12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279 |
- #version 150
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- uniform sampler2D source[];
- uniform vec4 sourceSize[];
- uniform vec4 targetSize;
- uniform int phase;
- in Vertex {
- vec2 vTexCoord;
- vec2 tex_uv;
- vec4 video_and_texture_size_inv;
- vec2 output_size_inv;
- vec3 eye_pos_local;
- vec4 geom_aspect_and_overscan;
- vec3 global_to_local_row0;
- vec3 global_to_local_row1;
- vec3 global_to_local_row2;
- };
- out vec4 FragColor;
- // USER SETTINGS BLOCK //
- #define crt_gamma 2.500000
- #define lcd_gamma 2.200000
- #define levels_contrast 1.0
- #define halation_weight 0.0
- #define diffusion_weight 0.075
- #define bloom_underestimate_levels 0.8
- #define bloom_excess 0.000000
- #define beam_min_sigma 0.020000
- #define beam_max_sigma 0.300000
- #define beam_spot_power 0.330000
- #define beam_min_shape 2.000000
- #define beam_max_shape 4.000000
- #define beam_shape_power 0.250000
- #define beam_horiz_filter 0.000000
- #define beam_horiz_sigma 0.35
- #define beam_horiz_linear_rgb_weight 1.000000
- #define convergence_offset_x_r -0.000000
- #define convergence_offset_x_g 0.000000
- #define convergence_offset_x_b 0.000000
- #define convergence_offset_y_r 0.000000
- #define convergence_offset_y_g -0.000000
- #define convergence_offset_y_b 0.000000
- #define mask_type 1.000000
- #define mask_sample_mode_desired 0.000000
- #define mask_specify_num_triads 0.000000
- #define mask_triad_size_desired 3.000000
- #define mask_num_triads_desired 480.000000
- #define aa_subpixel_r_offset_x_runtime -0.0
- #define aa_subpixel_r_offset_y_runtime 0.000000
- #define aa_cubic_c 0.500000
- #define aa_gauss_sigma 0.500000
- #define geom_mode_runtime 1.000000
- #define geom_radius 2.000000
- #define geom_view_dist 2.000000
- #define geom_tilt_angle_x 0.000000
- #define geom_tilt_angle_y 0.000000
- #define geom_aspect_ratio_x 432.000000
- #define geom_aspect_ratio_y 329.000000
- #define geom_overscan_x 1.000000
- #define geom_overscan_y 1.000000
- #define border_size 0.015
- #define border_darkness 2.0
- #define border_compress 2.500000
- #define interlace_bff 0.000000
- #define interlace_1080i 0.000000
- // END USER SETTINGS BLOCK //
- // compatibility macros for transparently converting HLSLisms into GLSLisms
- #define mul(a,b) (b*a)
- #define lerp(a,b,c) mix(a,b,c)
- #define saturate(c) clamp(c, 0.0, 1.0)
- #define frac(x) (fract(x))
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #define float2x2 mat2x2
- #define float3x3 mat3x3
- #define float4x4 mat4x4
- #define float4x3 mat4x3
- #define float2x4 mat2x4
- #define IN params
- #define texture_size sourceSize[0].xy
- #define video_size sourceSize[0].xy
- #define output_size targetSize.xy
- #define frame_count phase
- #define static
- #define inline
- #define const
- #define fmod(x,y) mod(x,y)
- #define ddx(c) dFdx(c)
- #define ddy(c) dFdy(c)
- #define atan2(x,y) atan(x,y)
- #define rsqrt(c) inversesqrt(c)
- #define input_texture source[0]
- #if defined(GL_ES)
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- #if __VERSION__ >= 130
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_TEXTURE texture2D
- #endif
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- #define LAST_PASS
- #define SIMULATE_CRT_ON_LCD
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "bind-shader-h"
- ///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
- #ifndef BIND_SHADER_PARAMS_H
- #define BIND_SHADER_PARAMS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "derived-settings-and-constants.h"
- ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- // Override some parameters for gamma-management.h and tex2Dantialias.h:
- #define OVERRIDE_DEVICE_GAMMA
- static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
- #define ANTIALIAS_OVERRIDE_BASICS
- #define ANTIALIAS_OVERRIDE_PARAMETERS
- // Provide accessors for vector constants that pack scalar uniforms:
- inline float2 get_aspect_vector(const float geom_aspect_ratio)
- {
- // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
- // the absolute scale from affecting the uv-mapping for curvature:
- const float geom_clamped_aspect_ratio =
- min(geom_aspect_ratio, geom_max_aspect_ratio);
- const float2 geom_aspect =
- normalize(float2(geom_clamped_aspect_ratio, 1.0));
- return geom_aspect;
- }
- inline float2 get_geom_overscan_vector()
- {
- return float2(geom_overscan_x, geom_overscan_y);
- }
- inline float2 get_geom_tilt_angle_vector()
- {
- return float2(geom_tilt_angle_x, geom_tilt_angle_y);
- }
- inline float3 get_convergence_offsets_x_vector()
- {
- return float3(convergence_offset_x_r, convergence_offset_x_g,
- convergence_offset_x_b);
- }
- inline float3 get_convergence_offsets_y_vector()
- {
- return float3(convergence_offset_y_r, convergence_offset_y_g,
- convergence_offset_y_b);
- }
- inline float2 get_convergence_offsets_r_vector()
- {
- return float2(convergence_offset_x_r, convergence_offset_y_r);
- }
- inline float2 get_convergence_offsets_g_vector()
- {
- return float2(convergence_offset_x_g, convergence_offset_y_g);
- }
- inline float2 get_convergence_offsets_b_vector()
- {
- return float2(convergence_offset_x_b, convergence_offset_y_b);
- }
- inline float2 get_aa_subpixel_r_offset()
- {
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // WARNING: THIS IS EXTREMELY EXPENSIVE.
- return float2(aa_subpixel_r_offset_x_runtime,
- aa_subpixel_r_offset_y_runtime);
- #else
- return aa_subpixel_r_offset_static;
- #endif
- #else
- return aa_subpixel_r_offset_static;
- #endif
- }
- // Provide accessors settings which still need "cooking:"
- inline float get_mask_amplify()
- {
- static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
- static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
- static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
- return mask_type < 0.5 ? mask_grille_amplify :
- mask_type < 1.5 ? mask_slot_amplify :
- mask_shadow_amplify;
- }
- inline float get_mask_sample_mode()
- {
- #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_desired;
- #else
- return clamp(mask_sample_mode_desired, 1.0, 2.0);
- #endif
- #else
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_static;
- #else
- return clamp(mask_sample_mode_static, 1.0, 2.0);
- #endif
- #endif
- }
- #endif // BIND_SHADER_PARAMS_H
- //////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
- #ifndef RUNTIME_GEOMETRY_TILT
- // Create a local-to-global rotation matrix for the CRT's coordinate frame
- // and its global-to-local inverse. See the vertex shader for details.
- // It's faster to compute these statically if possible.
- static const float2 sin_tilt = sin(geom_tilt_angle_static);
- static const float2 cos_tilt = cos(geom_tilt_angle_static);
- static const float3x3 geom_local_to_global_static = float3x3(
- cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x,
- 0.0, cos_tilt.y, -sin_tilt.y,
- -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x);
- static const float3x3 geom_global_to_local_static = float3x3(
- cos_tilt.x, 0.0, -sin_tilt.x,
- sin_tilt.y*sin_tilt.x, cos_tilt.y, sin_tilt.y*cos_tilt.x,
- cos_tilt.y*sin_tilt.x, -sin_tilt.y, cos_tilt.y*cos_tilt.x);
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "tex2Dantialias.h"
- ///////////////////////// BEGIN TEX2DANTIALIAS /////////////////////////
- #ifndef TEX2DANTIALIAS_H
- #define TEX2DANTIALIAS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides antialiased and subpixel-aware tex2D lookups.
- // Requires: All functions share these requirements:
- // 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe-
- // space offsets to texture uv offsets. You can get this with:
- // const float2 duv_dx = ddx(tex_uv);
- // const float2 duv_dy = ddy(tex_uv);
- // const float2x2 pixel_to_tex_uv = float2x2(
- // duv_dx.x, duv_dy.x,
- // duv_dx.y, duv_dy.y);
- // This is left to the user in case the current Cg profile
- // doesn't support ddx()/ddy(). Ideally, the user could find
- // calculate a distorted tangent-space mapping analytically.
- // If not, a simple flat mapping can be obtained with:
- // const float2 xy_to_uv_scale = output_size *
- // video_size/texture_size;
- // const float2x2 pixel_to_tex_uv = float2x2(
- // xy_to_uv_scale.x, 0.0,
- // 0.0, xy_to_uv_scale.y);
- // Optional: To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and:
- // 1.) Set an antialiasing level:
- // static const float aa_level = {0 (none),
- // 1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24}
- // 2.) Set a filter type:
- // static const float aa_filter = {
- // 0 (Box, Separable), 1 (Box, Cylindrical),
- // 2 (Tent, Separable), 3 (Tent, Cylindrical)
- // 4 (Gaussian, Separable), 5 (Gaussian, Cylindrical)
- // 6 (Cubic, Separable), 7 (Cubic, Cylindrical)
- // 8 (Lanczos Sinc, Separable),
- // 9 (Lanczos Jinc, Cylindrical)}
- // If the input is unknown, a separable box filter is used.
- // Note: Lanczos Jinc is terrible for sparse sampling, and
- // using aa_axis_importance (see below) defeats the purpose.
- // 3.) Mirror the sample pattern on odd frames?
- // static const bool aa_temporal = {true, false]
- // This helps rotational invariance but can look "fluttery."
- // The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override
- // (all of) the following default parameters with static or uniform
- // constants (or an accessor function for subpixel offsets):
- // 1.) Cubic parameters:
- // static const float aa_cubic_c = 0.5;
- // See http://www.imagemagick.org/Usage/filter/#mitchell
- // 2.) Gaussian parameters:
- // static const float aa_gauss_sigma =
- // 0.5/aa_pixel_diameter;
- // 3.) Set subpixel offsets. This requires an accessor function
- // for compatibility with scalar runtime shader Return
- // a float2 pixel offset in [-0.5, 0.5] for the red subpixel:
- // float2 get_aa_subpixel_r_offset()
- // The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to
- // override (all of) the following default static values. However,
- // the file's structure requires them to be declared static const:
- // 1.) static const float aa_lanczos_lobes = 3.0;
- // 2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter;
- // Note the default tent/Gaussian support radii may appear
- // arbitrary, but extensive testing found them nearly optimal
- // for tough cases like strong distortion at low AA levels.
- // (The Gaussian default is only best for practical gauss_sigma
- // values; much larger gauss_sigmas ironically prefer slightly
- // smaller support given sparse sampling, and vice versa.)
- // 3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter;
- // 4.) static const float2 aa_xy_axis_importance:
- // The sparse N-queens sampling grid interacts poorly with
- // negative-lobed 2D filters. However, if aliasing is much
- // stronger in one direction (e.g. horizontally with a phosphor
- // mask), it can be useful to downplay sample offsets along the
- // other axis. The support radius in each direction scales with
- // aa_xy_axis_importance down to a minimum of 0.5 (box support),
- // after which point only the offsets used for calculating
- // weights continue to scale downward. This works as follows:
- // If aa_xy_axis_importance = float2(1.0, 1.0/support_radius),
- // the vertical support radius will drop to 1.0, and we'll just
- // filter vertical offsets with the first filter lobe, while
- // horizontal offsets go through the full multi-lobe filter.
- // If aa_xy_axis_importance = float2(1.0, 0.0), the vertical
- // support radius will drop to box support, and the vertical
- // offsets will be ignored entirely (essentially giving us a
- // box filter vertically). The former is potentially smoother
- // (but less predictable) and the default behavior of Lanczos
- // jinc, whereas the latter is sharper and the default behavior
- // of cubics and Lanczos sinc.
- // 5.) static const float aa_pixel_diameter: You can expand the
- // pixel diameter to e.g. sqrt(2.0), which may be a better
- // support range for cylindrical filters (they don't
- // currently discard out-of-circle samples though).
- // Finally, there are two miscellaneous options:
- // 1.) If you want to antialias a manually tiled texture, you can
- // #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to
- // fix incompatibilities with anisotropic filtering. This is
- // slower, and the Cg profile must support tex2Dlod().
- // 2.) If aa_cubic_c is a runtime uniform, you can #define
- // RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per
- // fragment instead of at the usage site (which is used by
- // default, because it enables static evaluation).
- // Description:
- // Each antialiased lookup follows these steps:
- // 1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5]
- // pixels, spanning the diameter of a rectangular box filter.
- // 2.) Scale these offsets by the support diameter of the user's chosen filter.
- // 3.) Using these pixel offsets from the pixel center, compute the offsets to
- // predefined subpixel locations.
- // 4.) Compute filter weights based on subpixel offsets.
- // Much of that can often be done at compile-time. At runtime:
- // 1.) Project pixel-space offsets into uv-space with a matrix multiplication
- // to get the uv offsets for each sample. Rectangular pixels have a
- // diameter of 1.0. Circular pixels are not currently supported, but they
- // might be better with a diameter of sqrt(2.0) to ensure there are no gaps
- // between them.
- // 2.) Load, weight, and sum samples.
- // We use a sparse bilinear sampling grid, so there are two major implications:
- // 1.) We can directly project the pixel-space support box into uv-space even
- // if we're upsizing. This wouldn't be the case for nearest neighbor,
- // where we'd have to expand the uv-space diameter to at least the support
- // size to ensure sufficient filter support. In our case, this allows us
- // to treat upsizing the same as downsizing and use static weighting. :)
- // 2.) For decent results, negative-lobed filters must be computed based on
- // separable weights, not radial distances, because the sparse sampling
- // makes no guarantees about radial distributions. Even then, it's much
- // better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g.
- // Lanczos2 horizontally and a box filter vertically. This is mainly due
- // to the sparse N-queens sampling and a statistically enormous positive or
- // negative covariance between horizontal and vertical weights.
- //
- // Design Decision Comments:
- // "aa_temporal" mirrors the sample pattern on odd frames along the axis that
- // keeps subpixel weights constant. This helps with rotational invariance, but
- // it can cause distracting fluctuations, and horizontal and vertical edges
- // will look the same. Using a different pattern on a shifted grid would
- // exploit temporal AA better, but it would require a dynamic branch or a lot
- // of conditional moves, so it's prohibitively slow for the minor benefit.
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- #ifndef ANTIALIAS_OVERRIDE_BASICS
- // The following settings must be static constants:
- static const float aa_level = 12.0;
- static const float aa_filter = 0.0;
- static const bool aa_temporal = false;
- #endif
- #ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS
- // Users may override these parameters, but the file structure requires
- // them to be static constants; see the descriptions above.
- static const float aa_pixel_diameter = 1.0;
- static const float aa_lanczos_lobes = 3.0;
- static const float aa_gauss_support = 1.0 / aa_pixel_diameter;
- static const float aa_tent_support = 1.0 / aa_pixel_diameter;
-
- // If we're using a negative-lobed filter, default to using it horizontally
- // only, and use only the first lobe vertically or a box filter, over a
- // correspondingly smaller range. This compensates for the sparse sampling
- // grid's typically large positive/negative x/y covariance.
- static const float2 aa_xy_axis_importance =
- aa_filter < 5.5 ? float2(1.0) : // Box, tent, Gaussian
- aa_filter < 8.5 ? float2(1.0, 0.0) : // Cubic and Lanczos sinc
- aa_filter < 9.5 ? float2(1.0, 1.0/aa_lanczos_lobes) : // Lanczos jinc
- float2(1.0); // Default to box
- #endif
- #ifndef ANTIALIAS_OVERRIDE_PARAMETERS
- // Users may override these values with their own uniform or static consts.
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c = 0.5;
- static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter;
- // Users may override the subpixel offset accessor function with their own.
- // A function is used for compatibility with scalar runtime shader
- inline float2 get_aa_subpixel_r_offset()
- {
- return float2(0.0, 0.0);
- }
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- //#include "../../../../include/gamma-management.h"
- ////////////////////////////////// CONSTANTS /////////////////////////////////
- static const float aa_box_support = 0.5;
- static const float aa_cubic_support = 2.0;
- //////////////////////////// GLOBAL NON-CONSTANTS ////////////////////////////
- // We'll want to define these only once per fragment at most.
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- float aa_cubic_b;
- float cubic_branch1_x3_coeff;
- float cubic_branch1_x2_coeff;
- float cubic_branch1_x0_coeff;
- float cubic_branch2_x3_coeff;
- float cubic_branch2_x2_coeff;
- float cubic_branch2_x1_coeff;
- float cubic_branch2_x0_coeff;
- #endif
- /////////////////////////////////// HELPERS //////////////////////////////////
- void assign_aa_cubic_constants()
- {
- // Compute cubic coefficients on demand at runtime, and save them to global
- // uniforms. The B parameter is computed from C, because "Keys cubics"
- // with B = 1 - 2C are considered the highest quality.
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- if(aa_filter > 5.5 && aa_filter < 7.5)
- {
- aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
- cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
- cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
- cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
- cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
- cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
- cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
- cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
- }
- #endif
- }
- inline float4 get_subpixel_support_diam_and_final_axis_importance()
- {
- // Statically select the base support radius:
- static const float base_support_radius =
- aa_filter < 1.5 ? aa_box_support :
- aa_filter < 3.5 ? aa_tent_support :
- aa_filter < 5.5 ? aa_gauss_support :
- aa_filter < 7.5 ? aa_cubic_support :
- aa_filter < 9.5 ? aa_lanczos_lobes :
- aa_box_support; // Default to box
- // Expand the filter support for subpixel filtering.
- const float2 subpixel_support_radius_raw =
- float2(base_support_radius) + abs(get_aa_subpixel_r_offset());
- if(aa_filter < 1.5)
- {
- // Ignore aa_xy_axis_importance for box filtering.
- const float2 subpixel_support_diam =
- 2.0 * subpixel_support_radius_raw;
- const float2 final_axis_importance = float2(1.0);
- return float4(subpixel_support_diam, final_axis_importance);
- }
- else
- {
- // Scale the support window by aa_xy_axis_importance, but don't narrow
- // it further than box support. This allows decent vertical AA without
- // messing up horizontal weights or using something silly like Lanczos4
- // horizontally with a huge vertical average over an 8-pixel radius.
- const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support),
- subpixel_support_radius_raw * aa_xy_axis_importance);
- // Adjust aa_xy_axis_importance to compensate for what's already done:
- const float2 final_axis_importance = aa_xy_axis_importance *
- subpixel_support_radius_raw/subpixel_support_radius;
- const float2 subpixel_support_diam = 2.0 * subpixel_support_radius;
- return float4(subpixel_support_diam, final_axis_importance);
- }
- }
- /////////////////////////// FILTER WEIGHT FUNCTIONS //////////////////////////
- inline float eval_box_filter(const float dist)
- {
- return float(abs(dist) <= aa_box_support);
- }
- inline float eval_separable_box_filter(const float2 offset)
- {
- return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support))));
- }
- inline float eval_tent_filter(const float dist)
- {
- return clamp((aa_tent_support - dist)/
- aa_tent_support, 0.0, 1.0);
- }
- inline float eval_gaussian_filter(const float dist)
- {
- return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma));
- }
- inline float eval_cubic_filter(const float dist)
- {
- // Compute coefficients like assign_aa_cubic_constants(), but statically.
- #ifndef RUNTIME_ANTIALIAS_WEIGHTS
- // When runtime weights are used, these values are instead written to
- // global uniforms at the beginning of each tex2Daa* call.
- const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
- const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
- const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
- const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
- const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
- const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
- const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
- const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
- #endif
- const float abs_dist = abs(dist);
- // Compute the cubic based on the Horner's method formula in:
- // http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
- return (abs_dist < 1.0 ?
- (cubic_branch1_x3_coeff*abs_dist +
- cubic_branch1_x2_coeff)*abs_dist*abs_dist +
- cubic_branch1_x0_coeff :
- abs_dist < 2.0 ?
- ((cubic_branch2_x3_coeff*abs_dist +
- cubic_branch2_x2_coeff)*abs_dist +
- cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff :
- 0.0)/6.0;
- }
- inline float eval_separable_cubic_filter(const float2 offset)
- {
- // This is faster than using a specific float2 version:
- return eval_cubic_filter(offset.x) *
- eval_cubic_filter(offset.y);
- }
- inline float2 eval_sinc_filter(const float2 offset)
- {
- // It's faster to let the caller handle the zero case, or at least it
- // was when I used macros and the shader preset took a full minute to load.
- const float2 pi_offset = pi * offset;
- return sin(pi_offset)/pi_offset;
- }
- inline float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe)
- {
- // Note: For sparse sampling, you really need to pick an axis to use
- // Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)).
- const float2 offset = FIX_ZERO(offset_unsafe);
- const float2 xy_weights = eval_sinc_filter(offset) *
- eval_sinc_filter(offset/aa_lanczos_lobes);
- return xy_weights.x * xy_weights.y;
- }
- inline float eval_jinc_filter_unorm(const float x)
- {
- // This is a Jinc approximation for x in [0, 45). We'll use x in range
- // [0, 4*pi) or so. There are faster/closer approximations based on
- // piecewise cubics from [0, 45) and asymptotic approximations beyond that,
- // but this has a maximum absolute error < 1/512, and it's simpler/faster
- // for shaders...not that it's all that useful for sparse sampling anyway.
- const float point3845_x = 0.38448566093564*x;
- const float exp_term = exp(-(point3845_x*point3845_x));
- const float point8154_plus_x = 0.815362332840791 + x;
- const float cos_term = cos(point8154_plus_x);
- return (
- 0.0264727330997042*min(x, 6.83134964622778) +
- 0.680823557250528*exp_term +
- -0.0597255978950933*min(7.41043194481873, x)*cos_term /
- (point8154_plus_x + 0.0646074538634482*(x*x) +
- cos(x)*max(exp_term, cos(x) + cos_term)) -
- 0.180837503591406);
- }
- inline float eval_jinc_filter(const float dist)
- {
- return eval_jinc_filter_unorm(pi * dist);
- }
- inline float eval_lanczos_jinc_filter(const float dist)
- {
- return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes);
- }
- inline float3 eval_unorm_rgb_weights(const float2 offset,
- const float2 final_axis_importance)
- {
- // Requires: 1.) final_axis_impportance must be computed according to
- // get_subpixel_support_diam_and_final_axis_importance().
- // 2.) aa_filter must be a global constant.
- // 3.) offset must be an xy pixel offset in the range:
- // ([-subpixel_support_diameter.x/2,
- // subpixel_support_diameter.x/2],
- // [-subpixel_support_diameter.y/2,
- // subpixel_support_diameter.y/2])
- // Returns: Sample weights at R/G/B destination subpixels for the
- // given xy pixel offset.
- const float2 offset_g = offset * final_axis_importance;
- const float2 aa_r_offset = get_aa_subpixel_r_offset();
- const float2 offset_r = offset_g - aa_r_offset * final_axis_importance;
- const float2 offset_b = offset_g + aa_r_offset * final_axis_importance;
- // Statically select a filter:
- if(aa_filter < 0.5)
- {
- return float3(eval_separable_box_filter(offset_r),
- eval_separable_box_filter(offset_g),
- eval_separable_box_filter(offset_b));
- }
- else if(aa_filter < 1.5)
- {
- return float3(eval_box_filter(length(offset_r)),
- eval_box_filter(length(offset_g)),
- eval_box_filter(length(offset_b)));
- }
- else if(aa_filter < 2.5)
- {
- return float3(
- eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y),
- eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y),
- eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y));
- }
- else if(aa_filter < 3.5)
- {
- return float3(eval_tent_filter(length(offset_r)),
- eval_tent_filter(length(offset_g)),
- eval_tent_filter(length(offset_b)));
- }
- else if(aa_filter < 4.5)
- {
- return float3(
- eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y),
- eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y),
- eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y));
- }
- else if(aa_filter < 5.5)
- {
- return float3(eval_gaussian_filter(length(offset_r)),
- eval_gaussian_filter(length(offset_g)),
- eval_gaussian_filter(length(offset_b)));
- }
- else if(aa_filter < 6.5)
- {
- return float3(
- eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y),
- eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y),
- eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y));
- }
- else if(aa_filter < 7.5)
- {
- return float3(eval_cubic_filter(length(offset_r)),
- eval_cubic_filter(length(offset_g)),
- eval_cubic_filter(length(offset_b)));
- }
- else if(aa_filter < 8.5)
- {
- return float3(eval_separable_lanczos_sinc_filter(offset_r),
- eval_separable_lanczos_sinc_filter(offset_g),
- eval_separable_lanczos_sinc_filter(offset_b));
- }
- else if(aa_filter < 9.5)
- {
- return float3(eval_lanczos_jinc_filter(length(offset_r)),
- eval_lanczos_jinc_filter(length(offset_g)),
- eval_lanczos_jinc_filter(length(offset_b)));
- }
- else
- {
- // Default to a box, because Lanczos Jinc is so bad. ;)
- return float3(eval_separable_box_filter(offset_r),
- eval_separable_box_filter(offset_g),
- eval_separable_box_filter(offset_b));
- }
- }
- ////////////////////////////// HELPER FUNCTIONS //////////////////////////////
- inline float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s)
- {
- // If we're manually tiling a texture, anisotropic filtering can get
- // confused. This is one workaround:
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- // TODO: Use tex2Dlod_linearize with a calculated mip level.
- return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0));
- #else
- return tex2D_linearize(samp, s);
- #endif
- }
- inline float2 get_frame_sign(const float frame)
- {
- if(aa_temporal)
- {
- // Mirror the sampling pattern for odd frames in a direction that
- // lets us keep the same subpixel sample weights:
- const float frame_odd = float(fmod(frame, 2.0) > 0.5);
- const float2 aa_r_offset = get_aa_subpixel_r_offset();
- const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0)));
- return mirror;
- }
- else
- {
- return float2(1.0, 1.0);
- }
- }
- ///////////////////////// ANTIALIASED TEXTURE LOOKUPS ////////////////////////
- float3 tex2Daa_subpixel_weights_only(const sampler2D tex,
- const float2 tex_uv, const float2x2 pixel_to_tex_uv)
- {
- // This function is unlike the others: Just perform a single independent
- // lookup for each subpixel. It may be very aliased.
- const float2 aa_r_offset = get_aa_subpixel_r_offset();
- const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset);
- const float color_g = tex2D_linearize(tex, tex_uv).g;
- const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset).r;
- const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset).b;
- return float3(color_r, color_g, color_b);
- }
- // The tex2Daa* functions compile very slowly due to all the macros and
- // compile-time math, so only include the ones we'll actually use!
- float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use an RGMS4 pattern (4-queens):
- // . . Q . : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4
- // Q . . . : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4
- // . . . Q : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4
- // . Q . . : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4
- // Static screenspace sample offsets (compute some implicitly):
- static const float grid_size = 4.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0,1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5,0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = w1.bgr;
- const float3 w3 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0,1.0,1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (w0 * sample0 + w1 * sample1 +
- w2 * sample2 + w3 * sample3);
- }
- float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 5-queens pattern:
- // . Q . . . : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5
- // . . . . Q : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5
- // . . Q . . : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5
- // Q . . . . : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5
- // . . . Q . : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5
- // Static screenspace sample offsets (compute some implicitly):
- static const float grid_size = 5.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = w1.bgr;
- const float3 w4 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 w_sum_inv = float3(1.0)/(w0 + w1 + w2 + w3 + w4);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (w0 * sample0 + w1 * sample1 +
- w2 * sample2 + w3 * sample3 + w4 * sample4);
- }
- float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 6-queens pattern with a stronger horizontal
- // than vertical slant:
- // . . . . Q . : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6
- // . . Q . . . : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6
- // Q . . . . . : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6
- // . . . . . Q : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6
- // . . . Q . . : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6
- // . Q . . . . : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6
- // Static screenspace sample offsets (compute some implicitly):
- static const float grid_size = 6.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = w2.bgr;
- const float3 w4 = w1.bgr;
- const float3 w5 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 +
- w3 * sample3 + w4 * sample4 + w5 * sample5);
- }
- float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 7-queens pattern with a queen in the center:
- // . Q . . . . . : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7
- // . . . . Q . . : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7
- // Q . . . . . . : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7
- // . . . Q . . . : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7
- // . . . . . . Q : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7
- // . . Q . . . . : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7
- // . . . . . Q . : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7
- static const float grid_size = 7.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = w2.bgr;
- const float3 w5 = w1.bgr;
- const float3 w6 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2;
- const float3 w_sum = half_sum + half_sum.bgr + w3;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6);
- }
- float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 8-queens pattern.
- // . . Q . . . . . : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8
- // . . . . Q . . . : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8
- // . Q . . . . . . : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8
- // . . . . . . . Q : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8
- // Q . . . . . . . : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8
- // . . . . . . Q . : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8
- // . . . Q . . . . : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8
- // . . . . . Q . . : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8
- static const float grid_size = 8.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = w3.bgr;
- const float3 w5 = w2.bgr;
- const float3 w6 = w1.bgr;
- const float3 w7 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, and mirror on odd frames if directed:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7);
- }
- float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 12-superqueens pattern where no 3 points are
- // exactly collinear.
- // . . . Q . . . . . . . . : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12
- // . . . . . . . . . Q . . : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12
- // . . . . . . Q . . . . . : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12
- // . Q . . . . . . . . . . : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12
- // . . . . . . . . . . . Q : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12
- // . . . . Q . . . . . . . : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12
- // . . . . . . . Q . . . . : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12
- // Q . . . . . . . . . . . : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12
- // . . . . . . . . . . Q . : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12
- // . . . . . Q . . . . . . : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12
- // . . Q . . . . . . . . . : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12
- // . . . . . . . . Q . . . : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12
- static const float grid_size = 12.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
- const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step;
- const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
- const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
- const float3 w6 = w5.bgr;
- const float3 w7 = w4.bgr;
- const float3 w8 = w3.bgr;
- const float3 w9 = w2.bgr;
- const float3 w10 = w1.bgr;
- const float3 w11 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/w_sum;
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
- const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
- const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
- const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
- const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11);
- }
- float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 16-superqueens pattern where no 3 points are
- // exactly collinear.
- // . . Q . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16
- // . . . . . . . . . Q . . . . . . : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16
- // . . . . . . . . . . . . Q . . . : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16
- // . . . . Q . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16
- // . . . . . . . . Q . . . . . . . : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16
- // . . . . . . . . . . . . . . Q . : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16
- // Q . . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16
- // . . . . . . . . . . Q . . . . . : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16
- // . . . . . Q . . . . . . . . . . : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16
- // . . . . . . . . . . . . . . . Q : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16
- // . Q . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16
- // . . . . . . . Q . . . . . . . . : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16
- // . . . . . . . . . . . Q . . . . : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16
- // . . . Q . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16
- // . . . . . . Q . . . . . . . . . : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16
- // . . . . . . . . . . . . . Q . . : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16
- static const float grid_size = 16.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step;
- const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step;
- const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step;
- const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step;
- const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
- const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
- const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
- const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
- const float3 w8 = w7.bgr;
- const float3 w9 = w6.bgr;
- const float3 w10 = w5.bgr;
- const float3 w11 = w4.bgr;
- const float3 w12 = w3.bgr;
- const float3 w13 = w2.bgr;
- const float3 w14 = w1.bgr;
- const float3 w15 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
- const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
- const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
- const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
- const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
- const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
- const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
- const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
- const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
- const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
- const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
- w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
- }
- float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 20-superqueens pattern where no 3 points are
- // exactly collinear and superqueens have a squared attack radius of 13.
- // . . . . . . . Q . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20
- // . . . . . . . . . . . . . . . . Q . . . : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20
- // . . . . . . . . . . . Q . . . . . . . . : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20
- // . Q . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20
- // . . . . . Q . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20
- // . . . . . . . . . . . . . . . Q . . . . : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20
- // . . . . . . . . . . Q . . . . . . . . . : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20
- // . . . . . . . . . . . . . . . . . . . Q : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20
- // . . Q . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20
- // . . . . . . Q . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20
- // . . . . . . . . . . . . . Q . . . . . . : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20
- // . . . . . . . . . . . . . . . . . Q . . : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20
- // Q . . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20
- // . . . . . . . . . Q . . . . . . . . . . : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20
- // . . . . Q . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20
- // . . . . . . . . . . . . . . Q . . . . . : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20
- // . . . . . . . . . . . . . . . . . . Q . : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20
- // . . . . . . . . Q . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20
- // . . . Q . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20
- // . . . . . . . . . . . . Q . . . . . . . : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20
- static const float grid_size = 20.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
- const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
- const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
- const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step;
- const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step;
- const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step;
- const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
- const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
- const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
- const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
- const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
- const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
- const float3 w10 = w9.bgr;
- const float3 w11 = w8.bgr;
- const float3 w12 = w7.bgr;
- const float3 w13 = w6.bgr;
- const float3 w14 = w5.bgr;
- const float3 w15 = w4.bgr;
- const float3 w16 = w3.bgr;
- const float3 w17 = w2.bgr;
- const float3 w18 = w1.bgr;
- const float3 w19 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
- const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
- const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
- const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
- const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
- const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
- const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
- const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
- const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
- const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
- const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
- const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
- const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
- const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
- const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
- const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
- const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
- w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
- w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19);
- }
- float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Use a diagonally symmetric 24-superqueens pattern where no 3 points are
- // exactly collinear and superqueens have a squared attack radius of 13.
- // . . . . . . Q . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24
- // . . . . . . . . . . . . . . . . Q . . . . . . . : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24
- // . . . . . . . . . . Q . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24
- // . . . . . . . . . . . . . . . . . . . . . Q . . : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24
- // . . . . . Q . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24
- // . . . . . . . . . . . . . . . Q . . . . . . . . : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24
- // . Q . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24
- // . . . . . . . . . . . Q . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24
- // . . . . . . . . . . . . . . . . . . . Q . . . . : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24
- // . . . . . . . . . . . . . . . . . . . . . . . Q : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24
- // . . . Q . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24
- // . . . . . . . . . . . . . . Q . . . . . . . . . : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24
- // . . . . . . . . . Q . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24
- // . . . . . . . . . . . . . . . . . . . . Q . . . : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24
- // Q . . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24
- // . . . . Q . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24
- // . . . . . . . . . . . . Q . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24
- // . . . . . . . . . . . . . . . . . . . . . . Q . : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24
- // . . . . . . . . Q . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24
- // . . . . . . . . . . . . . . . . . . Q . . . . . : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24
- // . . Q . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24
- // . . . . . . . . . . . . . Q . . . . . . . . . . : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24
- // . . . . . . . Q . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24
- // . . . . . . . . . . . . . . . . . Q . . . . . . : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24
- static const float grid_size = 24.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample. Exploit diagonal symmetry:
- const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step;
- const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
- const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
- const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step;
- const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step;
- const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step;
- const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step;
- const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step;
- const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
- const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
- const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
- const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
- const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
- const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
- const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance);
- const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance);
- const float3 w12 = w11.bgr;
- const float3 w13 = w10.bgr;
- const float3 w14 = w9.bgr;
- const float3 w15 = w8.bgr;
- const float3 w16 = w7.bgr;
- const float3 w17 = w6.bgr;
- const float3 w18 = w5.bgr;
- const float3 w19 = w4.bgr;
- const float3 w20 = w3.bgr;
- const float3 w21 = w2.bgr;
- const float3 w22 = w1.bgr;
- const float3 w23 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3 + w4 +
- w5 + w6 + w7 + w8 + w9 + w10 + w11;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, mirror on odd frames if directed, and exploit
- // diagonal symmetry:
- const float2 frame_sign = get_frame_sign(frame);
- const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
- const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
- const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
- const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
- const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
- const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
- const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
- const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
- const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
- const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
- const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign);
- const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign);
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
- const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
- const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
- const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10).rgb;
- const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11).rgb;
- const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11).rgb;
- const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10).rgb;
- const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
- const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
- const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
- const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
- const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
- const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
- const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
- const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
- const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
- const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
- w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
- w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 +
- w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23);
- }
- float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // Sample on a regular 4x4 grid. This is mainly for testing.
- static const float grid_size = 4.0;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
- const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
- // Get the xy offset of each sample:
- const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step;
- const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step;
- const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step;
- const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step;
- const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step;
- const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step;
- const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step;
- const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step;
- // Compute subpixel weights, and exploit diagonal symmetry for speed.
- // (We can't exploit vertical or horizontal symmetry due to uncertain
- // subpixel offsets. We could fix that by rotating xy offsets with the
- // subpixel structure, but...no.)
- const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
- const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
- const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
- const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
- const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
- const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
- const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
- const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
- const float3 w8 = w7.bgr;
- const float3 w9 = w6.bgr;
- const float3 w10 = w5.bgr;
- const float3 w11 = w4.bgr;
- const float3 w12 = w3.bgr;
- const float3 w13 = w2.bgr;
- const float3 w14 = w1.bgr;
- const float3 w15 = w0.bgr;
- // Get the weight sum to normalize the total to 1.0 later:
- const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
- const float3 w_sum = half_sum + half_sum.bgr;
- const float3 w_sum_inv = float3(1.0)/(w_sum);
- // Scale the pixel-space to texture offset matrix by the pixel diameter.
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- // Get uv sample offsets, taking advantage of row alignment:
- const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0));
- const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y));
- const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y);
- const float2 sample0_uv = tex_uv + uv_offset0;
- const float2 sample4_uv = sample0_uv + uv_step_y;
- const float2 sample8_uv = sample0_uv + uv_step_y * 2.0;
- const float2 sample12_uv = sample0_uv + uv_step_y * 3.0;
- // Load samples, linearizing if necessary, etc.:
- const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv).rgb;
- const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x).rgb;
- const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0).rgb;
- const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0).rgb;
- const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv).rgb;
- const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x).rgb;
- const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0).rgb;
- const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0).rgb;
- const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv).rgb;
- const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x).rgb;
- const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0).rgb;
- const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0).rgb;
- const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv).rgb;
- const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x).rgb;
- const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0).rgb;
- const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0).rgb;
- // Sum weighted samples (weight sum must equal 1.0 for each channel):
- return w_sum_inv * (
- w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
- w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
- }
- float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- // This function is for testing only: Use an NxN grid with dynamic weights.
- static const int grid_size = 8;
- assign_aa_cubic_constants();
- const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
- const float2 subpixel_support_diameter = ssd_fai.xy;
- const float2 final_axis_importance = ssd_fai.zw;
- const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0;
- const float2 filter_space_offset_step =
- subpixel_support_diameter/float2(grid_size);
- const float2 sample0_filter_space_offset =
- -grid_radius_in_samples * filter_space_offset_step;
- // Compute xy sample offsets and subpixel weights:
- float3 weights[64]; //originally grid_size * grid_size
- float3 weight_sum = float3(0.0, 0.0, 0.0);
- for(int i = 0; i < grid_size; ++i)
- {
- for(int j = 0; j < grid_size; ++j)
- {
- // Weights based on xy distances:
- const float2 offset = sample0_filter_space_offset +
- float2(j, i) * filter_space_offset_step;
- const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance);
- weights[i*grid_size + j] = weight;
- weight_sum += weight;
- }
- }
- // Get uv offset vectors along x and y directions:
- const float2x2 true_pixel_to_tex_uv =
- float2x2(pixel_to_tex_uv * aa_pixel_diameter);
- const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv,
- float2(filter_space_offset_step.x, 0.0));
- const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv,
- float2(0.0, filter_space_offset_step.y));
- // Get a starting sample location:
- const float2 sample0_uv_offset = -grid_radius_in_samples *
- (uv_offset_step_x + uv_offset_step_y);
- const float2 sample0_uv = tex_uv + sample0_uv_offset;
- // Load, weight, and sum [linearized] samples:
- float3 sum = float3(0.0, 0.0, 0.0);
- const float3 weight_sum_inv = float3(1.0)/weight_sum;
- for(int i = 0; i < grid_size; ++i)
- {
- const float2 row_i_first_sample_uv =
- sample0_uv + i * uv_offset_step_y;
- for(int j = 0; j < grid_size; ++j)
- {
- const float2 sample_uv =
- row_i_first_sample_uv + j * uv_offset_step_x;
- sum += weights[i*grid_size + j] *
- tex2Daa_tiled_linearize(tex, sample_uv).rgb;
- }
- }
- return sum * weight_sum_inv;
- }
- /////////////////////// ANTIALIASING CODEPATH SELECTION //////////////////////
- inline float3 tex2Daa(const sampler2D tex, const float2 tex_uv,
- const float2x2 pixel_to_tex_uv, const float frame)
- {
- #ifdef DEBUG
- return tex2Daa_subpixel_weights_only(
- tex, tex_uv, pixel_to_tex_uv);
- #else
- // Statically switch between antialiasing modes/levels:
- return (aa_level < 0.5) ? tex2D_linearize(tex, tex_uv).rgb :
- (aa_level < 3.5) ? tex2Daa_subpixel_weights_only(
- tex, tex_uv, pixel_to_tex_uv) :
- (aa_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame) :
- (aa_level < 254.5) ? tex2Daa_debug_16x_regular(
- tex, tex_uv, pixel_to_tex_uv, frame) :
- tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame);
- #endif
- }
- #endif // TEX2DANTIALIAS_H
- ///////////////////////// END TEX2DANTIALIAS /////////////////////////
- //#include "geometry-functions.h"
- ///////////////////////// BEGIN GEOMETRY-FUNCTIONS /////////////////////////
- #ifndef GEOMETRY_FUNCTIONS_H
- #define GEOMETRY_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // already included elsewhere
- //#include "../user-settings.h"
- //#include "derived-settings-and-constants.h"
- //#include "bind-shader-h"
- //////////////////////////// MACROS AND CONSTANTS ////////////////////////////
- // Curvature-related constants:
- #define MAX_POINT_CLOUD_SIZE 9
- ///////////////////////////// CURVATURE FUNCTIONS /////////////////////////////
- float2 quadratic_solve(const float a, const float b_over_2, const float c)
- {
- // Requires: 1.) a, b, and c are quadratic formula coefficients
- // 2.) b_over_2 = b/2.0 (simplifies terms to factor 2 out)
- // 3.) b_over_2 must be guaranteed < 0.0 (avoids a branch)
- // Returns: Returns float2(first_solution, discriminant), so the caller
- // can choose how to handle the "no intersection" case. The
- // Kahan or Citardauq formula is used for numerical robustness.
- const float discriminant = b_over_2*b_over_2 - a*c;
- const float solution0 = c/(-b_over_2 + sqrt(discriminant));
- return float2(solution0, discriminant);
- }
- float2 intersect_sphere(const float3 view_vec, const float3 eye_pos_vec)
- {
- // Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
- // local coordinate frame (eye_pos_vec is a position, i.e.
- // a vector from the origin to the eye/camera)
- // 2.) geom_radius is a global containing the sphere's radius
- // Returns: Cast a ray of direction view_vec from eye_pos_vec at a
- // sphere of radius geom_radius, and return the distance to
- // the first intersection in units of length(view_vec).
- // http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
- // Quadratic formula coefficients (b_over_2 is guaranteed negative):
- const float a = dot(view_vec, view_vec);
- const float b_over_2 = dot(view_vec, eye_pos_vec); // * 2.0 factored out
- const float c = dot(eye_pos_vec, eye_pos_vec) - geom_radius*geom_radius;
- return quadratic_solve(a, b_over_2, c);
- }
- float2 intersect_cylinder(const float3 view_vec, const float3 eye_pos_vec)
- {
- // Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
- // local coordinate frame (eye_pos_vec is a position, i.e.
- // a vector from the origin to the eye/camera)
- // 2.) geom_radius is a global containing the cylinder's radius
- // Returns: Cast a ray of direction view_vec from eye_pos_vec at a
- // cylinder of radius geom_radius, and return the distance to
- // the first intersection in units of length(view_vec). The
- // derivation of the coefficients is in Christer Ericson's
- // Real-Time Collision Detection, p. 195-196, and this version
- // uses LaGrange's identity to reduce operations.
- // Arbitrary "cylinder top" reference point for an infinite cylinder:
- const float3 cylinder_top_vec = float3(0.0, geom_radius, 0.0);
- const float3 cylinder_axis_vec = float3(0.0, 1.0, 0.0);//float3(0.0, 2.0*geom_radius, 0.0);
- const float3 top_to_eye_vec = eye_pos_vec - cylinder_top_vec;
- const float3 axis_x_view = cross(cylinder_axis_vec, view_vec);
- const float3 axis_x_top_to_eye = cross(cylinder_axis_vec, top_to_eye_vec);
- // Quadratic formula coefficients (b_over_2 is guaranteed negative):
- const float a = dot(axis_x_view, axis_x_view);
- const float b_over_2 = dot(axis_x_top_to_eye, axis_x_view);
- const float c = dot(axis_x_top_to_eye, axis_x_top_to_eye) -
- geom_radius*geom_radius;//*dot(cylinder_axis_vec, cylinder_axis_vec);
- return quadratic_solve(a, b_over_2, c);
- }
- float2 cylinder_xyz_to_uv(const float3 intersection_pos_local,
- const float2 geom_aspect)
- {
- // Requires: An xyz intersection position on a cylinder.
- // Returns: video_uv coords mapped to range [-0.5, 0.5]
- // Mapping: Define square_uv.x to be the signed arc length in xz-space,
- // and define square_uv.y = -intersection_pos_local.y (+v = -y).
- // Start with a numerically robust arc length calculation.
- const float angle_from_image_center = atan2(intersection_pos_local.x,
- intersection_pos_local.z);
- const float signed_arc_len = angle_from_image_center * geom_radius;
- // Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
- // by the aspect ratio to stretch the mapping appropriately:
- const float2 square_uv = float2(signed_arc_len, -intersection_pos_local.y);
- const float2 video_uv = square_uv / geom_aspect;
- return video_uv;
- }
- float3 cylinder_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
- {
- // Requires: video_uv coords mapped to range [-0.5, 0.5]
- // Returns: An xyz intersection position on a cylinder. This is the
- // inverse of cylinder_xyz_to_uv().
- // Expand video_uv by the aspect ratio to get proportionate x/y lengths,
- // then calculate an xyz position for the cylindrical mapping above.
- const float2 square_uv = video_uv * geom_aspect;
- const float arc_len = square_uv.x;
- const float angle_from_image_center = arc_len / geom_radius;
- const float x_pos = sin(angle_from_image_center) * geom_radius;
- const float z_pos = cos(angle_from_image_center) * geom_radius;
- // Or: z = sqrt(geom_radius**2 - x**2)
- // Or: z = geom_radius/sqrt(1.0 + tan(angle)**2), x = z * tan(angle)
- const float3 intersection_pos_local = float3(x_pos, -square_uv.y, z_pos);
- return intersection_pos_local;
- }
- float2 sphere_xyz_to_uv(const float3 intersection_pos_local,
- const float2 geom_aspect)
- {
- // Requires: An xyz intersection position on a sphere.
- // Returns: video_uv coords mapped to range [-0.5, 0.5]
- // Mapping: First define square_uv.x/square_uv.y ==
- // intersection_pos_local.x/intersection_pos_local.y. Then,
- // length(square_uv) is the arc length from the image center
- // at (0.0, 0.0, geom_radius) along the tangent great circle.
- // Credit for this mapping goes to cgwg: I never managed to
- // understand his code, but he told me his mapping was based on
- // great circle distances when I asked him about it, which
- // informed this very similar (almost identical) mapping.
- // Start with a numerically robust arc length calculation between the ray-
- // sphere intersection point and the image center using a method posted by
- // Roger Stafford on comp.soft-sys.matlab:
- // https://groups.google.com/d/msg/comp.soft-sys.matlab/zNbUui3bjcA/c0HV_bHSx9cJ
- const float3 image_center_pos_local = float3(0.0, 0.0, geom_radius);
- const float cp_len =
- length(cross(intersection_pos_local, image_center_pos_local));
- const float dp = dot(intersection_pos_local, image_center_pos_local);
- const float angle_from_image_center = atan2(cp_len, dp);
- const float arc_len = angle_from_image_center * geom_radius;
- // Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
- // by the aspect ratio to stretch the mapping appropriately:
- const float2 square_uv_unit = normalize(float2(intersection_pos_local.x,
- -intersection_pos_local.y));
- const float2 square_uv = arc_len * square_uv_unit;
- const float2 video_uv = square_uv / geom_aspect;
- return video_uv;
- }
- float3 sphere_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
- {
- // Requires: video_uv coords mapped to range [-0.5, 0.5]
- // Returns: An xyz intersection position on a sphere. This is the
- // inverse of sphere_xyz_to_uv().
- // Expand video_uv by the aspect ratio to get proportionate x/y lengths,
- // then calculate an xyz position for the spherical mapping above.
- const float2 square_uv = video_uv * geom_aspect;
- // Using length or sqrt here butchers the framerate on my 8800GTS if
- // this function is called too many times, and so does taking the max
- // component of square_uv/square_uv_unit (program length threshold?).
- //float arc_len = length(square_uv);
- const float2 square_uv_unit = normalize(square_uv);
- const float arc_len = square_uv.y/square_uv_unit.y;
- const float angle_from_image_center = arc_len / geom_radius;
- const float xy_dist_from_sphere_center =
- sin(angle_from_image_center) * geom_radius;
- //float2 xy_pos = xy_dist_from_sphere_center * (square_uv/FIX_ZERO(arc_len));
- const float2 xy_pos = xy_dist_from_sphere_center * square_uv_unit;
- const float z_pos = cos(angle_from_image_center) * geom_radius;
- const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos);
- return intersection_pos_local;
- }
- float2 sphere_alt_xyz_to_uv(const float3 intersection_pos_local,
- const float2 geom_aspect)
- {
- // Requires: An xyz intersection position on a cylinder.
- // Returns: video_uv coords mapped to range [-0.5, 0.5]
- // Mapping: Define square_uv.x to be the signed arc length in xz-space,
- // and define square_uv.y == signed arc length in yz-space.
- // See cylinder_xyz_to_uv() for implementation details (very similar).
- const float2 angle_from_image_center = atan2(
- float2(intersection_pos_local.x, -intersection_pos_local.y),
- intersection_pos_local.zz);
- const float2 signed_arc_len = angle_from_image_center * geom_radius;
- const float2 video_uv = signed_arc_len / geom_aspect;
- return video_uv;
- }
- float3 sphere_alt_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
- {
- // Requires: video_uv coords mapped to range [-0.5, 0.5]
- // Returns: An xyz intersection position on a sphere. This is the
- // inverse of sphere_alt_xyz_to_uv().
- // See cylinder_uv_to_xyz() for implementation details (very similar).
- const float2 square_uv = video_uv * geom_aspect;
- const float2 arc_len = square_uv;
- const float2 angle_from_image_center = arc_len / geom_radius;
- const float2 xy_pos = sin(angle_from_image_center) * geom_radius;
- const float z_pos = sqrt(geom_radius*geom_radius - dot(xy_pos, xy_pos));
- return float3(xy_pos.x, -xy_pos.y, z_pos);
- }
- inline float2 intersect(const float3 view_vec_local, const float3 eye_pos_local,
- const float geom_mode)
- {
- return geom_mode < 2.5 ? intersect_sphere(view_vec_local, eye_pos_local) :
- intersect_cylinder(view_vec_local, eye_pos_local);
- }
- inline float2 xyz_to_uv(const float3 intersection_pos_local,
- const float2 geom_aspect, const float geom_mode)
- {
- return geom_mode < 1.5 ?
- sphere_xyz_to_uv(intersection_pos_local, geom_aspect) :
- geom_mode < 2.5 ?
- sphere_alt_xyz_to_uv(intersection_pos_local, geom_aspect) :
- cylinder_xyz_to_uv(intersection_pos_local, geom_aspect);
- }
- inline float3 uv_to_xyz(const float2 uv, const float2 geom_aspect,
- const float geom_mode)
- {
- return geom_mode < 1.5 ? sphere_uv_to_xyz(uv, geom_aspect) :
- geom_mode < 2.5 ? sphere_alt_uv_to_xyz(uv, geom_aspect) :
- cylinder_uv_to_xyz(uv, geom_aspect);
- }
- float2 view_vec_to_uv(const float3 view_vec_local, const float3 eye_pos_local,
- const float2 geom_aspect, const float geom_mode, out float3 intersection_pos)
- {
- // Get the intersection point on the primitive, given an eye position
- // and view vector already in its local coordinate frame:
- const float2 intersect_dist_and_discriminant = intersect(view_vec_local,
- eye_pos_local, geom_mode);
- const float3 intersection_pos_local = eye_pos_local +
- view_vec_local * intersect_dist_and_discriminant.x;
- // Save the intersection position to an output parameter:
- intersection_pos = intersection_pos_local;
- // Transform into uv coords, but give out-of-range coords if the
- // view ray doesn't intersect the primitive in the first place:
- return intersect_dist_and_discriminant.y > 0.005 ?
- xyz_to_uv(intersection_pos_local, geom_aspect, geom_mode) : float2(1.0);
- }
- float3 get_ideal_global_eye_pos_for_points(float3 eye_pos,
- const float2 geom_aspect, const float3 global_coords[MAX_POINT_CLOUD_SIZE],
- const int num_points)
- {
- // Requires: Parameters:
- // 1.) Starting eye_pos is a global 3D position at which the
- // camera contains all points in global_coords[] in its FOV
- // 2.) geom_aspect = get_aspect_vector(
- // output_size.x / output_size.y);
- // 3.) global_coords is a point cloud containing global xyz
- // coords of extreme points on the simulated CRT screen.
- // Globals:
- // 1.) geom_view_dist must be > 0.0. It controls the "near
- // plane" used to interpret flat_video_uv as a view
- // vector, which controls the field of view (FOV).
- // Eyespace coordinate frame: +x = right, +y = up, +z = back
- // Returns: Return an eye position at which the point cloud spans as
- // much of the screen as possible (given the FOV controlled by
- // geom_view_dist) without being cropped or sheared.
- // Algorithm:
- // 1.) Move the eye laterally to a point which attempts to maximize the
- // the amount we can move forward without clipping the CRT screen.
- // 2.) Move forward by as much as possible without clipping the CRT.
- // Get the allowed movement range by solving for the eye_pos offsets
- // that result in each point being projected to a screen edge/corner in
- // pseudo-normalized device coords (where xy ranges from [-0.5, 0.5]
- // and z = eyespace z):
- // pndc_coord = float3(float2(eyespace_xyz.x, -eyespace_xyz.y)*
- // geom_view_dist / (geom_aspect * -eyespace_xyz.z), eyespace_xyz.z);
- // Notes:
- // The field of view is controlled by geom_view_dist's magnitude relative to
- // the view vector's x and y components:
- // view_vec.xy ranges from [-0.5, 0.5] * geom_aspect
- // view_vec.z = -geom_view_dist
- // But for the purposes of perspective divide, it should be considered:
- // view_vec.xy ranges from [-0.5, 0.5] * geom_aspect / geom_view_dist
- // view_vec.z = -1.0
- static const int max_centering_iters = 1; // Keep for easy testing.
- for(int iter = 0; iter < max_centering_iters; iter++)
- {
- // 0.) Get the eyespace coordinates of our point cloud:
- float3 eyespace_coords[MAX_POINT_CLOUD_SIZE];
- for(int i = 0; i < num_points; i++)
- {
- eyespace_coords[i] = global_coords[i] - eye_pos;
- }
- // 1a.)For each point, find out how far we can move eye_pos in each
- // lateral direction without the point clipping the frustum.
- // Eyespace +y = up, screenspace +y = down, so flip y after
- // applying the eyespace offset (on the way to "clip space").
- // Solve for two offsets per point based on:
- // (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
- // geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(-0.5)
- // (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
- // geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(0.5)
- // offset_ul and offset_dr represent the farthest we can move the
- // eye_pos up-left and down-right. Save the min of all offset_dr's
- // and the max of all offset_ul's (since it's negative).
- float abs_radius = abs(geom_radius); // In case anyone gets ideas. ;)
- float2 offset_dr_min = float2(10.0 * abs_radius, 10.0 * abs_radius);
- float2 offset_ul_max = float2(-10.0 * abs_radius, -10.0 * abs_radius);
- for(int i = 0; i < num_points; i++)
- {
- static const float2 flipy = float2(1.0, -1.0);
- float3 eyespace_xyz = eyespace_coords[i];
- float2 offset_dr = eyespace_xyz.xy - float2(-0.5) *
- (geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
- float2 offset_ul = eyespace_xyz.xy - float2(0.5) *
- (geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
- offset_dr_min = min(offset_dr_min, offset_dr);
- offset_ul_max = max(offset_ul_max, offset_ul);
- }
- // 1b.)Update eye_pos: Adding the average of offset_ul_max and
- // offset_dr_min gives it equal leeway on the top vs. bottom
- // and left vs. right. Recalculate eyespace_coords accordingly.
- float2 center_offset = 0.5 * (offset_ul_max + offset_dr_min);
- eye_pos.xy += center_offset;
- for(int i = 0; i < num_points; i++)
- {
- eyespace_coords[i] = global_coords[i] - eye_pos;
- }
- // 2a.)For each point, find out how far we can move eye_pos forward
- // without the point clipping the frustum. Flip the y
- // direction in advance (matters for a later step, not here).
- // Solve for four offsets per point based on:
- // eyespace_xyz_flipy.x * geom_view_dist /
- // (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) =-0.5
- // eyespace_xyz_flipy.y * geom_view_dist /
- // (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) =-0.5
- // eyespace_xyz_flipy.x * geom_view_dist /
- // (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) = 0.5
- // eyespace_xyz_flipy.y * geom_view_dist /
- // (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) = 0.5
- // We'll vectorize the actual computation. Take the maximum of
- // these four for a single offset, and continue taking the max
- // for every point (use max because offset.z is negative).
- float offset_z_max = -10.0 * geom_radius * geom_view_dist;
- for(int i = 0; i < num_points; i++)
- {
- float3 eyespace_xyz_flipy = eyespace_coords[i] *
- float3(1.0, -1.0, 1.0);
- float4 offset_zzzz = eyespace_xyz_flipy.zzzz +
- (eyespace_xyz_flipy.xyxy * geom_view_dist) /
- (float4(-0.5, -0.5, 0.5, 0.5) * float4(geom_aspect, geom_aspect));
- // Ignore offsets that push positive x/y values to opposite
- // boundaries, and vice versa, and don't let the camera move
- // past a point in the dead center of the screen:
- offset_z_max = (eyespace_xyz_flipy.x < 0.0) ?
- max(offset_z_max, offset_zzzz.x) : offset_z_max;
- offset_z_max = (eyespace_xyz_flipy.y < 0.0) ?
- max(offset_z_max, offset_zzzz.y) : offset_z_max;
- offset_z_max = (eyespace_xyz_flipy.x > 0.0) ?
- max(offset_z_max, offset_zzzz.z) : offset_z_max;
- offset_z_max = (eyespace_xyz_flipy.y > 0.0) ?
- max(offset_z_max, offset_zzzz.w) : offset_z_max;
- offset_z_max = max(offset_z_max, eyespace_xyz_flipy.z);
- }
- // 2b.)Update eye_pos: Add the maximum (smallest negative) z offset.
- eye_pos.z += offset_z_max;
- }
- return eye_pos;
- }
- float3 get_ideal_global_eye_pos(const float3x3 local_to_global,
- const float2 geom_aspect, const float geom_mode)
- {
- // Start with an initial eye_pos that includes the entire primitive
- // (sphere or cylinder) in its field-of-view:
- const float3 high_view = float3(0.0, geom_aspect.y, -geom_view_dist);
- const float3 low_view = high_view * float3(1.0, -1.0, 1.0);
- const float len_sq = dot(high_view, high_view);
- const float fov = abs(acos(dot(high_view, low_view)/len_sq));
- // Trigonometry/similar triangles say distance = geom_radius/sin(fov/2):
- const float eye_z_spherical = geom_radius/sin(fov*0.5);
- const float3 eye_pos = geom_mode < 2.5 ?
- float3(0.0, 0.0, eye_z_spherical) :
- float3(0.0, 0.0, max(geom_view_dist, eye_z_spherical));
- // Get global xyz coords of extreme sample points on the simulated CRT
- // screen. Start with the center, edge centers, and corners of the
- // video image. We can't ignore backfacing points: They're occluded
- // by closer points on the primitive, but they may NOT be occluded by
- // the convex hull of the remaining samples (i.e. the remaining convex
- // hull might not envelope points that do occlude a back-facing point.)
- static const int num_points = MAX_POINT_CLOUD_SIZE;
- float3 global_coords[MAX_POINT_CLOUD_SIZE];
- global_coords[0] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.0), geom_aspect, geom_mode));
- global_coords[1] = mul(local_to_global, uv_to_xyz(float2(0.0, -0.5), geom_aspect, geom_mode));
- global_coords[2] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.5), geom_aspect, geom_mode));
- global_coords[3] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.0), geom_aspect, geom_mode));
- global_coords[4] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.0), geom_aspect, geom_mode));
- global_coords[5] = mul(local_to_global, uv_to_xyz(float2(-0.5, -0.5), geom_aspect, geom_mode));
- global_coords[6] = mul(local_to_global, uv_to_xyz(float2(0.5, -0.5), geom_aspect, geom_mode));
- global_coords[7] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.5), geom_aspect, geom_mode));
- global_coords[8] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.5), geom_aspect, geom_mode));
- // Adding more inner image points could help in extreme cases, but too many
- // points will kille the framerate. For safety, default to the initial
- // eye_pos if any z coords are negative:
- float num_negative_z_coords = 0.0;
- for(int i = 0; i < num_points; i++)
- {
- num_negative_z_coords += float(global_coords[0].z < 0.0);
- }
- // Outsource the optimized eye_pos calculation:
- return num_negative_z_coords > 0.5 ? eye_pos :
- get_ideal_global_eye_pos_for_points(eye_pos, geom_aspect,
- global_coords, num_points);
- }
- float3x3 get_pixel_to_object_matrix(const float3x3 global_to_local,
- const float3 eye_pos_local, const float3 view_vec_global,
- const float3 intersection_pos_local, const float3 normal,
- const float2 output_size_inv)
- {
- // Requires: See get_curved_video_uv_coords_and_tangent_matrix for
- // descriptions of each parameter.
- // Returns: Return a transformation matrix from 2D pixel-space vectors
- // (where (+1.0, +1.0) is a vector to one pixel down-right,
- // i.e. same directionality as uv texels) to 3D object-space
- // vectors in the CRT's local coordinate frame (right-handed)
- // ***which are tangent to the CRT surface at the intersection
- // position.*** (Basically, we want to convert pixel-space
- // vectors to 3D vectors along the CRT's surface, for later
- // conversion to uv vectors.)
- // Shorthand inputs:
- const float3 pos = intersection_pos_local;
- const float3 eye_pos = eye_pos_local;
- // Get a piecewise-linear matrix transforming from "pixelspace" offset
- // vectors (1.0 = one pixel) to object space vectors in the tangent
- // plane (faster than finding 3 view-object intersections).
- // 1.) Get the local view vecs for the pixels to the right and down:
- const float3 view_vec_right_global = view_vec_global +
- float3(output_size_inv.x, 0.0, 0.0);
- const float3 view_vec_down_global = view_vec_global +
- float3(0.0, -output_size_inv.y, 0.0);
- const float3 view_vec_right_local =
- mul(global_to_local, view_vec_right_global);
- const float3 view_vec_down_local =
- mul(global_to_local, view_vec_down_global);
- // 2.) Using the true intersection point, intersect the neighboring
- // view vectors with the tangent plane:
- const float3 intersection_vec_dot_normal = float3(dot(pos - eye_pos, normal), dot(pos - eye_pos, normal), dot(pos - eye_pos, normal));
- const float3 right_pos = eye_pos + (intersection_vec_dot_normal /
- dot(view_vec_right_local, normal))*view_vec_right_local;
- const float3 down_pos = eye_pos + (intersection_vec_dot_normal /
- dot(view_vec_down_local, normal))*view_vec_down_local;
- // 3.) Subtract the original intersection pos from its neighbors; the
- // resulting vectors are object-space vectors tangent to the plane.
- // These vectors are the object-space transformations of (1.0, 0.0)
- // and (0.0, 1.0) pixel offsets, so they form the first two basis
- // vectors of a pixelspace to object space transformation. This
- // transformation is 2D to 3D, so use (0, 0, 0) for the third vector.
- const float3 object_right_vec = right_pos - pos;
- const float3 object_down_vec = down_pos - pos;
- const float3x3 pixel_to_object = float3x3(
- object_right_vec.x, object_down_vec.x, 0.0,
- object_right_vec.y, object_down_vec.y, 0.0,
- object_right_vec.z, object_down_vec.z, 0.0);
- return pixel_to_object;
- }
- float3x3 get_object_to_tangent_matrix(const float3 intersection_pos_local,
- const float3 normal, const float2 geom_aspect, const float geom_mode)
- {
- // Requires: See get_curved_video_uv_coords_and_tangent_matrix for
- // descriptions of each parameter.
- // Returns: Return a transformation matrix from 3D object-space vectors
- // in the CRT's local coordinate frame (right-handed, +y = up)
- // to 2D video_uv vectors (+v = down).
- // Description:
- // The TBN matrix formed by the [tangent, bitangent, normal] basis
- // vectors transforms ordinary vectors from tangent->object space.
- // The cotangent matrix formed by the [cotangent, cobitangent, normal]
- // basis vectors transforms normal vectors (covectors) from
- // tangent->object space. It's the inverse-transpose of the TBN matrix.
- // We want the inverse of the TBN matrix (transpose of the cotangent
- // matrix), which transforms ordinary vectors from object->tangent space.
- // Start by calculating the relevant basis vectors in accordance with
- // Christian Schüler's blog post "Followup: Normal Mapping Without
- // Precomputed Tangents": http://www.thetenthplanet.de/archives/1180
- // With our particular uv mapping, the scale of the u and v directions
- // is determined entirely by the aspect ratio for cylindrical and ordinary
- // spherical mappings, and so tangent and bitangent lengths are also
- // determined by it (the alternate mapping is more complex). Therefore, we
- // must ensure appropriate cotangent and cobitangent lengths as well.
- // Base these off the uv<=>xyz mappings for each primitive.
- const float3 pos = intersection_pos_local;
- static const float3 x_vec = float3(1.0, 0.0, 0.0);
- static const float3 y_vec = float3(0.0, 1.0, 0.0);
- // The tangent and bitangent vectors correspond with increasing u and v,
- // respectively. Mathematically we'd base the cotangent/cobitangent on
- // those, but we'll compute the cotangent/cobitangent directly when we can.
- float3 cotangent_unscaled, cobitangent_unscaled;
- // geom_mode should be constant-folded without RUNTIME_GEOMETRY_MODE.
- if(geom_mode < 1.5)
- {
- // Sphere:
- // tangent = normalize(cross(normal, cross(x_vec, pos))) * geom_aspect.x
- // bitangent = normalize(cross(cross(y_vec, pos), normal)) * geom_aspect.y
- // inv_determinant = 1.0/length(cross(bitangent, tangent))
- // cotangent = cross(normal, bitangent) * inv_determinant
- // == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
- // cobitangent = cross(tangent, normal) * inv_determinant
- // == normalize(cross(x_vec, pos)) * geom_aspect.x * inv_determinant
- // Simplified (scale by inv_determinant below):
- cotangent_unscaled = normalize(cross(y_vec, pos)) * geom_aspect.y;
- cobitangent_unscaled = normalize(cross(x_vec, pos)) * geom_aspect.x;
- }
- else if(geom_mode < 2.5)
- {
- // Sphere, alternate mapping:
- // This mapping works a bit like the cylindrical mapping in two
- // directions, which makes the lengths and directions more complex.
- // Unfortunately, I can't find much of a shortcut:
- const float3 tangent = normalize(
- cross(y_vec, float3(pos.x, 0.0, pos.z))) * geom_aspect.x;
- const float3 bitangent = normalize(
- cross(x_vec, float3(0.0, pos.yz))) * geom_aspect.y;
- cotangent_unscaled = cross(normal, bitangent);
- cobitangent_unscaled = cross(tangent, normal);
- }
- else
- {
- // Cylinder:
- // tangent = normalize(cross(y_vec, normal)) * geom_aspect.x;
- // bitangent = float3(0.0, -geom_aspect.y, 0.0);
- // inv_determinant = 1.0/length(cross(bitangent, tangent))
- // cotangent = cross(normal, bitangent) * inv_determinant
- // == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
- // cobitangent = cross(tangent, normal) * inv_determinant
- // == float3(0.0, -geom_aspect.x, 0.0) * inv_determinant
- cotangent_unscaled = cross(y_vec, normal) * geom_aspect.y;
- cobitangent_unscaled = float3(0.0, -geom_aspect.x, 0.0);
- }
- const float3 computed_normal =
- cross(cobitangent_unscaled, cotangent_unscaled);
- const float inv_determinant = rsqrt(dot(computed_normal, computed_normal));
- const float3 cotangent = cotangent_unscaled * inv_determinant;
- const float3 cobitangent = cobitangent_unscaled * inv_determinant;
- // The [cotangent, cobitangent, normal] column vecs form the cotangent
- // frame, i.e. the inverse-transpose TBN matrix. Get its transpose:
- const float3x3 object_to_tangent = float3x3(cotangent, cobitangent, normal);
- return object_to_tangent;
- }
- float2 get_curved_video_uv_coords_and_tangent_matrix(
- const float2 flat_video_uv, const float3 eye_pos_local,
- const float2 output_size_inv, const float2 geom_aspect,
- const float geom_mode, const float3x3 global_to_local,
- out float2x2 pixel_to_tangent_video_uv)
- {
- // Requires: Parameters:
- // 1.) flat_video_uv coords are in range [0.0, 1.0], where
- // (0.0, 0.0) is the top-left corner of the screen and
- // (1.0, 1.0) is the bottom-right corner.
- // 2.) eye_pos_local is the 3D camera position in the simulated
- // CRT's local coordinate frame. For best results, it must
- // be computed based on the same geom_view_dist used here.
- // 3.) output_size_inv = float2(1.0)/output_size
- // 4.) geom_aspect = get_aspect_vector(
- // output_size.x / output_size.y);
- // 5.) geom_mode is a static or runtime mode setting:
- // 0 = off, 1 = sphere, 2 = sphere alt., 3 = cylinder
- // 6.) global_to_local is a 3x3 matrix transforming (ordinary)
- // worldspace vectors to the CRT's local coordinate frame
- // Globals:
- // 1.) geom_view_dist must be > 0.0. It controls the "near
- // plane" used to interpret flat_video_uv as a view
- // vector, which controls the field of view (FOV).
- // Returns: Return final uv coords in [0.0, 1.0], and return a pixel-
- // space to video_uv tangent-space matrix in the out parameter.
- // (This matrix assumes pixel-space +y = down, like +v = down.)
- // We'll transform flat_video_uv into a view vector, project
- // the view vector from the camera/eye, intersect with a sphere
- // or cylinder representing the simulated CRT, and convert the
- // intersection position into final uv coords and a local
- // transformation matrix.
- // First get the 3D view vector (geom_aspect and geom_view_dist are globals):
- // 1.) Center uv around (0.0, 0.0) and make (-0.5, -0.5) and (0.5, 0.5)
- // correspond to the top-left/bottom-right output screen corners.
- // 2.) Multiply by geom_aspect to preemptively "undo" Retroarch's screen-
- // space 2D aspect correction. We'll reapply it in uv-space.
- // 3.) (x, y) = (u, -v), because +v is down in 2D screenspace, but +y
- // is up in 3D worldspace (enforce a right-handed system).
- // 4.) The view vector z controls the "near plane" distance and FOV.
- // For the effect of "looking through a window" at a CRT, it should be
- // set equal to the user's distance from their physical screen, in
- // units of the viewport's physical diagonal size.
- const float2 view_uv = (flat_video_uv - float2(0.5)) * geom_aspect;
- const float3 view_vec_global =
- float3(view_uv.x, -view_uv.y, -geom_view_dist);
- // Transform the view vector into the CRT's local coordinate frame, convert
- // to video_uv coords, and get the local 3D intersection position:
- const float3 view_vec_local = mul(global_to_local, view_vec_global);
- float3 pos;
- const float2 centered_uv = view_vec_to_uv(
- view_vec_local, eye_pos_local, geom_aspect, geom_mode, pos);
- const float2 video_uv = centered_uv + float2(0.5);
- // Get a pixel-to-tangent-video-uv matrix. The caller could deal with
- // all but one of these cases, but that would be more complicated.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- // Derivatives obtain a matrix very fast, but the direction of pixel-
- // space +y seems to depend on the pass. Enforce the correct direction
- // on a best-effort basis (but it shouldn't matter for antialiasing).
- const float2 duv_dx = ddx(video_uv);
- const float2 duv_dy = ddy(video_uv);
- #ifdef LAST_PASS
- pixel_to_tangent_video_uv = float2x2(
- duv_dx.x, duv_dy.x,
- -duv_dx.y, -duv_dy.y);
- #else
- pixel_to_tangent_video_uv = float2x2(
- duv_dx.x, duv_dy.x,
- duv_dx.y, duv_dy.y);
- #endif
- #else
- // Manually define a transformation matrix. We'll assume pixel-space
- // +y = down, just like +v = down.
- if(geom_force_correct_tangent_matrix)
- {
- // Get the surface normal based on the local intersection position:
- const float3 normal_base = geom_mode < 2.5 ? pos :
- float3(pos.x, 0.0, pos.z);
- const float3 normal = normalize(normal_base);
- // Get pixel-to-object and object-to-tangent matrices and combine
- // them into a 2x2 pixel-to-tangent matrix for video_uv offsets:
- const float3x3 pixel_to_object = get_pixel_to_object_matrix(
- global_to_local, eye_pos_local, view_vec_global, pos, normal,
- output_size_inv);
- const float3x3 object_to_tangent = get_object_to_tangent_matrix(
- pos, normal, geom_aspect, geom_mode);
- const float3x3 pixel_to_tangent3x3 =
- mul(object_to_tangent, pixel_to_object);
- pixel_to_tangent_video_uv = float2x2(
- pixel_to_tangent3x3[0][0], pixel_to_tangent3x3[0][1], pixel_to_tangent3x3[1][0], pixel_to_tangent3x3[1][1]);//._m00_m01_m10_m11); //TODO/FIXME: needs to correct for column-major??
- }
- else
- {
- // Ignore curvature, and just consider flat scaling. The
- // difference is only apparent with strong curvature:
- pixel_to_tangent_video_uv = float2x2(
- output_size_inv.x, 0.0, 0.0, output_size_inv.y);
- }
- #endif
- return video_uv;
- }
- float get_border_dim_factor(const float2 video_uv, const float2 geom_aspect)
- {
- // COPYRIGHT NOTE FOR THIS FUNCTION:
- // Copyright (C) 2010-2012 cgwg, 2014 TroggleMonkey
- // This function uses an algorithm first coded in several of cgwg's GPL-
- // licensed lines in crt-geom-curved.cg and its ancestors. The line
- // between algorithm and code is nearly indistinguishable here, so it's
- // unclear whether I could even release this project under a non-GPL
- // license with this function included.
- // Calculate border_dim_factor from the proximity to uv-space image
- // borders; geom_aspect/border_size/border/darkness/border_compress are globals:
- const float2 edge_dists = min(video_uv, float2(1.0) - video_uv) *
- geom_aspect;
- const float2 border_penetration =
- max(float2(border_size) - edge_dists, float2(0.0));
- const float penetration_ratio = length(border_penetration)/border_size;
- const float border_escape_ratio = max(1.0 - penetration_ratio, 0.0);
- const float border_dim_factor =
- pow(border_escape_ratio, border_darkness) * max(1.0, border_compress);
- return min(border_dim_factor, 1.0);
- }
- #endif // GEOMETRY_FUNCTIONS_H
- ///////////////////////// END GEOMETRY-FUNCTIONS /////////////////////////
- /////////////////////////////////// HELPERS //////////////////////////////////
- float2x2 mul_scale(float2 scale, float2x2 matrix)
- {
- //float2x2 scale_matrix = float2x2(scale.x, 0.0, 0.0, scale.y);
- //return mul(scale_matrix, matrix);
- float4 intermed = float4(matrix[0][0],matrix[0][1],matrix[1][0],matrix[1][1]) * scale.xxyy;
- return float2x2(intermed.x, intermed.y, intermed.z, intermed.w);
- }
- #undef COMPAT_PRECISION
- #undef COMPAT_TEXTURE
- void main() {
- // Localize some parameters:
- const float2 geom_aspect = geom_aspect_and_overscan.xy;
- const float2 geom_overscan = geom_aspect_and_overscan.zw;
- const float2 video_size_inv = video_and_texture_size_inv.xy;
- const float2 texture_size_inv = video_and_texture_size_inv.zw;
- //const float2 output_size_inv = output_size_inv;
- #ifdef RUNTIME_GEOMETRY_TILT
- const float3x3 global_to_local = float3x3(global_to_local_row0,
- global_to_local_row1, global_to_local_row2);
- #else
- static const float3x3 global_to_local = geom_global_to_local_static;
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- const float geom_mode = geom_mode_runtime;
- #else
- static const float geom_mode = geom_mode_static;
- #endif
- // Get flat and curved texture coords for the current fragment point sample
- // and a pixel_to_tangent_video_uv matrix for transforming pixel offsets:
- // video_uv = relative position in video frame, mapped to [0.0, 1.0] range
- // tex_uv = relative position in padded texture, mapped to [0.0, 1.0] range
- const float2 flat_video_uv = tex_uv * (texture_size * video_size_inv);
- float2x2 pixel_to_video_uv;
- float2 video_uv_no_geom_overscan;
- if(geom_mode > 0.5)
- {
- video_uv_no_geom_overscan =
- get_curved_video_uv_coords_and_tangent_matrix(flat_video_uv,
- eye_pos_local, output_size_inv, geom_aspect,
- geom_mode, global_to_local, pixel_to_video_uv);
- }
- else
- {
- video_uv_no_geom_overscan = flat_video_uv;
- pixel_to_video_uv = float2x2(
- output_size_inv.x, 0.0, 0.0, output_size_inv.y);
- }
- // Correct for overscan here (not in curvature code):
- const float2 video_uv =
- (video_uv_no_geom_overscan - float2(0.5, 0.5))/geom_overscan + float2(0.5, 0.5);
- const float2 tex_uv = video_uv * (video_size * texture_size_inv);
- // Get a matrix transforming pixel vectors to tex_uv vectors:
- const float2x2 pixel_to_tex_uv =
- mul_scale(video_size * texture_size_inv /
- geom_aspect_and_overscan.zw, pixel_to_video_uv);
- // Sample! Skip antialiasing if aa_level < 0.5 or both of these hold:
- // 1.) Geometry/curvature isn't used
- // 2.) Overscan == float2(1.0, 1.0)
- // Skipping AA is sharper, but it's only faster with dynamic branches.
- const float2 abs_aa_r_offset = abs(get_aa_subpixel_r_offset());
- const bool need_subpixel_aa = abs_aa_r_offset.x + abs_aa_r_offset.y > 0.0;
- float3 color;
- if(aa_level > 0.5 && (geom_mode > 0.5 || any(bool2((geom_overscan.x != 1.0), (geom_overscan.y != 1.0)))))
- {
- // Sample the input with antialiasing (due to sharp phosphors, etc.):
- color = tex2Daa(input_texture, tex_uv, pixel_to_tex_uv, float(frame_count));
- }
- else if(aa_level > 0.5 && need_subpixel_aa)
- {
- // Sample at each subpixel location:
- color = tex2Daa_subpixel_weights_only(
- input_texture, tex_uv, pixel_to_tex_uv);
- }
- else
- {
- color = tex2D_linearize(input_texture, tex_uv).rgb;
- }
- // Dim borders and output the final result:
- const float border_dim_factor = get_border_dim_factor(video_uv, geom_aspect);
- const float3 final_color = color * border_dim_factor;
- FragColor = encode_output(float4(final_color, 1.0));
- }
|