1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830 |
- #version 150
- in vec4 position;
- in vec2 texCoord;
- out Vertex {
- vec2 vTexCoord;
- vec2 uv_step;
- vec2 il_step_multiple;
- float pixel_height_in_scanlines;
- };
- uniform vec4 targetSize;
- uniform vec4 sourceSize[];
- // USER SETTINGS BLOCK //
- #define crt_gamma 2.500000
- #define lcd_gamma 2.200000
- #define levels_contrast 1.0
- #define halation_weight 0.0
- #define diffusion_weight 0.075
- #define bloom_underestimate_levels 0.8
- #define bloom_excess 0.000000
- #define beam_min_sigma 0.020000
- #define beam_max_sigma 0.300000
- #define beam_spot_power 0.330000
- #define beam_min_shape 2.000000
- #define beam_max_shape 4.000000
- #define beam_shape_power 0.250000
- #define beam_horiz_filter 0.000000
- #define beam_horiz_sigma 0.35
- #define beam_horiz_linear_rgb_weight 1.000000
- #define convergence_offset_x_r -0.000000
- #define convergence_offset_x_g 0.000000
- #define convergence_offset_x_b 0.000000
- #define convergence_offset_y_r 0.000000
- #define convergence_offset_y_g -0.000000
- #define convergence_offset_y_b 0.000000
- #define mask_type 1.000000
- #define mask_sample_mode_desired 0.000000
- #define mask_specify_num_triads 0.000000
- #define mask_triad_size_desired 3.000000
- #define mask_num_triads_desired 480.000000
- #define aa_subpixel_r_offset_x_runtime -0.0
- #define aa_subpixel_r_offset_y_runtime 0.000000
- #define aa_cubic_c 0.500000
- #define aa_gauss_sigma 0.500000
- #define geom_mode_runtime 2.000000
- #define geom_radius 2.000000
- #define geom_view_dist 2.000000
- #define geom_tilt_angle_x 0.000000
- #define geom_tilt_angle_y 0.000000
- #define geom_aspect_ratio_x 432.000000
- #define geom_aspect_ratio_y 329.000000
- #define geom_overscan_x 1.000000
- #define geom_overscan_y 1.000000
- #define border_size 0.015
- #define border_darkness 2.0
- #define border_compress 2.500000
- #define interlace_bff 0.000000
- #define interlace_1080i 0.000000
- // END USER SETTINGS BLOCK //
- // compatibility macros for transparently converting HLSLisms into GLSLisms
- #define mul(a,b) (b*a)
- #define lerp(a,b,c) mix(a,b,c)
- #define saturate(c) clamp(c, 0.0, 1.0)
- #define frac(x) (fract(x))
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #define float2x2 mat2x2
- #define float3x3 mat3x3
- #define float4x4 mat4x4
- #define float4x3 mat4x3
- #define float2x4 mat2x4
- #define IN params
- #define texture_size sourceSize[0].xy
- #define video_size sourceSize[0].xy
- #define output_size targetSize.xy
- #define frame_count phase
- #define static
- #define inline
- #define const
- #define fmod(x,y) mod(x,y)
- #define ddx(c) dFdx(c)
- #define ddy(c) dFdy(c)
- #define atan2(x,y) atan(y,x)
- #define rsqrt(c) inversesqrt(c)
- #define input_texture source[0]
- #if defined(GL_ES)
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- #if __VERSION__ >= 130
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_TEXTURE texture2D
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "bind-shader-params.h"
- ///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
- #ifndef BIND_SHADER_PARAMS_H
- #define BIND_SHADER_PARAMS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "derived-settings-and-constants.h"
- ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- // Override some parameters for gamma-management.h and tex2Dantialias.h:
- #define OVERRIDE_DEVICE_GAMMA
- static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
- #define ANTIALIAS_OVERRIDE_BASICS
- #define ANTIALIAS_OVERRIDE_PARAMETERS
- // Provide accessors for vector constants that pack scalar uniforms:
- inline float2 get_aspect_vector(const float geom_aspect_ratio)
- {
- // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
- // the absolute scale from affecting the uv-mapping for curvature:
- const float geom_clamped_aspect_ratio =
- min(geom_aspect_ratio, geom_max_aspect_ratio);
- const float2 geom_aspect =
- normalize(float2(geom_clamped_aspect_ratio, 1.0));
- return geom_aspect;
- }
- inline float2 get_geom_overscan_vector()
- {
- return float2(geom_overscan_x, geom_overscan_y);
- }
- inline float2 get_geom_tilt_angle_vector()
- {
- return float2(geom_tilt_angle_x, geom_tilt_angle_y);
- }
- inline float3 get_convergence_offsets_x_vector()
- {
- return float3(convergence_offset_x_r, convergence_offset_x_g,
- convergence_offset_x_b);
- }
- inline float3 get_convergence_offsets_y_vector()
- {
- return float3(convergence_offset_y_r, convergence_offset_y_g,
- convergence_offset_y_b);
- }
- inline float2 get_convergence_offsets_r_vector()
- {
- return float2(convergence_offset_x_r, convergence_offset_y_r);
- }
- inline float2 get_convergence_offsets_g_vector()
- {
- return float2(convergence_offset_x_g, convergence_offset_y_g);
- }
- inline float2 get_convergence_offsets_b_vector()
- {
- return float2(convergence_offset_x_b, convergence_offset_y_b);
- }
- inline float2 get_aa_subpixel_r_offset()
- {
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // WARNING: THIS IS EXTREMELY EXPENSIVE.
- return float2(aa_subpixel_r_offset_x_runtime,
- aa_subpixel_r_offset_y_runtime);
- #else
- return aa_subpixel_r_offset_static;
- #endif
- #else
- return aa_subpixel_r_offset_static;
- #endif
- }
- // Provide accessors settings which still need "cooking:"
- inline float get_mask_amplify()
- {
- static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
- static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
- static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
- return mask_type < 0.5 ? mask_grille_amplify :
- mask_type < 1.5 ? mask_slot_amplify :
- mask_shadow_amplify;
- }
- inline float get_mask_sample_mode()
- {
- #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_desired;
- #else
- return clamp(mask_sample_mode_desired, 1.0, 2.0);
- #endif
- #else
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_static;
- #else
- return clamp(mask_sample_mode_static, 1.0, 2.0);
- #endif
- #endif
- }
- #endif // BIND_SHADER_PARAMS_H
- //////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
- //#include "scanline-functions.h"
- ///////////////////////////// BEGIN SCANLINE-FUNCTIONS ////////////////////////////
- #ifndef SCANLINE_FUNCTIONS_H
- #define SCANLINE_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "../../../../include/special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- ///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
- inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
- {
- // Requires: Globals:
- // 1.) beam_min_sigma and beam_max_sigma are global floats
- // containing the desired minimum and maximum beam standard
- // deviations, for dim and bright colors respectively.
- // 2.) beam_max_sigma must be > 0.0
- // 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
- // 4.) beam_spot_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
- // sigma_range as a parameter to avoid repeated computation
- // when beam_{min, max}_sigma are runtime shader parameters
- // Optional: Users may set beam_spot_shape_function to 1 to define the
- // inner f(color) subfunction (see below) as:
- // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
- // Otherwise (technically, if beam_spot_shape_function < 0.5):
- // f(color) = pow(color, beam_spot_power)
- // Returns: The standard deviation of the Gaussian beam for "color:"
- // sigma = beam_min_sigma + sigma_range * f(color)
- // Details/Discussion:
- // The beam's spot shape vaguely resembles an aspect-corrected f() in the
- // range [0, 1] (not quite, but it's related). f(color) = color makes
- // spots look like diamonds, and a spherical function or cube balances
- // between variable width and a soft/realistic shape. A beam_spot_power
- // > 1.0 can produce an ugly spot shape and more initial clipping, but the
- // final shape also differs based on the horizontal resampling filter and
- // the phosphor bloom. For instance, resampling horizontally in nonlinear
- // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
- // shape, but a sixth root is still quite soft. A power function (default
- // 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
- // has the highest variability without an awful spot shape.
- //
- // beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
- // difference from beam_max_sigma affects beam width variability. It only
- // affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
- // a conservative estimate for a more complex constraint).
- //
- // beam_max_sigma affects clipping and increasing scanline width/softness
- // as color increases. The wider this is, the more scanlines need to be
- // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
- // at which the first unused scanline always has a weight < 1.0/255.0 is:
- // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
- // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
- // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
- // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
- // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
- // Generalized Gaussians permit more leeway here as steepness increases.
- if(beam_spot_shape_function < 0.5)
- {
- // Use a power function:
- return float3(beam_min_sigma) + sigma_range *
- pow(color, float3(beam_spot_power));
- }
- else
- {
- // Use a spherical function:
- const float3 color_minus_1 = color - float3(1.0);
- return float3(beam_min_sigma) + sigma_range *
- sqrt(float3(1.0) - color_minus_1*color_minus_1);
- }
- }
- inline float3 get_generalized_gaussian_beta(const float3 color,
- const float shape_range)
- {
- // Requires: Globals:
- // 1.) beam_min_shape and beam_max_shape are global floats
- // containing the desired min/max generalized Gaussian
- // beta parameters, for dim and bright colors respectively.
- // 2.) beam_max_shape must be >= 2.0
- // 3.) beam_min_shape must be in [2.0, beam_max_shape]
- // 4.) beam_shape_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) shape_range = beam_max_shape - beam_min_shape; we take
- // shape_range as a parameter to avoid repeated computation
- // when beam_{min, max}_shape are runtime shader parameters
- // Returns: The type-I generalized Gaussian "shape" parameter beta for
- // the given color.
- // Details/Discussion:
- // Beta affects the scanline distribution as follows:
- // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
- // b.) beta == 2.0 just degenerates to a Gaussian
- // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
- // than a Gaussian. Whereas high sigmas widen and soften peaks, high
- // beta widen and sharpen peaks at the risk of aliasing.
- // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
- // transitions, whereas lower ones sharpen them (at the risk of aliasing).
- return beam_min_shape + shape_range * pow(color, float3(beam_shape_power));
- }
- float3 scanline_gaussian_integral_contrib(const float3 dist,
- const float3 color, const float pixel_height, const float sigma_range)
- {
- // Requires: 1.) dist is the distance of the [potentially separate R/G/B]
- // point(s) from a scanline in units of scanlines, where
- // 1.0 means the sample point straddles the next scanline.
- // 2.) color is the underlying source color along a scanline.
- // 3.) pixel_height is the output pixel height in scanlines.
- // 4.) Requirements of get_gaussian_sigma() must be met.
- // Returns: Return a scanline's light output over a given pixel.
- // Details:
- // The CRT beam profile follows a roughly Gaussian distribution which is
- // wider for bright colors than dark ones. The integral over the full
- // range of a Gaussian function is always 1.0, so we can vary the beam
- // with a standard deviation without affecting brightness. 'x' = distance:
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- // gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
- // Use a numerical approximation of the "error function" (the Gaussian
- // indefinite integral) to find the definite integral of the scanline's
- // average brightness over a given pixel area. Even if curved coords were
- // used in this pass, a flat scalar pixel height works almost as well as a
- // pixel height computed from a full pixel-space to scanline-space matrix.
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- const float3 ph_offset = float3(pixel_height * 0.5);
- const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
- const float3 integral_high = erf((dist + ph_offset)*denom_inv);
- const float3 integral_low = erf((dist - ph_offset)*denom_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_generalized_gaussian_integral_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel.
- // A generalized Gaussian distribution allows the shape (beta) to vary
- // as well as the width (alpha). "gamma" refers to the gamma function:
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- // ligamma(s, z) is the lower incomplete gamma function, for which we only
- // implement two of four branches (because we keep 1/beta <= 0.5):
- // generalized integral = 0.5 + 0.5* sign(x) *
- // ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
- // See get_generalized_gaussian_beta() for a discussion of beta.
- // We base alpha on the intended Gaussian sigma, but it only strictly
- // models models standard deviation at beta == 2, because the standard
- // deviation depends on both alpha and beta (keeping alpha independent is
- // faster and preserves intuitive behavior and a full spectrum of results).
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 s = float3(1.0)/beta;
- const float3 ph_offset = float3(pixel_height * 0.5);
- // Pass beta to gamma_impl to avoid repeated divides. Similarly pass
- // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
- const float3 dist1 = dist + ph_offset;
- const float3 dist0 = dist - ph_offset;
- const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
- s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
- const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
- s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
- const float pixel_height, const float sigma_range)
- {
- // See scanline_gaussian integral_contrib() for detailed comments!
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- // Avoid repeated divides:
- const float3 sigma_inv = float3(1.0)/sigma;
- const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
- const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel away in each direction as well:
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three pure Gaussian samples:
- const float3 scale = color/3.0 * outer_denom_inv;
- const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
- const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
- const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
- return scale * (weight1 + weight2 + weight3);
- }
- else
- {
- return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
- }
- }
- float3 scanline_generalized_gaussian_sampled_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // See scanline_generalized_gaussian_integral_contrib() for details!
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- // Avoid repeated divides:
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 beta_inv = float3(1.0)/beta;
- const float3 scale = color * beta * 0.5 * alpha_inv /
- gamma_impl(beta_inv, beta);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel closer to and farther from the scanline too.
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three generalized Gaussian samples:
- const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
- const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
- const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
- return scale/3.0 * (weight1 + weight2 + weight3);
- }
- else
- {
- return scale * exp(-pow(abs(dist*alpha_inv), beta));
- }
- }
- inline float3 scanline_contrib(float3 dist, float3 color,
- float pixel_height, const float sigma_range, const float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel, using
- // a generalized or pure Gaussian distribution and sampling or
- // integrals as desired by user codepath choices.
- if(beam_generalized_gaussian)
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_generalized_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- else
- {
- return scanline_generalized_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- }
- else
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range);
- }
- else
- {
- return scanline_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range);
- }
- }
- }
- inline float3 get_raw_interpolated_color(const float3 color0,
- const float3 color1, const float3 color2, const float3 color3,
- const float4 weights)
- {
- // Use max to avoid bizarre artifacts from negative colors:
- return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
- }
- float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
- const float3 color2, const float3 color3, const float4 weights)
- {
- // Requires: 1.) Requirements of include/gamma-management.h must be met:
- // intermediate_gamma must be globally defined, and input
- // colors are interpreted as linear RGB unless you #define
- // GAMMA_ENCODE_EVERY_FBO (in which case they are
- // interpreted as gamma-encoded with intermediate_gamma).
- // 2.) color0-3 are colors sampled from a texture with tex2D().
- // They are interpreted as defined in requirement 1.
- // 3.) weights contains weights for each color, summing to 1.0.
- // 4.) beam_horiz_linear_rgb_weight must be defined as a global
- // float in [0.0, 1.0] describing how much blending should
- // be done in linear RGB (rest is gamma-corrected RGB).
- // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
- // if beam_horiz_linear_rgb_weight is anything other than a
- // static constant, or we may try branching at runtime
- // without dynamic branches allowed (slow).
- // Returns: Return an interpolated color lookup between the four input
- // colors based on the weights in weights. The final color will
- // be a linear RGB value, but the blending will be done as
- // indicated above.
- const float intermediate_gamma = get_intermediate_gamma();
- // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
- // profile allows dynamic branches (faster than computing extra pows):
- #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #else
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #endif
- #endif
- #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- // beam_horiz_linear_rgb_weight is static, so we can branch:
- #ifdef GAMMA_ENCODE_EVERY_FBO
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), float3(intermediate_gamma));
- if(beam_horiz_linear_rgb_weight > 0.0)
- {
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return gamma_mixed_color;
- }
- #else
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- if(beam_horiz_linear_rgb_weight < 1.0)
- {
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return linear_mixed_color;
- }
- #endif // GAMMA_ENCODE_EVERY_FBO
- #else
- #ifdef GAMMA_ENCODE_EVERY_FBO
- // Inputs: color0-3 are colors in gamma-encoded RGB.
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), intermediate_gamma);
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #else
- // Inputs: color0-3 are colors in linear RGB.
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- // wtf fixme
- // const float beam_horiz_linear_rgb_weight1 = 1.0;
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #endif // GAMMA_ENCODE_EVERY_FBO
- #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- }
- float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
- const float2 uv_step_x, const float4 weights)
- {
- // Requires: 1.) scanline_uv must be vertically snapped to the caller's
- // desired line or scanline and horizontally snapped to the
- // texel just left of the output pixel (color1)
- // 2.) uv_step_x must contain the horizontal uv distance
- // between texels.
- // 3.) weights must contain interpolation filter weights for
- // color0, color1, color2, and color3, where color1 is just
- // left of the output pixel.
- // Returns: Return a horizontally interpolated texture lookup using 2-4
- // nearby texels, according to weights and the conventions of
- // get_interpolated_linear_color().
- // We can ignore the outside texture lookups for Quilez resampling.
- const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb;
- const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb;
- float3 color0 = float3(0.0);
- float3 color3 = float3(0.0);
- if(beam_horiz_filter > 0.5)
- {
- color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb;
- color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb;
- }
- // Sample the texture as-is, whether it's linear or gamma-encoded:
- // get_interpolated_linear_color() will handle the difference.
- return get_interpolated_linear_color(color0, color1, color2, color3, weights);
- }
- float3 sample_single_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Snap to the previous texel and get sample dists from 2/4 nearby texels:
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel =
- floor(curr_texel - float2(under_half)) + float2(0.5);
- const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
- const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
- const float prev_dist = curr_texel.x - prev_texel_hor.x;
- const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
- 1.0 - prev_dist, 2.0 - prev_dist);
- // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
- float4 weights;
- if(beam_horiz_filter < 0.5)
- {
- // Quilez:
- const float x = sample_dists.y;
- const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
- weights = float4(0.0, 1.0 - w2, w2, 0.0);
- }
- else if(beam_horiz_filter < 1.5)
- {
- // Gaussian:
- float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
- weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
- }
- else
- {
- // Lanczos2:
- const float4 pi_dists = FIX_ZERO(sample_dists * pi);
- weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
- (pi_dists * pi_dists);
- }
- // Ensure the weight sum == 1.0:
- const float4 final_weights = weights/dot(weights, float4(1.0));
- // Get the interpolated horizontal scanline color:
- const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
- return get_scanline_color(
- tex, prev_texel_hor_uv, uv_step_x, final_weights);
- }
- float3 sample_rgb_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Rely on a helper to make convergence easier.
- if(beam_misconvergence)
- {
- const float3 convergence_offsets_rgb =
- get_convergence_offsets_x_vector();
- const float3 offset_u_rgb =
- convergence_offsets_rgb * texture_size_inv.xxx;
- const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
- const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
- const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
- const float3 sample_r = sample_single_scanline_horizontal(
- tex, scanline_uv_r, tex_size, texture_size_inv);
- const float3 sample_g = sample_single_scanline_horizontal(
- tex, scanline_uv_g, tex_size, texture_size_inv);
- const float3 sample_b = sample_single_scanline_horizontal(
- tex, scanline_uv_b, tex_size, texture_size_inv);
- return float3(sample_r.r, sample_g.g, sample_b.b);
- }
- else
- {
- return sample_single_scanline_horizontal(tex, tex_uv, tex_size,
- texture_size_inv);
- }
- }
- float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv, const float2 il_step_multiple,
- const float frame_count, out float dist)
- {
- // Compute texture coords for the last/upper scanline, accounting for
- // interlacing: With interlacing, only consider even/odd scanlines every
- // other frame. Top-field first (TFF) order puts even scanlines on even
- // frames, and BFF order puts them on odd frames. Texels are centered at:
- // frac(tex_uv * tex_size) == x.5
- // Caution: If these coordinates ever seem incorrect, first make sure it's
- // not because anisotropic filtering is blurring across field boundaries.
- // Note: TFF/BFF won't matter for sources that double-weave or similar.
- // wtf fixme
- // const float interlace_bff1 = 1.0;
- const float field_offset = floor(il_step_multiple.y * 0.75) *
- fmod(frame_count + float(interlace_bff), 2.0);
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel_num = floor(curr_texel - float2(under_half));
- const float wrong_field = fmod(
- prev_texel_num.y + field_offset, il_step_multiple.y);
- const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
- // Snap to the center of the previous scanline in the current field:
- const float2 scanline_texel = scanline_texel_num + float2(0.5);
- const float2 scanline_uv = scanline_texel * texture_size_inv;
- // Save the sample's distance from the scanline, in units of scanlines:
- dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
- return scanline_uv;
- }
- inline bool is_interlaced(float num_lines)
- {
- // Detect interlacing based on the number of lines in the source.
- if(interlace_detect)
- {
- // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
- // NTSC Emulators: Typically 224 or 240 lines
- // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
- // PAL Emulators: ?
- // ATSC: 720p, 1080i, 1080p
- // Where do we place our cutoffs? Assumptions:
- // 1.) We only need to care about active lines.
- // 2.) Anything > 288 and <= 576 lines is probably interlaced.
- // 3.) Anything > 576 lines is probably not interlaced...
- // 4.) ...except 1080 lines, which is a crapshoot (user decision).
- // 5.) Just in case the main program uses calculated video sizes,
- // we should nudge the float thresholds a bit.
- const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
- const bool hd_interlace = bool(interlace_1080i) ?
- ((num_lines > 1079.5) && (num_lines < 1080.5)) :
- false;
- return (sd_interlace || hd_interlace);
- }
- else
- {
- return false;
- }
- }
- #endif // SCANLINE_FUNCTIONS_H
- ///////////////////////////// END SCANLINE-FUNCTIONS ////////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- #undef COMPAT_PRECISION
- #undef COMPAT_TEXTURE
- void main() {
- gl_Position = position;
- vTexCoord = texCoord * 1.0001;
-
- // Detect interlacing: il_step_multiple indicates the step multiple between
- // lines: 1 is for progressive sources, and 2 is for interlaced sources.
- float2 video_size_ = video_size.xy;
- const float y_step = 1.0 + float(is_interlaced(video_size_.y));
- il_step_multiple = float2(1.0, y_step);
- // Get the uv tex coords step between one texel (x) and scanline (y):
- uv_step = il_step_multiple / texture_size;
- // If shader parameters are used, {min, max}_{sigma, shape} are runtime
- // values. Compute {sigma, shape}_range outside of scanline_contrib() so
- // they aren't computed once per scanline (6 times per fragment and up to
- // 18 times per vertex):
- // TODO/FIXME: if these aren't used, why are they calculated? commenting for now
- // const floatsigma_range = max(beam_max_sigma, beam_min_sigma) -
- // beam_min_sigma;
- // const float shape_range = max(beam_max_shape, beam_min_shape) -
- // beam_min_shape;
- // We need the pixel height in scanlines for antialiased/integral sampling:
- const float ph = (video_size_.y / output_size.y) /
- il_step_multiple.y;
- pixel_height_in_scanlines = ph;
- }
|