type { return x && y ? exp(log(x) + log(y)) : 0; }
- auto operator/(field y) const -> type { return x && y ? exp(log(x) + Elements - log(y)) : 0; }
- auto& operator =(field y) { return x = y, *this; }
- auto& operator^=(field y) { return x = operator^(y), *this; }
- auto& operator+=(field y) { return x = operator^(y), *this; }
- auto& operator-=(field y) { return x = operator^(y), *this; }
- auto& operator*=(field y) { return x = operator*(y), *this; }
- auto& operator/=(field y) { return x = operator/(y), *this; }
- auto pow(field y) const -> type { return exp(log(x) * y); }
- auto inv() const -> type { return exp(Elements - log(x)); } // 1/x
- static auto log(uint x) -> uint {
- enum : uint { Size = bit::round(Elements), Mask = Size - 1 };
- static array<field[Size]> log = [] {
- uint shift = 0, polynomial = Polynomial;
- while(polynomial >>= 1) shift++;
- shift--;
- array<field[Size]> log;
- field x = 1;
- for(uint n : range(Elements)) {
- log[x] = n;
- x = x << 1 ^ (x >> shift ? Polynomial : 0);
- }
- log[0] = 0; //-inf (undefined)
- return log;
- }();
- return log[x & Mask];
- }
- static auto exp(uint x) -> uint {
- static array<field[Elements]> exp = [] {
- uint shift = 0, polynomial = Polynomial;
- while(polynomial >>= 1) shift++;
- shift--;
- array<field[Elements]> exp;
- field x = 1;
- for(uint n : range(Elements)) {
- exp[n] = x;
- x = x << 1 ^ (x >> shift ? Polynomial : 0);
- }
- return exp;
- }();
- return exp[x % Elements];
- }
- field x;
- };
- }
|