123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- #version 150
- //#define INTERLACED
- uniform sampler2D source[];
- uniform vec4 sourceSize[];
- uniform vec4 targetSize;
- uniform int phase;
- in Vertex {
- vec2 texCoord;
- };
- out vec4 fragColor;
- // Macros.
- #define FIX(c) max(abs(c), 1e-5);
- #define PI 3.141592653589
- #define ilfac vec2(1.0, floor(sourceSize[0].y / 200.0))
- #define one (ilfac / sourceSize[0].xy)
- #define mod_factor (texCoord.x * targetSize.x)
- // Settings //
- // gamma of simulated CRT
- #define CRTgamma 2.4
- // gamma of display monitor (typically 2.2 is correct)
- #define monitorgamma 2.2
- #define OVERSAMPLE
- //#define LINEAR_PROCESSING
- // END Settings //
- #ifdef LINEAR_PROCESSING
- # define TEX2D(c) pow(texture(source[0], (c)), vec4(CRTgamma))
- #else
- # define TEX2D(c) texture(source[0], (c))
- #endif
- // Calculate the influence of a scanline on the current pixel.
- //
- // 'distance' is the distance in texture coordinates from the current
- // pixel to the scanline in question.
- // 'color' is the colour of the scanline at the horizontal location of
- // the current pixel.
- vec4 scanlineWeights(float distance, vec4 color)
- {
- // "wid" controls the width of the scanline beam, for each RGB channel
- // The "weights" lines basically specify the formula that gives
- // you the profile of the beam, i.e. the intensity as
- // a function of distance from the vertical center of the
- // scanline. In this case, it is gaussian if width=2, and
- // becomes nongaussian for larger widths. Ideally this should
- // be normalized so that the integral across the beam is
- // independent of its width. That is, for a narrower beam
- // "weights" should have a higher peak at the center of the
- // scanline than for a wider beam.
- #ifdef USEGAUSSIAN
- vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
- vec4 weights = vec4(distance / wid);
- return 0.4 * exp(-weights * weights) / wid;
- #else
- vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
- vec4 weights = vec4(distance / 0.3);
- return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
- #endif
- }
- void main() {
- vec2 xy = texCoord;
- // Of all the pixels that are mapped onto the texel we are
- // currently rendering, which pixel are we currently rendering?
- #ifdef INTERLACED
- vec2 ilvec = vec2(0.0,ilfac.y > 1.5 ? mod(float(phase),2.0) : 0.0);
- #else
- vec2 ilvec = vec2(0.0,ilfac.y);
- #endif
- vec2 ratio_scale = (xy * sourceSize[0].xy - vec2(0.4999) + ilvec)/ilfac;
-
- #ifdef OVERSAMPLE
- float filter_ = fwidth(ratio_scale.y);
- #endif
- vec2 uv_ratio = fract(ratio_scale);
-
- // Snap to the center of the underlying texel.
- xy = (floor(ratio_scale)*ilfac + vec2(0.4999) - ilvec) / sourceSize[0].xy;
-
- // Calculate Lanczos scaling coefficients describing the effect
- // of various neighbour texels in a scanline on the current
- // pixel.
- vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
- // Prevent division by zero.
- coeffs = FIX(coeffs);
- // Lanczos2 kernel.
- coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
- // Normalize.
- coeffs /= dot(coeffs, vec4(1.0));
-
- // Calculate the effective colour of the current and next
- // scanlines at the horizontal location of the current pixel,
- // using the Lanczos coefficients above.
- vec4 col = clamp(mat4(
- TEX2D(xy + vec2(-one.x, 0.0)),
- TEX2D(xy),
- TEX2D(xy + vec2(one.x, 0.0)),
- TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
- 0.0, 1.0);
- vec4 col2 = clamp(mat4(
- TEX2D(xy + vec2(-one.x, one.y)),
- TEX2D(xy + vec2(0.0, one.y)),
- TEX2D(xy + one),
- TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
- 0.0, 1.0);
- #ifndef LINEAR_PROCESSING
- col = pow(col , vec4(CRTgamma));
- col2 = pow(col2, vec4(CRTgamma));
- #endif
- // Calculate the influence of the current and next scanlines on
- // the current pixel.
- vec4 weights = scanlineWeights(uv_ratio.y, col);
- vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
- #ifdef OVERSAMPLE
- uv_ratio.y =uv_ratio.y+1.0/3.0*filter_;
- weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
- weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
- uv_ratio.y =uv_ratio.y-2.0/3.0*filter_;
- weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
- weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
- #endif
- vec3 mul_res = (col * weights + col2 * weights2).rgb;
-
- // Convert the image gamma for display on our output device.
- mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
- // Color the texel.
- fragColor = vec4(mul_res, 1.0);
- }
|