123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824 |
- #version 150
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- uniform sampler2D source[];
- uniform vec4 sourceSize[];
- uniform vec4 targetSize;
- in Vertex {
- vec2 vTexCoord;
- vec2 tex_uv;
- vec2 bloom_dxdy;
- float bloom_sigma_runtime;
- };
- out vec4 FragColor;
- // USER SETTINGS BLOCK //
- #define crt_gamma 2.500000
- #define lcd_gamma 2.200000
- #define levels_contrast 1.0
- #define halation_weight 0.0
- #define diffusion_weight 0.075
- #define bloom_underestimate_levels 0.8
- #define bloom_excess 0.000000
- #define beam_min_sigma 0.020000
- #define beam_max_sigma 0.300000
- #define beam_spot_power 0.330000
- #define beam_min_shape 2.000000
- #define beam_max_shape 4.000000
- #define beam_shape_power 0.250000
- #define beam_horiz_filter 0.000000
- #define beam_horiz_sigma 0.35
- #define beam_horiz_linear_rgb_weight 1.000000
- #define convergence_offset_x_r -0.000000
- #define convergence_offset_x_g 0.000000
- #define convergence_offset_x_b 0.000000
- #define convergence_offset_y_r 0.000000
- #define convergence_offset_y_g -0.000000
- #define convergence_offset_y_b 0.000000
- #define mask_type 1.000000
- #define mask_sample_mode_desired 0.000000
- #define mask_specify_num_triads 0.000000
- #define mask_triad_size_desired 3.000000
- #define mask_num_triads_desired 480.000000
- #define aa_subpixel_r_offset_x_runtime -0.0
- #define aa_subpixel_r_offset_y_runtime 0.000000
- #define aa_cubic_c 0.500000
- #define aa_gauss_sigma 0.500000
- #define geom_mode_runtime 0.000000
- #define geom_radius 2.000000
- #define geom_view_dist 2.000000
- #define geom_tilt_angle_x 0.000000
- #define geom_tilt_angle_y 0.000000
- #define geom_aspect_ratio_x 432.000000
- #define geom_aspect_ratio_y 329.000000
- #define geom_overscan_x 1.000000
- #define geom_overscan_y 1.000000
- #define border_size 0.015
- #define border_darkness 2.0
- #define border_compress 2.500000
- #define interlace_bff 0.000000
- #define interlace_1080i 0.000000
- // END USER SETTINGS BLOCK //
- // compatibility macros for transparently converting HLSLisms into GLSLisms
- #define mul(a,b) (b*a)
- #define lerp(a,b,c) mix(a,b,c)
- #define saturate(c) clamp(c, 0.0, 1.0)
- #define frac(x) (fract(x))
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #define float2x2 mat2x2
- #define float3x3 mat3x3
- #define float4x4 mat4x4
- #define float4x3 mat4x3
- #define float2x4 mat2x4
- #define IN params
- #define texture_size sourceSize[0].xy
- #define video_size sourceSize[0].xy
- #define output_size targetSize.xy
- #define frame_count phase
- #define static
- #define inline
- #define const
- #define fmod(x,y) mod(x,y)
- #define ddx(c) dFdx(c)
- #define ddy(c) dFdy(c)
- #define atan2(x,y) atan(y,x)
- #define rsqrt(c) inversesqrt(c)
- #define MASKED_SCANLINEStexture source[0]
- #define MASKED_SCANLINEStexture_size sourceSize[0].xy
- #define MASKED_SCANLINESvideo_size sourceSize[0].xy
- #define BLOOM_APPROXtexture source[3]
- #define BLOOM_APPROXtexture_size sourceSize[3].xy
- #define BLOOM_APPROXvideo_size sourceSize[3].xy
- #define input_texture source[0]
- #if defined(GL_ES)
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- #if __VERSION__ >= 130
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_TEXTURE texture2D
- #endif
- float bloom_approx_scale_x = targetSize.y / sourceSize[0].y;
- const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
- const float bloom_diff_thresh_ = 1.0/256.0;
- ////////////////////////////// FRAGMENT INCLUDES //////////////////////////////
- //#include "bloom-functions.h"
- //////////////////////////// BEGIN BLOOM-FUNCTIONS ///////////////////////////
- #ifndef BLOOM_FUNCTIONS_H
- #define BLOOM_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These utility functions and constants help several passes determine the
- // size and center texel weight of the phosphor bloom in a uniform manner.
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // We need to calculate the correct blur sigma using some .cgp constants:
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "../../../../include/blur-functions.h"
- //////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
- #ifndef BLUR_FUNCTIONS_H
- #define BLUR_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides reusable one-pass and separable (two-pass) blurs.
- // Requires: All blurs share these requirements (dxdy requirement is split):
- // 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) filter_linearN must == "true" in your .cgp preset unless
- // you're using tex2DblurNresize at 1x scale.
- // 3.) mipmap_inputN must == "true" in your .cgp preset if
- // IN.output_size < IN.video_size.
- // 4.) IN.output_size == IN.video_size / pow(2, M), where M is some
- // positive integer. tex2Dblur*resize can resize arbitrarily
- // (and the blur will be done after resizing), but arbitrary
- // resizes "fail" with other blurs due to the way they mix
- // static weights with bilinear sample exploitation.
- // 5.) In general, dxdy should contain the uv pixel spacing:
- // dxdy = (IN.video_size/IN.output_size)/IN.texture_size
- // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
- // zero out the dxdy component in the unblurred dimension:
- // dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
- // Many blurs share these requirements:
- // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
- // or they will blur more in the lower-scaled dimension.
- // 2.) One-pass shared sample blurs require ddx(), ddy(), and
- // tex2Dlod() to be supported by the current Cg profile, and
- // the drivers must support high-quality derivatives.
- // 3.) One-pass shared sample blurs require:
- // tex_uv.w == log2(IN.video_size/IN.output_size).y;
- // Non-wrapper blurs share this requirement:
- // 1.) sigma is the intended standard deviation of the blur
- // Wrapper blurs share this requirement, which is automatically
- // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
- // 1.) blurN_std_dev must be global static const float values
- // specifying standard deviations for Nx blurs in units
- // of destination pixels
- // Optional: 1.) The including file (or an earlier included file) may
- // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
- // default standard deviations with those matching a binomial
- // distribution. (See below for details/properties.)
- // 2.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_BLUR_STD_DEVS and override:
- // static const float blur3_std_dev
- // static const float blur4_std_dev
- // static const float blur5_std_dev
- // static const float blur6_std_dev
- // static const float blur7_std_dev
- // static const float blur8_std_dev
- // static const float blur9_std_dev
- // static const float blur10_std_dev
- // static const float blur11_std_dev
- // static const float blur12_std_dev
- // static const float blur17_std_dev
- // static const float blur25_std_dev
- // static const float blur31_std_dev
- // static const float blur43_std_dev
- // 3.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_ERROR_BLURRING and override:
- // static const float error_blurring
- // This tuning value helps mitigate weighting errors from one-
- // pass shared-sample blurs sharing bilinear samples between
- // fragments. Values closer to 0.0 have "correct" blurriness
- // but allow more artifacts, and values closer to 1.0 blur away
- // artifacts by sampling closer to halfway between texels.
- // UPDATE 6/21/14: The above static constants may now be overridden
- // by non-static uniform constants. This permits exposing blur
- // standard deviations as runtime GUI shader parameters. However,
- // using them keeps weights from being statically computed, and the
- // speed hit depends on the blur: On my machine, uniforms kill over
- // 53% of the framerate with tex2Dblur12x12shared, but they only
- // drop the framerate by about 18% with tex2Dblur11fast.
- // Quality and Performance Comparisons:
- // For the purposes of the following discussion, "no sRGB" means
- // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
- // 1.) tex2DblurNfast is always faster than tex2DblurNresize.
- // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
- // well, because they're the only ones that don't exploit bilinear samples.
- // This also means they're the only functions which can be truly gamma-
- // correct without linear (or sRGB FBO) input, but only at 1x scale.
- // 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
- // They also have some inaccuracies due to their shared-[bilinear-]sample
- // design, which grow increasingly bothersome for smaller blurs and higher-
- // frequency source images (relative to their resolution). I had high
- // hopes for them, but their most realistic use case is limited to quickly
- // reblurring an already blurred input at full resolution. Otherwise:
- // a.) If you're blurring a low-resolution source, you want a better blur.
- // b.) If you're blurring a lower mipmap, you want a better blur.
- // c.) If you're blurring a high-resolution, high-frequency source, you
- // want a better blur.
- // 4.) The one-pass blurs without shared samples grow slower for larger blurs,
- // but they're competitive with separable blurs at 5x5 and smaller, and
- // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
- // Here are some framerates from a GeForce 8800GTS. The first pass resizes to
- // viewport size (4x in this test) and linearizes for sRGB codepaths, and the
- // remaining passes perform 6 full blurs. Mipmapped tests are performed at the
- // same scale, so they just measure the cost of mipmapping each FBO (only every
- // other FBO is mipmapped for separable blurs, to mimic realistic usage).
- // Mipmap Neither sRGB+Mipmap sRGB Function
- // 76.0 92.3 131.3 193.7 tex2Dblur3fast
- // 63.2 74.4 122.4 175.5 tex2Dblur3resize
- // 93.7 121.2 159.3 263.2 tex2Dblur3x3
- // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
- // 63.2 74.4 122.4 175.5 tex2Dblur5fast
- // 49.3 54.8 100.0 132.7 tex2Dblur5resize
- // 59.7 68.7 115.4 162.1 tex2Dblur5x5
- // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
- // 55.8 63.7 110.4 151.8 tex2Dblur7fast
- // 39.8 43.9 83.9 105.8 tex2Dblur7resize
- // 40.0 44.2 83.2 104.9 tex2Dblur7x7
- // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
- // 49.3 55.1 99.9 132.5 tex2Dblur9fast
- // 33.3 36.2 72.4 88.0 tex2Dblur9resize
- // 27.8 29.7 61.3 72.2 tex2Dblur9x9
- // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
- // 44.4 49.5 91.3 117.8 tex2Dblur11fast
- // 28.8 30.8 63.6 75.4 tex2Dblur11resize
- // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
- // TODO: Fill in benchmarks for new untested blurs.
- // tex2Dblur17fast
- // tex2Dblur25fast
- // tex2Dblur31fast
- // tex2Dblur43fast
- // tex2Dblur3x3resize
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // Set static standard deviations, but allow users to override them with their
- // own constants (even non-static uniforms if they're okay with the speed hit):
- #ifndef OVERRIDE_BLUR_STD_DEVS
- // blurN_std_dev values are specified in terms of dxdy strides.
- #ifdef USE_BINOMIAL_BLUR_STD_DEVS
- // By request, we can define standard deviations corresponding to a
- // binomial distribution with p = 0.5 (related to Pascal's triangle).
- // This distribution works such that blurring multiple times should
- // have the same result as a single larger blur. These values are
- // larger than default for blurs up to 6x and smaller thereafter.
- static const float blur3_std_dev = 0.84931640625;
- static const float blur4_std_dev = 0.84931640625;
- static const float blur5_std_dev = 1.0595703125;
- static const float blur6_std_dev = 1.06591796875;
- static const float blur7_std_dev = 1.17041015625;
- static const float blur8_std_dev = 1.1720703125;
- static const float blur9_std_dev = 1.2259765625;
- static const float blur10_std_dev = 1.21982421875;
- static const float blur11_std_dev = 1.25361328125;
- static const float blur12_std_dev = 1.2423828125;
- static const float blur17_std_dev = 1.27783203125;
- static const float blur25_std_dev = 1.2810546875;
- static const float blur31_std_dev = 1.28125;
- static const float blur43_std_dev = 1.28125;
- #else
- // The defaults are the largest values that keep the largest unused
- // blur term on each side <= 1.0/256.0. (We could get away with more
- // or be more conservative, but this compromise is pretty reasonable.)
- static const float blur3_std_dev = 0.62666015625;
- static const float blur4_std_dev = 0.66171875;
- static const float blur5_std_dev = 0.9845703125;
- static const float blur6_std_dev = 1.02626953125;
- static const float blur7_std_dev = 1.36103515625;
- static const float blur8_std_dev = 1.4080078125;
- static const float blur9_std_dev = 1.7533203125;
- static const float blur10_std_dev = 1.80478515625;
- static const float blur11_std_dev = 2.15986328125;
- static const float blur12_std_dev = 2.215234375;
- static const float blur17_std_dev = 3.45535583496;
- static const float blur25_std_dev = 5.3409576416;
- static const float blur31_std_dev = 6.86488037109;
- static const float blur43_std_dev = 10.1852050781;
- #endif // USE_BINOMIAL_BLUR_STD_DEVS
- #endif // OVERRIDE_BLUR_STD_DEVS
- #ifndef OVERRIDE_ERROR_BLURRING
- // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
- // in shared-sample blurs but increase blurring and feature shifting.
- static const float error_blurring = 0.5;
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // gamma-management.h relies on pass-specific settings to guide its behavior:
- // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
- //#include "gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "quad-pixel-communication.h"
- /////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
- #ifndef QUAD_PIXEL_COMMUNICATION_H
- #define QUAD_PIXEL_COMMUNICATION_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey*
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DISCLAIMER /////////////////////////////////
- // *This code was inspired by "Shader Amortization using Pixel Quad Message
- // Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
- // is not to plagiarize his fundamentally similar code and assert my own
- // copyright, but the algorithmic helper functions require so little code that
- // implementations can't vary by much except bugfixes and conventions. I just
- // wanted to license my own particular code here to avoid ambiguity and make it
- // clear that as far as I'm concerned, people can do as they please with it.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // Given screen pixel numbers, derive a "quad vector" describing a fragment's
- // position in its 2x2 pixel quad. Given that vector, obtain the values of any
- // variable at neighboring fragments.
- // Requires: Using this file in general requires:
- // 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // Functions will give incorrect results if this is not true,
- // so a test function is included.
- ///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
- float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Two measures of the current fragment's output pixel number
- // in the range ([0, IN.output_size.x), [0, IN.output_size.y)):
- // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
- // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
- // Returns: Two measures of the fragment's position in its 2x2 quad:
- // 1.) The .xy components are its 2x2 placement with respect to
- // uv direction (the origin (0, 0) is at the top-left):
- // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
- // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
- // You need this to arrange/weight shared texture samples.
- // 2.) The .zw components are its 2x2 placement with respect to
- // screen xy direction (IN.position); the origin varies.
- // quad_gather needs this measure to work correctly.
- // Note: quad_vector.zw = quad_vector.xy * float2(
- // ddx(output_pixel_num_wrt_uvxy.x),
- // ddy(output_pixel_num_wrt_uvxy.y));
- // Caveats: This function assumes the GPU driver always starts 2x2 pixel
- // quads at even pixel numbers. This assumption can be wrong
- // for odd output resolutions (nondeterministically so).
- float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
- float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
- return quad_vector;
- }
- float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Same as get_quad_vector_naive() (see that first).
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- float4 quad_vector_guess =
- get_quad_vector_naive(output_pixel_num_wrt_uvxy);
- // If quad_vector_guess.zw doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
- ddy(quad_vector_guess.w));
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) output_pixel_num_wrt_uv must increase with uv coords and
- // measure the current fragment's output pixel number in:
- // ([0, IN.output_size.x), [0, IN.output_size.y))
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- // Caveats: This function requires less information than the version
- // taking a float4, but it's potentially slower.
- // Do screen coords increase with or against uv? Get the direction
- // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
- float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
- ddy(output_pixel_num_wrt_uv.y));
- float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
- float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
- float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
- // If quad_vector_screen_guess doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
- ddy(quad_vector_screen_guess.y));
- float4 quad_vector_guess = float4(
- quad_vector_uv_guess, quad_vector_screen_guess);
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- void quad_gather(float4 quad_vector, float4 curr,
- out float4 adjx, out float4 adjy, out float4 diag)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // 3.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 4.) curr is any vector you wish to get neighboring values of.
- // Returns: Values of an input vector (curr) at neighboring fragments
- // adjacent x, adjacent y, and diagonal (via out parameters).
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float3 curr,
- out float3 adjx, out float3 adjy, out float3 diag)
- {
- // Float3 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float2 curr,
- out float2 adjx, out float2 adjy, out float2 diag)
- {
- // Float2 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- float4 quad_gather(float4 quad_vector, float curr)
- {
- // Float version:
- // Returns: return.x == current
- // return.y == adjacent x
- // return.z == adjacent y
- // return.w == diagonal
- float4 all = float4(curr);
- all.y = all.x - ddx(all.x) * quad_vector.z;
- all.zw = all.xy - ddy(all.xy) * quad_vector.w;
- return all;
- }
- float4 quad_gather_sum(float4 quad_vector, float4 curr)
- {
- // Requires: Same as quad_gather()
- // Returns: Sum of an input vector (curr) at all fragments in a quad.
- float4 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float3 quad_gather_sum(float4 quad_vector, float3 curr)
- {
- // Float3 version:
- float3 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float2 quad_gather_sum(float4 quad_vector, float2 curr)
- {
- // Float2 version:
- float2 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float quad_gather_sum(float4 quad_vector, float curr)
- {
- // Float version:
- float4 all_values = quad_gather(quad_vector, curr);
- return (all_values.x + all_values.y + all_values.z + all_values.w);
- }
- bool fine_derivatives_working(float4 quad_vector, float4 curr)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 3.) curr must be a test vector with non-constant derivatives
- // (its value should change nonlinearly across fragments).
- // Returns: true if fine/hybrid/high-quality derivatives are used, or
- // false if coarse derivatives are used or inconclusive
- // Usage: Test whether quad-pixel communication is working!
- // Method: We can confirm fine derivatives are used if the following
- // holds (ever, for any value at any fragment):
- // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
- // The more values we test (e.g. test a float4 two ways), the
- // easier it is to demonstrate fine derivatives are working.
- // TODO: Check for floating point exact comparison issues!
- float4 ddx_curr = ddx(curr);
- float4 ddy_curr = ddy(curr);
- float4 adjx = curr - ddx_curr * quad_vector.z;
- float4 adjy = curr - ddy_curr * quad_vector.w;
- bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
- bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
- return any(bool2(ddy_different, ddx_different));
- }
- bool fine_derivatives_working_fast(float4 quad_vector, float curr)
- {
- // Requires: Same as fine_derivatives_working()
- // Returns: Same as fine_derivatives_working()
- // Usage: This is faster than fine_derivatives_working() but more
- // likely to return false negatives, so it's less useful for
- // offline testing/debugging. It's also useless as the basis
- // for dynamic runtime branching as of May 2014: Derivatives
- // (and quad-pixel communication) are currently disallowed in
- // branches. However, future GPU's may allow you to use them
- // in dynamic branches if you promise the branch condition
- // evaluates the same for every fragment in the quad (and/or if
- // the driver enforces that promise by making a single fragment
- // control branch decisions). If that ever happens, this
- // version may become a more economical choice.
- float ddx_curr = ddx(curr);
- float ddy_curr = ddy(curr);
- float adjx = curr - ddx_curr * quad_vector.z;
- return (ddy_curr != ddy(adjx));
- }
- #endif // QUAD_PIXEL_COMMUNICATION_H
- //////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
- //#include "special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////////// HELPERS //////////////////////////////////
- inline float4 uv2_to_uv4(float2 tex_uv)
- {
- // Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
- return float4(tex_uv, 0.0, 0.0);
- }
- // Make a length squared helper macro (for usage with static constants):
- #define LENGTH_SQ(vec) (dot(vec, vec))
- inline float get_fast_gaussian_weight_sum_inv(const float sigma)
- {
- // We can use the Gaussian integral to calculate the asymptotic weight for
- // the center pixel. Since the unnormalized center pixel weight is 1.0,
- // the normalized weight is the same as the weight sum inverse. Given a
- // large enough blur (9+), the asymptotic weight sum is close and faster:
- // center_weight = 0.5 *
- // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
- // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
- // However, we can get even faster results with curve-fitting. These are
- // also closer than the asymptotic results, because they were constructed
- // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
- // (0, blurN_std_dev), so the results for smaller sigmas are biased toward
- // smaller blurs. The max error is 0.0031793913.
- // Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
- //static const float temp = 0.5/sqrt(2.0);
- //return erf(temp/sigma);
- return min(exp(exp(0.348348412457428/
- (sigma - 0.0860587260734721))), 0.399334576340352/sigma);
- }
- //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
- float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // Calculate Gaussian blur kernel weights and a normalization factor for
- // distances of 0-4, ignoring constant factors (since we're normalizing).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Statically normalize weights, sum weighted samples, and return. Blurs are
- // currently optimized for dynamic weights.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- /////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
- float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: 1.) Global requirements must be met (see file description).
- // 2.) filter_linearN must = "true" in your .cgp file.
- // 3.) For gamma-correct bilinear filtering, global
- // gamma_aware_bilinear == true (from gamma-management.h)
- // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w45 = w4 + w5;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- const float w45_ratio = w5/w45;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 4 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w34 = w3 + w4;
- const float w12_ratio = w2/w12;
- const float w34_ratio = w4/w34;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 2 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w12_ratio = w2/w12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w01_ratio = w1/w01;
- // Weights for all samples are the same, so just average them:
- return 0.5 * (
- tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
- tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
- }
- //////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
- // Huge separable blurs come only in "fast" versions.
- float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- const float w16 = exp(-256.0 * denom_inv);
- const float w17 = exp(-289.0 * denom_inv);
- const float w18 = exp(-324.0 * denom_inv);
- const float w19 = exp(-361.0 * denom_inv);
- const float w20 = exp(-400.0 * denom_inv);
- const float w21 = exp(-441.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
- // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w16_17 = w16 + w17;
- const float w18_19 = w18 + w19;
- const float w20_21 = w20 + w21;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- const float w16_17_ratio = w17/w16_17;
- const float w18_19_ratio = w19/w18_19;
- const float w20_21_ratio = w21/w20_21;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
- // w9 + w10 + w11 + w12 + w13 + w14 + w15));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 12 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w9_10 = w9 + w10;
- const float w11_12 = w11 + w12;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- const float w9_10_ratio = w10/w9_10;
- const float w11_12_ratio = w12/w11_12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 8 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
- float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
- // resized input.
- // Description:
- // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
- // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
- const float denom_inv = 0.5/(sigma*sigma);
- // Load each sample. We need all 3x3 samples. Quad-pixel communication
- // won't help either: This should perform like tex2Dblur5x5, but sharing a
- // 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
- const float2 sample4_uv = tex_uv;
- const float2 dx = float2(dxdy.x, 0.0);
- const float2 dy = float2(0.0, dxdy.y);
- const float2 sample1_uv = sample4_uv - dy;
- const float2 sample7_uv = sample4_uv + dy;
- const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
- const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
- const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
- const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
- const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
- const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
- const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
- const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
- const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
- // Statically compute Gaussian sample weights:
- const float w4 = 1.0;
- const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
- // Weight and sum the samples:
- const float3 sum = w4 * sample4 +
- w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
- w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
- return sum * weight_sum_inv;
- }
- //////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
- float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
- // 5x5 carefully selected bilinear samples.
- // Description:
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
- // bilinear sample location to reflect the true Gaussian weights for each
- // underlying texel. The following diagram illustrates the relative
- // locations of bilinear samples. Each sample with the same number has the
- // same weight (notice the symmetry). The letters a, b, c, d distinguish
- // quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
- // distinguish 1D directions along the line containing the pixel center:
- // 6a 5a 2U 5b 6b
- // 4a 3a 1U 3b 4b
- // 2L 1L 0C 1R 2R
- // 4c 3c 1D 3d 4d
- // 6c 5c 2D 5d 6d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2, 2x1, 1x2, or 1x1 texel block:
- // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
- // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
- // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
- // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
- // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
- // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
- // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
- // Note there is only one C texel and only two texels for each U, D, L, or
- // R sample. The center sample is effectively a nearest neighbor sample,
- // and the U/D/L/R samples use 1D linear filtering. All other texels are
- // read with bilinear samples somewhere within their 2x2 texel blocks.
- // COMPUTE TEXTURE COORDS:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
- // the center, and reuse them independently for both dimensions. Compute
- // these offsets based on the relative 1D Gaussian weights of the texels
- // in question. (w1off means "Gaussian weight for the texel 1.0 texels
- // away from the pixel center," etc.).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float w4off = exp(-16.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- const float texel3to4ratio = w4off/(w3off + w4off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
- const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
- const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
- const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2R1 = w3off;
- const float w2R2 = w4off;
- const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
- const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
- const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
- const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2R1 + w2R2;
- const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
- const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
- const float w5 = w4;
- const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
- // LOAD TEXTURE SAMPLES:
- // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- // Sampling order doesn't seem to affect performance, so just be clear:
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
- const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
- const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
- const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
- const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
- const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
- const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
- const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
- const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
- const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2R + sample2D + sample2L + sample2U);
- sum += w3 * (sample3d + sample3c + sample3b + sample3a);
- sum += w4 * (sample4d + sample4c + sample4b + sample4a);
- sum += w5 * (sample5d + sample5c + sample5b + sample5a);
- sum += w6 * (sample6d + sample6c + sample6b + sample6a);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
- // 4x4 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 4a 3a 3b 4b
- // 2a 1a 1b 2b
- // 2c 1c 1d 2d
- // 4c 3c 3d 4d
- // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
- // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
- // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
- // the center texel):
- // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
- // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
- // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
- // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
- // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- const float texel2to3ratio = w3off/(w2off + w3off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1abcd = 1.0;
- const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
- const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
- const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights.
- // Split weights for shared texels between samples sharing them:
- const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
- const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
- const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
- // LOAD TEXTURE SAMPLES:
- // Load all 16 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * (sample1a + sample1b + sample1c + sample1d);
- sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
- sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
- sum += w4 * (sample4a + sample4b + sample4c + sample4d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
- // 3x3 carefully selected bilinear samples.
- // Description:
- // First see the description for tex2Dblur9x9(). This blur uses the same
- // concept and sample/texel locations except on a smaller scale. Samples:
- // 2a 1U 2b
- // 1L 0C 1R
- // 2c 1D 2d
- // Texels:
- // 2a4 2a3 1U2 2b3 2b4
- // 2a2 2a1 1U1 2b1 2b2
- // 1L2 1L1 0C1 1R1 1R2
- // 2c2 2c1 1D1 2d1 2d2
- // 2c4 2c3 1D2 2d3 2d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
- // LOAD TEXTURE SAMPLES:
- // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2a + sample2b + sample2c + sample2d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
- // 2x2 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 0a 0b
- // 0c 0d
- // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
- // a vertical column of texels, and samples 0a/0c and 0b/0d share a
- // horizontal row of texels (all samples share the center texel):
- // 0a3 0ab2 0b3
- // 0ac1 0*0 0bd1
- // 0c3 0cd2 0d3
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- // LOAD TEXTURE SAMPLES:
- // Load all 4 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
- const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
- const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
- const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Weights for all samples are the same, so just average them:
- return 0.25 * (sample0a + sample0b + sample0c + sample0d);
- }
- ////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
- float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: 1.) Same as tex2Dblur9()
- // 2.) ddx() and ddy() are present in the current Cg profile.
- // 3.) The GPU driver is using fine/high-quality derivatives.
- // 4.) quad_vector *correctly* describes the current fragment's
- // location in its pixel quad, by the conventions noted in
- // get_quad_vector[_naive].
- // 5.) tex_uv.w = log2(IN.video_size/IN.output_size).y
- // 6.) tex2Dlod() is present in the current Cg profile.
- // Optional: Tune artifacts vs. excessive blurriness with the global
- // float error_blurring.
- // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
- // blur (a 6x6 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // Perform a 1-pass blur with shared texture lookups across a pixel quad.
- // We'll get neighboring samples with high-quality ddx/ddy derivatives, as
- // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
- // Message Passing" by Eric Penner.
- //
- // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
- // bilinear samples, where bilinear sampling positions are computed from
- // the relative Gaussian weights of the 4 surrounding texels. The catch is
- // that the appropriate texel weights and sample coords differ for each
- // fragment, but we're reusing most of the same samples across a quad of
- // destination fragments. (We do use unique coords for the four nearest
- // samples at each fragment.) Mixing bilinear filtering and sample-sharing
- // therefore introduces some error into the weights, and this can get nasty
- // when the source image is small or high-frequency. Computing bilinear
- // ratios based on weights at the sample field center results in sharpening
- // and ringing artifacts, but we can move samples closer to halfway between
- // texels to try blurring away the error (which can move features around by
- // a texel or so). Tune this with the global float "error_blurring".
- //
- // The pixel quad's sample field covers 12x12 texels, accessed through 6x6
- // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
- // texels (5x5 bilinear taps), and each fragment is responsible for loading
- // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
- // to use unique bilinear coords for sample0* for each fragment. This
- // diagram illustrates the relative locations of bilinear samples 1-9 for
- // each quadrant a, b, c, d (note samples will not be equally spaced):
- // 8a 7a 6a 6b 7b 8b
- // 5a 4a 3a 3b 4b 5b
- // 2a 1a 0a 0b 1b 2b
- // 2c 1c 0c 0d 1d 2d
- // 5c 4c 3c 3d 4d 5d
- // 8c 7c 6c 6d 7d 8d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2 texel block:
- // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
- // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
- // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
- // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
- // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
- // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
- // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
- // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
- // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
- // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
- // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
- // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
- // With this symmetric arrangement, we don't have to know which absolute
- // quadrant a sample lies in to assign kernel weights; it's enough to know
- // the sample number and the relative quadrant of the sample (relative to
- // the current quadrant):
- // {current, adjacent x, adjacent y, diagonal}
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
- // and [4, 5] away from the fragment, and reuse them independently for both
- // dimensions. Use the sample field center as the estimated destination,
- // but nudge the result closer to halfway between texels to blur error.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // based on the sum of their 4 underlying texel weights. Assume a same-
- // resolution blur, so each symmetrically named sample weight will compute
- // the same at every fragment in the pixel quad: We can therefore compute
- // texel weights based only on the bottom-right quadrant (fragment at 0d0).
- // Too avoid too much boilerplate code, use a macro to get all 4 texel
- // weights for a bilinear sample based on the offset of its top-left texel:
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
- const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
- const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
- const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
- const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
- const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
- const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
- const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
- const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
- const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- float3 sample8adjx, sample8adjy, sample8diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
- sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
- sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
- sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
- // blur (a 5x5 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 25 of the 36 samples taken across the pixel quad (to cover a
- // 5x5 sample area, or 10x10 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 11 omitted samples
- // are always the "same:"
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 25 of the 36 sample weights. Skip the following weights:
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w4curr + w5curr + w6curr + w7curr + w8curr +
- w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
- w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
- w0diag + w1diag + w3diag + w4diag);
- // Statically pack most weights for runtime. Note the mixed packing:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
- const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad in order of need:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result. First do the simple ones:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- // Now do the mixed-sample ones:
- sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
- sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
- sum += w8curr * sample8curr;
- // Normalize the sum (so the weights add to 1.0) and return:
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
- // blur (a 4x4 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This function
- // shares the same concept and a similar sample placement, except each
- // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
- // respectively. There could be a total of 16 samples, 4 of which each
- // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
- // its own offset to reduce shared sample artifacts, bringing the sample
- // count for each fragment to 7. Sample placement:
- // 3a 2a 2b 3b
- // 1a 0a 0b 1b
- // 1c 0c 0d 1d
- // 3c 2c 2d 3d
- // Texel placement:
- // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
- // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
- // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
- // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
- // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
- // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
- // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
- // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
-
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
- // blur (a 3x3 blur of carefully selected bilinear samples)
- // of the given mip level. There will be some inaccuracies,subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur8x8shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 9 of the 16 samples taken across the pixel quad (to cover a
- // 3x3 sample area, or 6x6 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 7 omitted samples
- // are always the "same:"
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 9 of the 16 sample weights. Skip the following weights:
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
- // Statically pack some weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result for sample1*, and handle the rest
- // of the weights more directly/verbosely:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
- w2adjx * sample2adjx + w3curr * sample3curr;
- return sum * weight_sum_inv;
- }
- /////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
- // The following blurs are static wrappers around the dynamic blurs above.
- // HOPEFULLY, the compiler will be smart enough to do constant-folding.
- // Resizable separable blurs:
- inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Fast separable blurs:
- inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Huge, "fast" separable blurs:
- inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
- }
- inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
- }
- inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
- }
- inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
- }
- // Resizable one-pass blurs:
- inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" one-pass blurs:
- inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" shared-sample one-pass blurs:
- inline float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
- }
- inline float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
- }
- inline float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
- }
- inline float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
- }
- #endif // BLUR_FUNCTIONS_H
- //////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
- /////////////////////////////// BLOOM CONSTANTS //////////////////////////////
- // Compute constants with manual inlines of the functions below:
- static const float bloom_diff_thresh = 1.0/256.0;
- /////////////////////////////////// HELPERS //////////////////////////////////
- inline float get_min_sigma_to_blur_triad(const float triad_size,
- const float thresh)
- {
- // Requires: 1.) triad_size is the final phosphor triad size in pixels
- // 2.) thresh is the max desired pixel difference in the
- // blurred triad (e.g. 1.0/256.0).
- // Returns: Return the minimum sigma that will fully blur a phosphor
- // triad on the screen to an even color, within thresh.
- // This closed-form function was found by curve-fitting data.
- // Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
- return -0.05168 + 0.6113*triad_size -
- 1.122*triad_size*sqrt(0.000416 + thresh);
- // Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
- //return 0.5985*triad_size - triad_size*sqrt(thresh)
- }
- inline float get_absolute_scale_blur_sigma(const float thresh)
- {
- // Requires: 1.) min_expected_triads must be a global float. The number
- // of horizontal phosphor triads in the final image must be
- // >= min_allowed_viewport_triads.x for realistic results.
- // 2.) bloom_approx_scale_x must be a global float equal to the
- // absolute horizontal scale of BLOOM_APPROX.
- // 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
- // should be <= 1.1658025090 to keep the final result <
- // 0.62666015625 (the largest sigma ensuring the largest
- // unused texel weight stays < 1.0/256.0 for a 3x3 blur).
- // 4.) thresh is the max desired pixel difference in the
- // blurred triad (e.g. 1.0/256.0).
- // Returns: Return the minimum Gaussian sigma that will blur the pass
- // output as much as it would have taken to blur away
- // bloom_approx_scale_x horizontal phosphor triads.
- // Description:
- // BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
- // use the same blur sigma as the actual phosphor bloom and scale it down
- // to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
- // we don't know the viewport size in this pass. Instead, we'll blur as
- // much as it would take to blur away min_allowed_viewport_triads.x. This
- // will blur "more than necessary" if the user actually uses more triads,
- // but that's not terrible either, because blurring a constant fraction of
- // the viewport may better resemble a true optical bloom anyway (since the
- // viewport will generally be about the same fraction of each player's
- // field of view, regardless of screen size and resolution).
- // Assume an extremely large viewport size for asymptotic results.
- return bloom_approx_scale_x/max_viewport_size_x *
- get_min_sigma_to_blur_triad(
- max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
- }
- inline float get_center_weight(const float sigma)
- {
- // Given a Gaussian blur sigma, get the blur weight for the center texel.
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- return get_fast_gaussian_weight_sum_inv(sigma);
- #else
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- const float w16 = exp(-256.0 * denom_inv);
- const float w17 = exp(-289.0 * denom_inv);
- const float w18 = exp(-324.0 * denom_inv);
- const float w19 = exp(-361.0 * denom_inv);
- const float w20 = exp(-400.0 * denom_inv);
- const float w21 = exp(-441.0 * denom_inv);
- // Note: If the implementation uses a smaller blur than the max allowed,
- // the worst case scenario is that the center weight will be overestimated,
- // so we'll put a bit more energy into the brightpass...no huge deal.
- // Then again, if the implementation uses a larger blur than the max
- // "allowed" because of dynamic branching, the center weight could be
- // underestimated, which is more of a problem...consider always using
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // 43x blur:
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
- w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- // 31x blur:
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
- w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- // 25x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- // 17x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- #else
- // 9x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- const float center_weight = weight_sum_inv * weight_sum_inv;
- return center_weight;
- #endif
- }
- inline float3 tex2DblurNfast(const sampler2D texture, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // If sigma is static, we can safely branch and use the smallest blur
- // that's big enough. Ignore #define hints, because we'll only use a
- // large blur if we actually need it, and the branches cost nothing.
- #ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- #else
- // It's still worth branching if the profile supports dynamic branches:
- // It's much faster than using a hugely excessive blur, but each branch
- // eats ~1% FPS.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- #endif
- #endif
- // Failed optimization notes:
- // I originally created a same-size mipmapped 5-tap separable blur10 that
- // could handle any sigma by reaching into lower mip levels. It was
- // as fast as blur25fast for runtime sigmas and a tad faster than
- // blur31fast for static sigmas, but mipmapping two viewport-size passes
- // ate 10% of FPS across all codepaths, so it wasn't worth it.
- #ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- if(sigma <= blur9_std_dev)
- {
- return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur17_std_dev)
- {
- return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur25_std_dev)
- {
- return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur31_std_dev)
- {
- return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
- }
- else
- {
- return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
- }
- #else
- // If we can't afford to branch, we can only guess at what blur
- // size we need. Therefore, use the largest blur allowed.
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
- #else
- return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- #endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- }
- inline float get_bloom_approx_sigma(const float output_size_x_runtime,
- const float estimated_viewport_size_x)
- {
- // Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
- // This is included for dynamic codepaths just in case the
- // following two globals are incorrect:
- // 2.) bloom_approx_size_x_for_skip should == the same
- // if PHOSPHOR_BLOOM_FAKE is #defined
- // 3.) bloom_approx_size_x should == the same otherwise
- // Returns: For gaussian4x4, return a dynamic small bloom sigma that's
- // as close to optimal as possible given available information.
- // For blur3x3, return the a static small bloom sigma that
- // works well for typical cases. Otherwise, we're using simple
- // bilinear filtering, so use static calculations.
- // Assume the default static value. This is a compromise that ensures
- // typical triads are blurred, even if unusually large ones aren't.
- static const float mask_num_triads_static =
- max(min_allowed_viewport_triads.x, mask_num_triads_desired_static);
- const float mask_num_triads_from_size =
- estimated_viewport_size_x/mask_triad_size_desired;
- const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
- lerp(mask_num_triads_from_size, mask_num_triads_desired,
- mask_specify_num_triads));
- // Assume an extremely large viewport size for asymptotic results:
- static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
- if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
- {
- // Use the runtime num triads and output size:
- const float asymptotic_triad_size =
- max_viewport_size_x/mask_num_triads_runtime;
- const float asymptotic_sigma = get_min_sigma_to_blur_triad(
- asymptotic_triad_size, bloom_diff_thresh);
- const float bloom_approx_sigma =
- asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
- // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
- // account for the Gaussian scanline sigma from the last pass too.
- // The bloom will be too wide horizontally but tall enough vertically.
- return length(float2(bloom_approx_sigma, beam_max_sigma));
- }
- else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
- {
- // We're either using blur3x3 or bilinear filtering. The biggest
- // reason to choose blur3x3 is to avoid dynamic weights, so use a
- // static calculation.
- #ifdef PHOSPHOR_BLOOM_FAKE
- static const float output_size_x_static =
- bloom_approx_size_x_for_fake;
- #else
- static const float output_size_x_static = bloom_approx_size_x;
- #endif
- static const float asymptotic_triad_size =
- max_viewport_size_x/mask_num_triads_static;
- const float asymptotic_sigma = get_min_sigma_to_blur_triad(
- asymptotic_triad_size, bloom_diff_thresh);
- const float bloom_approx_sigma =
- asymptotic_sigma * output_size_x_static/max_viewport_size_x;
- // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
- // try accounting for the Gaussian scanline sigma from the last pass
- // too; use the static default value:
- return length(float2(bloom_approx_sigma, beam_max_sigma_static));
- }
- }
- inline float get_final_bloom_sigma(const float bloom_sigma_runtime)
- {
- // Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
- // optimal for the [known] triad size.
- // 2.) Call this from a fragment shader (not a vertex shader),
- // or blurring with static sigmas won't be constant-folded.
- // Returns: Return the optimistic static sigma if the triad size is
- // known at compile time. Otherwise return the optimal runtime
- // sigma (10% slower) or an implementation-specific compromise
- // between an optimistic or pessimistic static sigma.
- // Notes: Call this from the fragment shader, NOT the vertex shader,
- // so static sigmas can be constant-folded!
- const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
- mask_triad_size_desired_static, bloom_diff_thresh);
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- return bloom_sigma_runtime;
- #else
- // Overblurring looks as bad as underblurring, so assume average-size
- // triads, not worst-case huge triads:
- return bloom_sigma_optimistic;
- #endif
- }
- #endif // BLOOM_FUNCTIONS_H
- //////////////////////////// END BLOOM-FUNCTIONS ///////////////////////////
- /////////////////////////// END FRAGMENT-INCLUDES //////////////////////////
- void main() {
- // Blur the brightpass horizontally with a 9/17/25/43x blur:
- const float bloom_sigma = get_final_bloom_sigma(bloom_sigma_runtime);
- const float3 color = tex2DblurNfast(input_texture, tex_uv,
- bloom_dxdy, bloom_sigma);
- // Encode and output the blurred image:
- FragColor = encode_output(float4(color, 1.0));
- }
|