123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025 |
- #version 150
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- #if __VERSION__ >= 130
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_TEXTURE texture2D
- #endif
- #ifdef GL_ES
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- in vec4 position;
- in vec2 texCoord;
- out Vertex {
- vec2 vTexCoord;
- vec2 blur_dxdy;
- };
- uniform vec4 targetSize;
- uniform vec4 sourceSize[];
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // PASS SETTINGS:
- // gamma-management.h needs to know what kind of pipeline we're using and
- // what pass this is in that pipeline. This will become obsolete if/when we
- // can #define things like this in the .cgp preset file.
- //#define GAMMA_ENCODE_EVERY_FBO
- //#define FIRST_PASS
- //#define LAST_PASS
- //#define SIMULATE_CRT_ON_LCD
- //#define SIMULATE_GBA_ON_LCD
- //#define SIMULATE_LCD_ON_CRT
- //#define SIMULATE_GBA_ON_CRT
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- float lcd_reference_gamma = 2.5; // To match CRT
- float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- float get_crt_gamma() { return crt_gamma; }
- float get_gba_gamma() { return gba_gamma; }
- float get_lcd_gamma() { return lcd_gamma; }
- #else
- float get_crt_gamma() { return crt_reference_gamma_high; }
- float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- float get_intermediate_gamma() { return intermediate_gamma; }
- float get_input_gamma() { return input_gamma; }
- float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- float get_input_gamma() { return get_crt_gamma(); }
- float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- float get_input_gamma() { return get_gba_gamma(); }
- float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- float get_input_gamma() { return get_lcd_gamma(); }
- float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- float get_input_gamma() { return get_gba_gamma(); }
- float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- float get_input_gamma() { return ntsc_gamma; }
- float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- bool linearize_input = true;
- float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- bool linearize_input = false;
- float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- bool gamma_encode_output = true;
- float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- bool gamma_encode_output = false;
- float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- bool linearize_input = true;
- bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- vec4 decode_input(vec4 color)
- {
- if(linearize_input = true)
- {
- if(assume_opaque_alpha = true)
- {
- return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- vec4 encode_output(vec4 color)
- {
- if(gamma_encode_output = true)
- {
- if(assume_opaque_alpha = true)
- {
- return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- #define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- //vec4 tex2D_linearize(sampler2D tex, vec2 tex_coords)
- //{ return decode_input(vec4(COMPAT_TEXTURE(tex, tex_coords))); }
- //#define tex2D_linearize(C, D, E) decode_input(vec4(COMPAT_TEXTURE(C, D, E)))
- //vec4 tex2D_linearize(sampler2D tex, vec2 tex_coords, int texel_off)
- //{ return decode_input(vec4(COMPAT_TEXTURE(tex, tex_coords, texel_off))); }
- #endif // GAMMA_MANAGEMENT_H
- #ifndef BLUR_FUNCTIONS_H
- #define BLUR_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides reusable one-pass and separable (two-pass) blurs.
- // Requires: All blurs share these requirements (dxdy requirement is split):
- // 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) filter_linearN must == "true" in your .cgp preset unless
- // you're using tex2DblurNresize at 1x scale.
- // 3.) mipmap_inputN must == "true" in your .cgp preset if
- // IN.output_size < IN.video_size.
- // 4.) IN.output_size == IN.video_size / pow(2, M), where M is some
- // positive integer. tex2Dblur*resize can resize arbitrarily
- // (and the blur will be done after resizing), but arbitrary
- // resizes "fail" with other blurs due to the way they mix
- // static weights with bilinear sample exploitation.
- // 5.) In general, dxdy should contain the uv pixel spacing:
- // dxdy = (IN.video_size/IN.output_size)/IN.texture_size
- // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
- // zero out the dxdy component in the unblurred dimension:
- // dxdy = vec2(dxdy.x, 0.0) or vec2(0.0, dxdy.y)
- // Many blurs share these requirements:
- // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
- // or they will blur more in the lower-scaled dimension.
- // 2.) One-pass shared sample blurs require ddx(), ddy(), and
- // tex2Dlod() to be supported by the current Cg profile, and
- // the drivers must support high-quality derivatives.
- // 3.) One-pass shared sample blurs require:
- // tex_uv.w == log2(IN.video_size/IN.output_size).y;
- // Non-wrapper blurs share this requirement:
- // 1.) sigma is the intended standard deviation of the blur
- // Wrapper blurs share this requirement, which is automatically
- // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
- // 1.) blurN_std_dev must be global static float values
- // specifying standard deviations for Nx blurs in units
- // of destination pixels
- // Optional: 1.) The including file (or an earlier included file) may
- // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
- // default standard deviations with those matching a binomial
- // distribution. (See below for details/properties.)
- // 2.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_BLUR_STD_DEVS and override:
- // static float blur3_std_dev
- // static float blur4_std_dev
- // static float blur5_std_dev
- // static float blur6_std_dev
- // static float blur7_std_dev
- // static float blur8_std_dev
- // static float blur9_std_dev
- // static float blur10_std_dev
- // static float blur11_std_dev
- // static float blur12_std_dev
- // static float blur17_std_dev
- // static float blur25_std_dev
- // static float blur31_std_dev
- // static float blur43_std_dev
- // 3.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_ERROR_BLURRING and override:
- // static float error_blurring
- // This tuning value helps mitigate weighting errors from one-
- // pass shared-sample blurs sharing bilinear samples between
- // fragments. Values closer to 0.0 have "correct" blurriness
- // but allow more artifacts, and values closer to 1.0 blur away
- // artifacts by sampling closer to halfway between texels.
- // UPDATE 6/21/14: The above static constants may now be overridden
- // by non-static uniform constants. This permits exposing blur
- // standard deviations as runtime GUI shader parameters. However,
- // using them keeps weights from being statically computed, and the
- // speed hit depends on the blur: On my machine, uniforms kill over
- // 53% of the framerate with tex2Dblur12x12shared, but they only
- // drop the framerate by about 18% with tex2Dblur11fast.
- // Quality and Performance Comparisons:
- // For the purposes of the following discussion, "no sRGB" means
- // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
- // 1.) tex2DblurNfast is always faster than tex2DblurNresize.
- // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
- // well, because they're the only ones that don't exploit bilinear samples.
- // This also means they're the only functions which can be truly gamma-
- // correct without linear (or sRGB FBO) input, but only at 1x scale.
- // 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
- // They also have some inaccuracies due to their shared-[bilinear-]sample
- // design, which grow increasingly bothersome for smaller blurs and higher-
- // frequency source images (relative to their resolution). I had high
- // hopes for them, but their most realistic use case is limited to quickly
- // reblurring an already blurred input at full resolution. Otherwise:
- // a.) If you're blurring a low-resolution source, you want a better blur.
- // b.) If you're blurring a lower mipmap, you want a better blur.
- // c.) If you're blurring a high-resolution, high-frequency source, you
- // want a better blur.
- // 4.) The one-pass blurs without shared samples grow slower for larger blurs,
- // but they're competitive with separable blurs at 5x5 and smaller, and
- // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
- // Here are some framerates from a GeForce 8800GTS. The first pass resizes to
- // viewport size (4x in this test) and linearizes for sRGB codepaths, and the
- // remaining passes perform 6 full blurs. Mipmapped tests are performed at the
- // same scale, so they just measure the cost of mipmapping each FBO (only every
- // other FBO is mipmapped for separable blurs, to mimic realistic usage).
- // Mipmap Neither sRGB+Mipmap sRGB Function
- // 76.0 92.3 131.3 193.7 tex2Dblur3fast
- // 63.2 74.4 122.4 175.5 tex2Dblur3resize
- // 93.7 121.2 159.3 263.2 tex2Dblur3x3
- // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
- // 63.2 74.4 122.4 175.5 tex2Dblur5fast
- // 49.3 54.8 100.0 132.7 tex2Dblur5resize
- // 59.7 68.7 115.4 162.1 tex2Dblur5x5
- // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
- // 55.8 63.7 110.4 151.8 tex2Dblur7fast
- // 39.8 43.9 83.9 105.8 tex2Dblur7resize
- // 40.0 44.2 83.2 104.9 tex2Dblur7x7
- // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
- // 49.3 55.1 99.9 132.5 tex2Dblur9fast
- // 33.3 36.2 72.4 88.0 tex2Dblur9resize
- // 27.8 29.7 61.3 72.2 tex2Dblur9x9
- // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
- // 44.4 49.5 91.3 117.8 tex2Dblur11fast
- // 28.8 30.8 63.6 75.4 tex2Dblur11resize
- // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
- // TODO: Fill in benchmarks for new untested blurs.
- // tex2Dblur17fast
- // tex2Dblur25fast
- // tex2Dblur31fast
- // tex2Dblur43fast
- // tex2Dblur3x3resize
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // Set static standard deviations, but allow users to override them with their
- // own constants (even non-static uniforms if they're okay with the speed hit):
- #ifndef OVERRIDE_BLUR_STD_DEVS
- // blurN_std_dev values are specified in terms of dxdy strides.
- #ifdef USE_BINOMIAL_BLUR_STD_DEVS
- // By request, we can define standard deviations corresponding to a
- // binomial distribution with p = 0.5 (related to Pascal's triangle).
- // This distribution works such that blurring multiple times should
- // have the same result as a single larger blur. These values are
- // larger than default for blurs up to 6x and smaller thereafter.
- float blur3_std_dev = 0.84931640625;
- float blur4_std_dev = 0.84931640625;
- float blur5_std_dev = 1.0595703125;
- float blur6_std_dev = 1.06591796875;
- float blur7_std_dev = 1.17041015625;
- float blur8_std_dev = 1.1720703125;
- float blur9_std_dev = 1.2259765625;
- float blur10_std_dev = 1.21982421875;
- float blur11_std_dev = 1.25361328125;
- float blur12_std_dev = 1.2423828125;
- float blur17_std_dev = 1.27783203125;
- float blur25_std_dev = 1.2810546875;
- float blur31_std_dev = 1.28125;
- float blur43_std_dev = 1.28125;
- #else
- // The defaults are the largest values that keep the largest unused
- // blur term on each side <= 1.0/256.0. (We could get away with more
- // or be more conservative, but this compromise is pretty reasonable.)
- float blur3_std_dev = 0.62666015625;
- float blur4_std_dev = 0.66171875;
- float blur5_std_dev = 0.9845703125;
- float blur6_std_dev = 1.02626953125;
- float blur7_std_dev = 1.36103515625;
- float blur8_std_dev = 1.4080078125;
- float blur9_std_dev = 1.7533203125;
- float blur10_std_dev = 1.80478515625;
- float blur11_std_dev = 2.15986328125;
- float blur12_std_dev = 2.215234375;
- float blur17_std_dev = 3.45535583496;
- float blur25_std_dev = 5.3409576416;
- float blur31_std_dev = 6.86488037109;
- float blur43_std_dev = 10.1852050781;
- #endif // USE_BINOMIAL_BLUR_STD_DEVS
- #endif // OVERRIDE_BLUR_STD_DEVS
- #ifndef OVERRIDE_ERROR_BLURRING
- // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
- // in shared-sample blurs but increase blurring and feature shifting.
- float error_blurring = 0.5;
- #endif
- // Make a length squared helper macro (for usage with static constants):
- #define LENGTH_SQ(vec) (dot(vec, vec))
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // gamma-management.h relies on pass-specific settings to guide its behavior:
- // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
- //#include "gamma-management.h"
- //#include "quad-pixel-communication.h"
- //#include "special-functions.h"
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (vec4/vec3/vec2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- vec4 erf6(vec4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- vec4 one = vec4(1.0);
- vec4 sign_x = sign(x);
- vec4 t = one/(one + 0.47047*abs(x));
- vec4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- vec3 erf6(vec3 x)
- {
- // vec3 version:
- vec3 one = vec3(1.0);
- vec3 sign_x = sign(x);
- vec3 t = one/(one + 0.47047*abs(x));
- vec3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- vec2 erf6(vec2 x)
- {
- // vec2 version:
- vec2 one = vec2(1.0);
- vec2 sign_x = sign(x);
- vec2 t = one/(one + 0.47047*abs(x));
- vec2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(float x)
- {
- // Float version:
- float sign_x = sign(x);
- float t = 1.0/(1.0 + 0.47047*abs(x));
- float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- vec4 erft(vec4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- vec3 erft(vec3 x)
- {
- // vec3 version:
- return tanh(1.202760580 * x);
- }
- vec2 erft(vec2 x)
- {
- // vec2 version:
- return tanh(1.202760580 * x);
- }
- float erft(float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- vec4 erf(vec4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- vec3 erf(vec3 x)
- {
- // vec3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- vec2 erf(vec2 x)
- {
- // vec2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- float erf(float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- vec4 gamma_impl(vec4 s, vec4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- vec4 g = vec4(1.12906830989);
- vec4 c0 = vec4(0.8109119309638332633713423362694399653724431);
- vec4 c1 = vec4(0.4808354605142681877121661197951496120000040);
- vec4 e = vec4(2.71828182845904523536028747135266249775724709);
- vec4 sph = s + vec4(0.5);
- vec4 lanczos_sum = c0 + c1/(s + vec4(1.0));
- vec4 base = (sph + g)/e; // or (s + g + vec4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- vec3 gamma_impl(vec3 s, vec3 s_inv)
- {
- // vec3 version:
- vec3 g = vec3(1.12906830989);
- vec3 c0 = vec3(0.8109119309638332633713423362694399653724431);
- vec3 c1 = vec3(0.4808354605142681877121661197951496120000040);
- vec3 e = vec3(2.71828182845904523536028747135266249775724709);
- vec3 sph = s + vec3(0.5);
- vec3 lanczos_sum = c0 + c1/(s + vec3(1.0));
- vec3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- vec2 gamma_impl(vec2 s, vec2 s_inv)
- {
- // vec2 version:
- vec2 g = vec2(1.12906830989);
- vec2 c0 = vec2(0.8109119309638332633713423362694399653724431);
- vec2 c1 = vec2(0.4808354605142681877121661197951496120000040);
- vec2 e = vec2(2.71828182845904523536028747135266249775724709);
- vec2 sph = s + vec2(0.5);
- vec2 lanczos_sum = c0 + c1/(s + vec2(1.0));
- vec2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(float s, float s_inv)
- {
- // Float version:
- float g = 1.12906830989;
- float c0 = 0.8109119309638332633713423362694399653724431;
- float c1 = 0.4808354605142681877121661197951496120000040;
- float e = 2.71828182845904523536028747135266249775724709;
- float sph = s + 0.5;
- float lanczos_sum = c0 + c1/(s + 1.0);
- float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- vec4 gamma(vec4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, vec4(1.0)/s);
- }
- vec3 gamma(vec3 s)
- {
- // vec3 version:
- return gamma_impl(s, vec3(1.0)/s);
- }
- vec2 gamma(vec2 s)
- {
- // vec2 version:
- return gamma_impl(s, vec2(1.0)/s);
- }
- float gamma(float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- vec4 ligamma_small_z_impl(vec4 s, vec4 z, vec4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- vec4 scale = pow(z, s);
- vec4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- vec4 z_sq = z*z;
- vec4 denom1 = s + vec4(1.0);
- vec4 denom2 = 2.0*s + vec4(4.0);
- vec4 denom3 = 6.0*s + vec4(18.0);
- //vec4 denom4 = 24.0*s + vec4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- vec3 ligamma_small_z_impl(vec3 s, vec3 z, vec3 s_inv)
- {
- // vec3 version:
- vec3 scale = pow(z, s);
- vec3 sum = s_inv;
- vec3 z_sq = z*z;
- vec3 denom1 = s + vec3(1.0);
- vec3 denom2 = 2.0*s + vec3(4.0);
- vec3 denom3 = 6.0*s + vec3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- vec2 ligamma_small_z_impl(vec2 s, vec2 z, vec2 s_inv)
- {
- // vec2 version:
- vec2 scale = pow(z, s);
- vec2 sum = s_inv;
- vec2 z_sq = z*z;
- vec2 denom1 = s + vec2(1.0);
- vec2 denom2 = 2.0*s + vec2(4.0);
- vec2 denom3 = 6.0*s + vec2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(float s, float z, float s_inv)
- {
- // Float version:
- float scale = pow(z, s);
- float sum = s_inv;
- float z_sq = z*z;
- float denom1 = s + 1.0;
- float denom2 = 2.0*s + 4.0;
- float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- vec4 uigamma_large_z_impl(vec4 s, vec4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = vec4('inf');
- // vec4 one = vec4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- vec4 numerator = pow(z, s) * exp(-z);
- vec4 denom = vec4(7.0) + z - s;
- denom = vec4(5.0) + z - s + (3.0*s - vec4(9.0))/denom;
- denom = vec4(3.0) + z - s + (2.0*s - vec4(4.0))/denom;
- denom = vec4(1.0) + z - s + (s - vec4(1.0))/denom;
- return numerator / denom;
- }
- vec3 uigamma_large_z_impl(vec3 s, vec3 z)
- {
- // vec3 version:
- vec3 numerator = pow(z, s) * exp(-z);
- vec3 denom = vec3(7.0) + z - s;
- denom = vec3(5.0) + z - s + (3.0*s - vec3(9.0))/denom;
- denom = vec3(3.0) + z - s + (2.0*s - vec3(4.0))/denom;
- denom = vec3(1.0) + z - s + (s - vec3(1.0))/denom;
- return numerator / denom;
- }
- vec2 uigamma_large_z_impl(vec2 s, vec2 z)
- {
- // vec2 version:
- vec2 numerator = pow(z, s) * exp(-z);
- vec2 denom = vec2(7.0) + z - s;
- denom = vec2(5.0) + z - s + (3.0*s - vec2(9.0))/denom;
- denom = vec2(3.0) + z - s + (2.0*s - vec2(4.0))/denom;
- denom = vec2(1.0) + z - s + (s - vec2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(float s, float z)
- {
- // Float version:
- float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- vec4 normalized_ligamma_impl(vec4 s, vec4 z,
- vec4 s_inv, vec4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- vec4 thresh = vec4(0.775075);
- bvec4 z_is_large = greaterThan(z , thresh);
- vec4 z_size_check = vec4(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0, z_is_large.z ? 1.0 : 0.0, z_is_large.w ? 1.0 : 0.0);
- vec4 large_z = vec4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- vec4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- return large_z * vec4(z_size_check) + small_z * vec4(z_size_check);
- }
- vec3 normalized_ligamma_impl(vec3 s, vec3 z,
- vec3 s_inv, vec3 gamma_s_inv)
- {
- // vec3 version:
- vec3 thresh = vec3(0.775075);
- bvec3 z_is_large = greaterThan(z , thresh);
- vec3 z_size_check = vec3(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0, z_is_large.z ? 1.0 : 0.0);
- vec3 large_z = vec3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- vec3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * vec3(z_size_check) + small_z * vec3(z_size_check);
- }
- vec2 normalized_ligamma_impl(vec2 s, vec2 z,
- vec2 s_inv, vec2 gamma_s_inv)
- {
- // vec2 version:
- vec2 thresh = vec2(0.775075);
- bvec2 z_is_large = greaterThan(z , thresh);
- vec2 z_size_check = vec2(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0);
- vec2 large_z = vec2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- vec2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * vec2(z_size_check) + small_z * vec2(z_size_check);
- }
- float normalized_ligamma_impl(float s, float z,
- float s_inv, float gamma_s_inv)
- {
- // Float version:
- float thresh = 0.775075;
- float z_size_check = 0.0;
- if (z > thresh) z_size_check = 1.0;
- float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_size_check) + small_z * float(z_size_check);
- }
- // Normalized lower incomplete gamma function for small s:
- vec4 normalized_ligamma(vec4 s, vec4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- vec4 s_inv = vec4(1.0)/s;
- vec4 gamma_s_inv = vec4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- vec3 normalized_ligamma(vec3 s, vec3 z)
- {
- // vec3 version:
- vec3 s_inv = vec3(1.0)/s;
- vec3 gamma_s_inv = vec3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- vec2 normalized_ligamma(vec2 s, vec2 z)
- {
- // vec2 version:
- vec2 s_inv = vec2(1.0)/s;
- vec2 gamma_s_inv = vec2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(float s, float z)
- {
- // Float version:
- float s_inv = 1.0/s;
- float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- /////////////////////////////////// HELPERS //////////////////////////////////
- vec4 uv2_to_uv4(vec2 tex_uv)
- {
- // Make a vec2 uv offset safe for adding to vec4 tex2Dlod coords:
- return vec4(tex_uv, 0.0, 0.0);
- }
- // Make a length squared helper macro (for usage with static constants):
- #define LENGTH_SQ(vec) (dot(vec, vec))
- float get_fast_gaussian_weight_sum_inv(float sigma)
- {
- // We can use the Gaussian integral to calculate the asymptotic weight for
- // the center pixel. Since the unnormalized center pixel weight is 1.0,
- // the normalized weight is the same as the weight sum inverse. Given a
- // large enough blur (9+), the asymptotic weight sum is close and faster:
- // center_weight = 0.5 *
- // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
- // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
- // However, we can get even faster results with curve-fitting. These are
- // also closer than the asymptotic results, because they were constructed
- // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
- // (0, blurN_std_dev), so the results for smaller sigmas are biased toward
- // smaller blurs. The max error is 0.0031793913.
- // Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
- //static float temp = 0.5/sqrt(2.0);
- //return erf(temp/sigma);
- return min(exp(exp(0.348348412457428/
- (sigma - 0.0860587260734721))), 0.399334576340352/sigma);
- }
- //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
- vec3 tex2Dblur11resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // Calculate Gaussian blur kernel weights and a normalization factor for
- // distances of 0-4, ignoring constant factors (since we're normalizing).
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Statically normalize weights, sum weighted samples, and return. Blurs are
- // currently optimized for dynamic weights.
- vec3 sum = vec3(0.0);
- sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur9resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur7resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur5resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur3resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- /////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
- vec3 tex2Dblur11fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: 1.) Global requirements must be met (see file description).
- // 2.) filter_linearN must = "true" in your .cgp file.
- // 3.) For gamma-correct bilinear filtering, global
- // gamma_aware_bilinear == true (from gamma-management.h)
- // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- float w01 = w0 * 0.5 + w1;
- float w23 = w2 + w3;
- float w45 = w4 + w5;
- float w01_ratio = w1/w01;
- float w23_ratio = w3/w23;
- float w45_ratio = w5/w45;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur17fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 8 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float w6 = exp(-36.0 * denom_inv);
- float w7 = exp(-49.0 * denom_inv);
- float w8 = exp(-64.0 * denom_inv);
- //float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- float w1_2 = w1 + w2;
- float w3_4 = w3 + w4;
- float w5_6 = w5 + w6;
- float w7_8 = w7 + w8;
- float w1_2_ratio = w2/w1_2;
- float w3_4_ratio = w4/w3_4;
- float w5_6_ratio = w6/w5_6;
- float w7_8_ratio = w8/w7_8;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur25fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 12 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float w6 = exp(-36.0 * denom_inv);
- float w7 = exp(-49.0 * denom_inv);
- float w8 = exp(-64.0 * denom_inv);
- float w9 = exp(-81.0 * denom_inv);
- float w10 = exp(-100.0 * denom_inv);
- float w11 = exp(-121.0 * denom_inv);
- float w12 = exp(-144.0 * denom_inv);
- //float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- float w1_2 = w1 + w2;
- float w3_4 = w3 + w4;
- float w5_6 = w5 + w6;
- float w7_8 = w7 + w8;
- float w9_10 = w9 + w10;
- float w11_12 = w11 + w12;
- float w1_2_ratio = w2/w1_2;
- float w3_4_ratio = w4/w3_4;
- float w5_6_ratio = w6/w5_6;
- float w7_8_ratio = w8/w7_8;
- float w9_10_ratio = w10/w9_10;
- float w11_12_ratio = w12/w11_12;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur31fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float w6 = exp(-36.0 * denom_inv);
- float w7 = exp(-49.0 * denom_inv);
- float w8 = exp(-64.0 * denom_inv);
- float w9 = exp(-81.0 * denom_inv);
- float w10 = exp(-100.0 * denom_inv);
- float w11 = exp(-121.0 * denom_inv);
- float w12 = exp(-144.0 * denom_inv);
- float w13 = exp(-169.0 * denom_inv);
- float w14 = exp(-196.0 * denom_inv);
- float w15 = exp(-225.0 * denom_inv);
- //float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
- // w9 + w10 + w11 + w12 + w13 + w14 + w15));
- float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- float w0_1 = w0 * 0.5 + w1;
- float w2_3 = w2 + w3;
- float w4_5 = w4 + w5;
- float w6_7 = w6 + w7;
- float w8_9 = w8 + w9;
- float w10_11 = w10 + w11;
- float w12_13 = w12 + w13;
- float w14_15 = w14 + w15;
- float w0_1_ratio = w1/w0_1;
- float w2_3_ratio = w3/w2_3;
- float w4_5_ratio = w5/w4_5;
- float w6_7_ratio = w7/w6_7;
- float w8_9_ratio = w9/w8_9;
- float w10_11_ratio = w11/w10_11;
- float w12_13_ratio = w13/w12_13;
- float w14_15_ratio = w15/w14_15;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur43fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float w5 = exp(-25.0 * denom_inv);
- float w6 = exp(-36.0 * denom_inv);
- float w7 = exp(-49.0 * denom_inv);
- float w8 = exp(-64.0 * denom_inv);
- float w9 = exp(-81.0 * denom_inv);
- float w10 = exp(-100.0 * denom_inv);
- float w11 = exp(-121.0 * denom_inv);
- float w12 = exp(-144.0 * denom_inv);
- float w13 = exp(-169.0 * denom_inv);
- float w14 = exp(-196.0 * denom_inv);
- float w15 = exp(-225.0 * denom_inv);
- float w16 = exp(-256.0 * denom_inv);
- float w17 = exp(-289.0 * denom_inv);
- float w18 = exp(-324.0 * denom_inv);
- float w19 = exp(-361.0 * denom_inv);
- float w20 = exp(-400.0 * denom_inv);
- float w21 = exp(-441.0 * denom_inv);
- //float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
- // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- float w0_1 = w0 * 0.5 + w1;
- float w2_3 = w2 + w3;
- float w4_5 = w4 + w5;
- float w6_7 = w6 + w7;
- float w8_9 = w8 + w9;
- float w10_11 = w10 + w11;
- float w12_13 = w12 + w13;
- float w14_15 = w14 + w15;
- float w16_17 = w16 + w17;
- float w18_19 = w18 + w19;
- float w20_21 = w20 + w21;
- float w0_1_ratio = w1/w0_1;
- float w2_3_ratio = w3/w2_3;
- float w4_5_ratio = w5/w4_5;
- float w6_7_ratio = w7/w6_7;
- float w8_9_ratio = w9/w8_9;
- float w10_11_ratio = w11/w10_11;
- float w12_13_ratio = w13/w12_13;
- float w14_15_ratio = w15/w14_15;
- float w16_17_ratio = w17/w16_17;
- float w18_19_ratio = w19/w18_19;
- float w20_21_ratio = w21/w20_21;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur3fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- float w01 = w0 * 0.5 + w1;
- float w01_ratio = w1/w01;
- // Weights for all samples are the same, so just average them:
- return 0.5 * (
- tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
- tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
- }
- vec3 tex2Dblur5fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 2 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Calculate combined weights and linear sample ratios between texel pairs.
- float w12 = w1 + w2;
- float w12_ratio = w2/w12;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur7fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- float w01 = w0 * 0.5 + w1;
- float w23 = w2 + w3;
- float w01_ratio = w1/w01;
- float w23_ratio = w3/w23;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
- vec3 tex2Dblur3x3resize(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
- // resized input.
- // Description:
- // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
- // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
- float denom_inv = 0.5/(sigma*sigma);
- // Load each sample. We need all 3x3 samples. Quad-pixel communication
- // won't help either: This should perform like tex2Dblur5x5, but sharing a
- // 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
- vec2 sample4_uv = tex_uv;
- vec2 dx = vec2(dxdy.x, 0.0);
- vec2 dy = vec2(0.0, dxdy.y);
- vec2 sample1_uv = sample4_uv - dy;
- vec2 sample7_uv = sample4_uv + dy;
- vec3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
- vec3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
- vec3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
- vec3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
- vec3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
- vec3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
- vec3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
- vec3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
- vec3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
- // Statically compute Gaussian sample weights:
- float w4 = 1.0;
- float w1_3_5_7 = exp(-LENGTH_SQ(vec2(1.0, 0.0)) * denom_inv);
- float w0_2_6_8 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv);
- float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
- // Weight and sum the samples:
- vec3 sum = w4 * sample4 +
- w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
- w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
- return sum * weight_sum_inv;
- }
- // Resizable one-pass blurs:
- vec3 tex2Dblur3x3resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur3x3resize(texture, tex_uv, dxdy, blur3_std_dev);
- }
- vec3 tex2Dblur9fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 4 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- float denom_inv = 0.5/(sigma*sigma);
- float w0 = 1.0;
- float w1 = exp(-1.0 * denom_inv);
- float w2 = exp(-4.0 * denom_inv);
- float w3 = exp(-9.0 * denom_inv);
- float w4 = exp(-16.0 * denom_inv);
- float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Calculate combined weights and linear sample ratios between texel pairs.
- float w12 = w1 + w2;
- float w34 = w3 + w4;
- float w12_ratio = w2/w12;
- float w34_ratio = w4/w34;
- // Statically normalize weights, sum weighted samples, and return:
- vec3 sum = vec3(0.0);
- sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur9x9(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
- // 5x5 carefully selected bilinear samples.
- // Description:
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
- // bilinear sample location to reflect the true Gaussian weights for each
- // underlying texel. The following diagram illustrates the relative
- // locations of bilinear samples. Each sample with the same number has the
- // same weight (notice the symmetry). The letters a, b, c, d distinguish
- // quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
- // distinguish 1D directions along the line containing the pixel center:
- // 6a 5a 2U 5b 6b
- // 4a 3a 1U 3b 4b
- // 2L 1L 0C 1R 2R
- // 4c 3c 1D 3d 4d
- // 6c 5c 2D 5d 6d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2, 2x1, 1x2, or 1x1 texel block:
- // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
- // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
- // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
- // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
- // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
- // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
- // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
- // Note there is only one C texel and only two texels for each U, D, L, or
- // R sample. The center sample is effectively a nearest neighbor sample,
- // and the U/D/L/R samples use 1D linear filtering. All other texels are
- // read with bilinear samples somewhere within their 2x2 texel blocks.
- // COMPUTE TEXTURE COORDS:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
- // the center, and reuse them independently for both dimensions. Compute
- // these offsets based on the relative 1D Gaussian weights of the texels
- // in question. (w1off means "Gaussian weight for the texel 1.0 texels
- // away from the pixel center," etc.).
- float denom_inv = 0.5/(sigma*sigma);
- float w1off = exp(-1.0 * denom_inv);
- float w2off = exp(-4.0 * denom_inv);
- float w3off = exp(-9.0 * denom_inv);
- float w4off = exp(-16.0 * denom_inv);
- float texel1to2ratio = w2off/(w1off + w2off);
- float texel3to4ratio = w4off/(w3off + w4off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- vec2 sample1R_texel_offset = vec2(1.0, 0.0) + vec2(texel1to2ratio, 0.0);
- vec2 sample2R_texel_offset = vec2(3.0, 0.0) + vec2(texel3to4ratio, 0.0);
- vec2 sample3d_texel_offset = vec2(1.0, 1.0) + vec2(texel1to2ratio, texel1to2ratio);
- vec2 sample4d_texel_offset = vec2(3.0, 1.0) + vec2(texel3to4ratio, texel1to2ratio);
- vec2 sample5d_texel_offset = vec2(1.0, 3.0) + vec2(texel1to2ratio, texel3to4ratio);
- vec2 sample6d_texel_offset = vec2(3.0, 3.0) + vec2(texel3to4ratio, texel3to4ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- float w1R1 = w1off;
- float w1R2 = w2off;
- float w2R1 = w3off;
- float w2R2 = w4off;
- float w3d1 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv);
- float w3d2_3d3 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv);
- float w3d4 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv);
- float w4d1_5d1 = exp(-LENGTH_SQ(vec2(3.0, 1.0)) * denom_inv);
- float w4d2_5d3 = exp(-LENGTH_SQ(vec2(4.0, 1.0)) * denom_inv);
- float w4d3_5d2 = exp(-LENGTH_SQ(vec2(3.0, 2.0)) * denom_inv);
- float w4d4_5d4 = exp(-LENGTH_SQ(vec2(4.0, 2.0)) * denom_inv);
- float w6d1 = exp(-LENGTH_SQ(vec2(3.0, 3.0)) * denom_inv);
- float w6d2_6d3 = exp(-LENGTH_SQ(vec2(4.0, 3.0)) * denom_inv);
- float w6d4 = exp(-LENGTH_SQ(vec2(4.0, 4.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- float w0 = 1.0;
- float w1 = w1R1 + w1R2;
- float w2 = w2R1 + w2R2;
- float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
- float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
- float w5 = w4;
- float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
- // Get the weight sum inverse (normalization factor):
- float weight_sum_inv =
- 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
- // LOAD TEXTURE SAMPLES:
- // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
- vec2 mirror_x = vec2(-1.0, 1.0);
- vec2 mirror_y = vec2(1.0, -1.0);
- vec2 mirror_xy = vec2(-1.0, -1.0);
- vec2 dxdy_mirror_x = dxdy * mirror_x;
- vec2 dxdy_mirror_y = dxdy * mirror_y;
- vec2 dxdy_mirror_xy = dxdy * mirror_xy;
- // Sampling order doesn't seem to affect performance, so just be clear:
- vec3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- vec3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- vec3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- vec3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- vec3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- vec3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
- vec3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
- vec3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
- vec3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
- vec3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- vec3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- vec3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- vec3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- vec3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- vec3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- vec3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- vec3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- vec3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
- vec3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
- vec3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
- vec3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
- vec3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
- vec3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
- vec3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
- vec3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- vec3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2R + sample2D + sample2L + sample2U);
- sum += w3 * (sample3d + sample3c + sample3b + sample3a);
- sum += w4 * (sample4d + sample4c + sample4b + sample4a);
- sum += w5 * (sample5d + sample5c + sample5b + sample5a);
- sum += w6 * (sample6d + sample6c + sample6b + sample6a);
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur7x7(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
- // 4x4 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 4a 3a 3b 4b
- // 2a 1a 1b 2b
- // 2c 1c 1d 2d
- // 4c 3c 3d 4d
- // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
- // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
- // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
- // the center texel):
- // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
- // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
- // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
- // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
- // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- float denom_inv = 0.5/(sigma*sigma);
- float w0off = 1.0;
- float w1off = exp(-1.0 * denom_inv);
- float w2off = exp(-4.0 * denom_inv);
- float w3off = exp(-9.0 * denom_inv);
- float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- float texel2to3ratio = w3off/(w2off + w3off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- vec2 sample1d_texel_offset = vec2(texel0to1ratio, texel0to1ratio);
- vec2 sample2d_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio);
- vec2 sample3d_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio);
- vec2 sample4d_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- float w1abcd = 1.0;
- float w1bd2_1cd3 = exp(-LENGTH_SQ(vec2(1.0, 0.0)) * denom_inv);
- float w2bd1_3cd1 = exp(-LENGTH_SQ(vec2(2.0, 0.0)) * denom_inv);
- float w2bd2_3cd2 = exp(-LENGTH_SQ(vec2(3.0, 0.0)) * denom_inv);
- float w1d4 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv);
- float w2d3_3d2 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv);
- float w2d4_3d4 = exp(-LENGTH_SQ(vec2(3.0, 1.0)) * denom_inv);
- float w4d1 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv);
- float w4d2_4d3 = exp(-LENGTH_SQ(vec2(3.0, 2.0)) * denom_inv);
- float w4d4 = exp(-LENGTH_SQ(vec2(3.0, 3.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights.
- // Split weights for shared texels between samples sharing them:
- float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
- float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
- float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
- // Get the weight sum inverse (normalization factor):
- float weight_sum_inv =
- 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
- // LOAD TEXTURE SAMPLES:
- // Load all 16 samples using symmetry:
- vec2 mirror_x = vec2(-1.0, 1.0);
- vec2 mirror_y = vec2(1.0, -1.0);
- vec2 mirror_xy = vec2(-1.0, -1.0);
- vec2 dxdy_mirror_x = dxdy * mirror_x;
- vec2 dxdy_mirror_y = dxdy * mirror_y;
- vec2 dxdy_mirror_xy = dxdy * mirror_xy;
- vec3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
- vec3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- vec3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- vec3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- vec3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
- vec3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- vec3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- vec3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- vec3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
- vec3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- vec3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- vec3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- vec3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
- vec3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- vec3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- vec3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- vec3 sum = vec3(0.0);
- sum += w1 * (sample1a + sample1b + sample1c + sample1d);
- sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
- sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
- sum += w4 * (sample4a + sample4b + sample4c + sample4d);
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur5x5(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
- // 3x3 carefully selected bilinear samples.
- // Description:
- // First see the description for tex2Dblur9x9(). This blur uses the same
- // concept and sample/texel locations except on a smaller scale. Samples:
- // 2a 1U 2b
- // 1L 0C 1R
- // 2c 1D 2d
- // Texels:
- // 2a4 2a3 1U2 2b3 2b4
- // 2a2 2a1 1U1 2b1 2b2
- // 1L2 1L1 0C1 1R1 1R2
- // 2c2 2c1 1D1 2d1 2d2
- // 2c4 2c3 1D2 2d3 2d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- float denom_inv = 0.5/(sigma*sigma);
- float w1off = exp(-1.0 * denom_inv);
- float w2off = exp(-4.0 * denom_inv);
- float texel1to2ratio = w2off/(w1off + w2off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- vec2 sample1R_texel_offset = vec2(1.0, 0.0) + vec2(texel1to2ratio, 0.0);
- vec2 sample2d_texel_offset = vec2(1.0, 1.0) + vec2(texel1to2ratio, texel1to2ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- float w1R1 = w1off;
- float w1R2 = w2off;
- float w2d1 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv);
- float w2d2_3 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv);
- float w2d4 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- float w0 = 1.0;
- float w1 = w1R1 + w1R2;
- float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
- // Get the weight sum inverse (normalization factor):
- float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
- // LOAD TEXTURE SAMPLES:
- // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
- vec2 mirror_x = vec2(-1.0, 1.0);
- vec2 mirror_y = vec2(1.0, -1.0);
- vec2 mirror_xy = vec2(-1.0, -1.0);
- vec2 dxdy_mirror_x = dxdy * mirror_x;
- vec2 dxdy_mirror_y = dxdy * mirror_y;
- vec2 dxdy_mirror_xy = dxdy * mirror_xy;
- vec3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- vec3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- vec3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- vec3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- vec3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- vec3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- vec3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- vec3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- vec3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- vec3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2a + sample2b + sample2c + sample2d);
- return sum * weight_sum_inv;
- }
- vec3 tex2Dblur3x3(sampler2D tex, vec2 tex_uv,
- vec2 dxdy, float sigma)
- {
- // Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
- // 2x2 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 0a 0b
- // 0c 0d
- // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
- // a vertical column of texels, and samples 0a/0c and 0b/0d share a
- // horizontal row of texels (all samples share the center texel):
- // 0a3 0ab2 0b3
- // 0ac1 0*0 0bd1
- // 0c3 0cd2 0d3
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- float denom_inv = 0.5/(sigma*sigma);
- float w0off = 1.0;
- float w1off = exp(-1.0 * denom_inv);
- float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- vec2 sample0d_texel_offset = vec2(texel0to1ratio, texel0to1ratio);
- // LOAD TEXTURE SAMPLES:
- // Load all 4 samples using symmetry:
- vec2 mirror_x = vec2(-1.0, 1.0);
- vec2 mirror_y = vec2(1.0, -1.0);
- vec2 mirror_xy = vec2(-1.0, -1.0);
- vec2 dxdy_mirror_x = dxdy * mirror_x;
- vec2 dxdy_mirror_y = dxdy * mirror_y;
- vec2 dxdy_mirror_xy = dxdy * mirror_xy;
- vec3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
- vec3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
- vec3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
- vec3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Weights for all samples are the same, so just average them:
- return 0.25 * (sample0a + sample0b + sample0c + sample0d);
- }
- vec3 tex2Dblur9fast(sampler2D tex, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
- }
- vec3 tex2Dblur17fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur17fast(texture, tex_uv, dxdy, blur17_std_dev);
- }
- vec3 tex2Dblur25fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur25fast(texture, tex_uv, dxdy, blur25_std_dev);
- }
- vec3 tex2Dblur43fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur43fast(texture, tex_uv, dxdy, blur43_std_dev);
- }
- vec3 tex2Dblur31fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur31fast(texture, tex_uv, dxdy, blur31_std_dev);
- }
- vec3 tex2Dblur3fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur3fast(texture, tex_uv, dxdy, blur3_std_dev);
- }
- vec3 tex2Dblur3x3(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur3x3(texture, tex_uv, dxdy, blur3_std_dev);
- }
- vec3 tex2Dblur5fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur5fast(texture, tex_uv, dxdy, blur5_std_dev);
- }
- vec3 tex2Dblur5resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur5resize(texture, tex_uv, dxdy, blur5_std_dev);
- }
- vec3 tex2Dblur3resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur3resize(texture, tex_uv, dxdy, blur3_std_dev);
- }
- vec3 tex2Dblur5x5(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur5x5(texture, tex_uv, dxdy, blur5_std_dev);
- }
- vec3 tex2Dblur7resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur7resize(texture, tex_uv, dxdy, blur7_std_dev);
- }
- vec3 tex2Dblur7fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur7fast(texture, tex_uv, dxdy, blur7_std_dev);
- }
- vec3 tex2Dblur7x7(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur7x7(texture, tex_uv, dxdy, blur7_std_dev);
- }
- vec3 tex2Dblur9resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur9resize(texture, tex_uv, dxdy, blur9_std_dev);
- }
- vec3 tex2Dblur9x9(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur9x9(texture, tex_uv, dxdy, blur9_std_dev);
- }
- vec3 tex2Dblur11resize(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur11resize(texture, tex_uv, dxdy, blur11_std_dev);
- }
- vec3 tex2Dblur11fast(sampler2D texture, vec2 tex_uv,
- vec2 dxdy)
- {
- return tex2Dblur11fast(texture, tex_uv, dxdy, blur11_std_dev);
- }
- #endif // BLUR_FUNCTIONS_H
- #define InputSize sourceSize[0].xy
- #define TextureSize sourceSize[0].xy
- #define OutputSize targetSize.xy
- void main() {
- gl_Position = position;
- vTexCoord = texCoord;
- // Get the uv sample distance between output pixels. Blurs are not generic
- // Gaussian resizers, and correct blurs require:
- // 1.) OutputSize == InputSize * 2^m, where m is an integer <= 0.
- // 2.) mipmap_inputN = "true" for this pass in the preset if m != 0
- // 3.) filter_linearN = "true" except for 1x scale nearest neighbor blurs
- // Gaussian resizers would upsize using the distance between input texels
- // (not output pixels), but we avoid this and consistently blur at the
- // destination size. Otherwise, combining statically calculated weights
- // with bilinear sample exploitation would result in terrible artifacts.
- vec2 dxdy_scale = InputSize/OutputSize;
- vec2 dxdy = dxdy_scale/TextureSize;
- // This blur is vertical-only, so zero out the horizontal offset:
- blur_dxdy = vec2(0.0, dxdy.y);
- }
|