1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973 |
- #version 150
- uniform sampler2D source[];
- uniform vec4 sourceSize[];
- uniform vec4 targetSize;
- in Vertex {
- vec2 vTexCoord;
- vec2 tex_uv;
- vec2 blur_dxdy;
- vec2 uv_scanline_step;
- float estimated_viewport_size_x;
- vec2 texture_size_inv;
- vec2 tex_uv_to_pixel_scale;
- };
- out vec4 FragColor;
- // USER SETTINGS BLOCK //
- #define crt_gamma 2.500000
- #define lcd_gamma 2.200000
- #define levels_contrast 1.0
- #define halation_weight 0.0
- #define diffusion_weight 0.075
- #define bloom_underestimate_levels 0.8
- #define bloom_excess 0.000000
- #define beam_min_sigma 0.020000
- #define beam_max_sigma 0.300000
- #define beam_spot_power 0.330000
- #define beam_min_shape 2.000000
- #define beam_max_shape 4.000000
- #define beam_shape_power 0.250000
- #define beam_horiz_filter 0.000000
- #define beam_horiz_sigma 0.35
- #define beam_horiz_linear_rgb_weight 1.000000
- #define convergence_offset_x_r -0.000000
- #define convergence_offset_x_g 0.000000
- #define convergence_offset_x_b 0.000000
- #define convergence_offset_y_r 0.000000
- #define convergence_offset_y_g -0.000000
- #define convergence_offset_y_b 0.000000
- #define mask_type 1.000000
- #define mask_sample_mode_desired 0.000000
- #define mask_specify_num_triads 0.000000
- #define mask_triad_size_desired 3.000000
- #define mask_num_triads_desired 480.000000
- #define aa_subpixel_r_offset_x_runtime -0.0
- #define aa_subpixel_r_offset_y_runtime 0.000000
- #define aa_cubic_c 0.500000
- #define aa_gauss_sigma 0.500000
- #define geom_mode_runtime 0.000000
- #define geom_radius 2.000000
- #define geom_view_dist 2.000000
- #define geom_tilt_angle_x 0.000000
- #define geom_tilt_angle_y 0.000000
- #define geom_aspect_ratio_x 432.000000
- #define geom_aspect_ratio_y 329.000000
- #define geom_overscan_x 1.000000
- #define geom_overscan_y 1.000000
- #define border_size 0.015
- #define border_darkness 2.0
- #define border_compress 2.500000
- #define interlace_bff 0.000000
- #define interlace_1080i 0.000000
- // END USER SETTINGS BLOCK //
- // compatibility macros for transparently converting HLSLisms into GLSLisms
- #define mul(a,b) (b*a)
- #define lerp(a,b,c) mix(a,b,c)
- #define saturate(c) clamp(c, 0.0, 1.0)
- #define frac(x) (fract(x))
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #define float2x2 mat2x2
- #define float3x3 mat3x3
- #define float4x4 mat4x4
- #define float4x3 mat4x3
- #define float2x4 mat2x4
- #define IN params
- #define texture_size sourceSize[0].xy
- #define video_size sourceSize[0].xy
- #define output_size targetSize.xy
- #define frame_count phase
- #define static
- #define inline
- #define const
- #define fmod(x,y) mod(x,y)
- #define ddx(c) dFdx(c)
- #define ddy(c) dFdy(c)
- #define atan2(x,y) atan(y,x)
- #define rsqrt(c) inversesqrt(c)
- #define input_texture source[0]
- #if defined(GL_ES)
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- #if __VERSION__ >= 130
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_TEXTURE texture2D
- #endif
- #define ORIG_LINEARIZEDvideo_size sourceSize[1].xy
- #define ORIG_LINEARIZEDtexture_size sourceSize[1].xy
- #define ORIG_LINEARIZED source[1]
- float bloom_approx_scale_x = targetSize.x / sourceSize[0].y;
- const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
- /////////////////////////////// VERTEX INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "bind-shader-h"
- ///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
- #ifndef BIND_SHADER_PARAMS_H
- #define BIND_SHADER_PARAMS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "derived-settings-and-constants.h"
- ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- // Override some parameters for gamma-management.h and tex2Dantialias.h:
- #define OVERRIDE_DEVICE_GAMMA
- static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
- #define ANTIALIAS_OVERRIDE_BASICS
- #define ANTIALIAS_OVERRIDE_PARAMETERS
- // Provide accessors for vector constants that pack scalar uniforms:
- inline float2 get_aspect_vector(const float geom_aspect_ratio)
- {
- // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
- // the absolute scale from affecting the uv-mapping for curvature:
- const float geom_clamped_aspect_ratio =
- min(geom_aspect_ratio, geom_max_aspect_ratio);
- const float2 geom_aspect =
- normalize(float2(geom_clamped_aspect_ratio, 1.0));
- return geom_aspect;
- }
- inline float2 get_geom_overscan_vector()
- {
- return float2(geom_overscan_x, geom_overscan_y);
- }
- inline float2 get_geom_tilt_angle_vector()
- {
- return float2(geom_tilt_angle_x, geom_tilt_angle_y);
- }
- inline float3 get_convergence_offsets_x_vector()
- {
- return float3(convergence_offset_x_r, convergence_offset_x_g,
- convergence_offset_x_b);
- }
- inline float3 get_convergence_offsets_y_vector()
- {
- return float3(convergence_offset_y_r, convergence_offset_y_g,
- convergence_offset_y_b);
- }
- inline float2 get_convergence_offsets_r_vector()
- {
- return float2(convergence_offset_x_r, convergence_offset_y_r);
- }
- inline float2 get_convergence_offsets_g_vector()
- {
- return float2(convergence_offset_x_g, convergence_offset_y_g);
- }
- inline float2 get_convergence_offsets_b_vector()
- {
- return float2(convergence_offset_x_b, convergence_offset_y_b);
- }
- inline float2 get_aa_subpixel_r_offset()
- {
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // WARNING: THIS IS EXTREMELY EXPENSIVE.
- return float2(aa_subpixel_r_offset_x_runtime,
- aa_subpixel_r_offset_y_runtime);
- #else
- return aa_subpixel_r_offset_static;
- #endif
- #else
- return aa_subpixel_r_offset_static;
- #endif
- }
- // Provide accessors settings which still need "cooking:"
- inline float get_mask_amplify()
- {
- static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
- static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
- static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
- return mask_type < 0.5 ? mask_grille_amplify :
- mask_type < 1.5 ? mask_slot_amplify :
- mask_shadow_amplify;
- }
- inline float get_mask_sample_mode()
- {
- #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_desired;
- #else
- return clamp(mask_sample_mode_desired, 1.0, 2.0);
- #endif
- #else
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_static;
- #else
- return clamp(mask_sample_mode_static, 1.0, 2.0);
- #endif
- #endif
- }
- #endif // BIND_SHADER_PARAMS_H
- //////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "scanline-functions.h"
- ///////////////////////////// BEGIN SCANLINE-FUNCTIONS ////////////////////////////
- #ifndef SCANLINE_FUNCTIONS_H
- #define SCANLINE_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "../../../../include/special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- ///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
- inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
- {
- // Requires: Globals:
- // 1.) beam_min_sigma and beam_max_sigma are global floats
- // containing the desired minimum and maximum beam standard
- // deviations, for dim and bright colors respectively.
- // 2.) beam_max_sigma must be > 0.0
- // 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
- // 4.) beam_spot_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
- // sigma_range as a parameter to avoid repeated computation
- // when beam_{min, max}_sigma are runtime shader parameters
- // Optional: Users may set beam_spot_shape_function to 1 to define the
- // inner f(color) subfunction (see below) as:
- // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
- // Otherwise (technically, if beam_spot_shape_function < 0.5):
- // f(color) = pow(color, beam_spot_power)
- // Returns: The standard deviation of the Gaussian beam for "color:"
- // sigma = beam_min_sigma + sigma_range * f(color)
- // Details/Discussion:
- // The beam's spot shape vaguely resembles an aspect-corrected f() in the
- // range [0, 1] (not quite, but it's related). f(color) = color makes
- // spots look like diamonds, and a spherical function or cube balances
- // between variable width and a soft/realistic shape. A beam_spot_power
- // > 1.0 can produce an ugly spot shape and more initial clipping, but the
- // final shape also differs based on the horizontal resampling filter and
- // the phosphor bloom. For instance, resampling horizontally in nonlinear
- // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
- // shape, but a sixth root is still quite soft. A power function (default
- // 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
- // has the highest variability without an awful spot shape.
- //
- // beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
- // difference from beam_max_sigma affects beam width variability. It only
- // affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
- // a conservative estimate for a more complex constraint).
- //
- // beam_max_sigma affects clipping and increasing scanline width/softness
- // as color increases. The wider this is, the more scanlines need to be
- // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
- // at which the first unused scanline always has a weight < 1.0/255.0 is:
- // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
- // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
- // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
- // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
- // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
- // Generalized Gaussians permit more leeway here as steepness increases.
- if(beam_spot_shape_function < 0.5)
- {
- // Use a power function:
- return float3(beam_min_sigma) + sigma_range *
- pow(color, float3(beam_spot_power));
- }
- else
- {
- // Use a spherical function:
- const float3 color_minus_1 = color - float3(1.0);
- return float3(beam_min_sigma) + sigma_range *
- sqrt(float3(1.0) - color_minus_1*color_minus_1);
- }
- }
- inline float3 get_generalized_gaussian_beta(const float3 color,
- const float shape_range)
- {
- // Requires: Globals:
- // 1.) beam_min_shape and beam_max_shape are global floats
- // containing the desired min/max generalized Gaussian
- // beta parameters, for dim and bright colors respectively.
- // 2.) beam_max_shape must be >= 2.0
- // 3.) beam_min_shape must be in [2.0, beam_max_shape]
- // 4.) beam_shape_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) shape_range = beam_max_shape - beam_min_shape; we take
- // shape_range as a parameter to avoid repeated computation
- // when beam_{min, max}_shape are runtime shader parameters
- // Returns: The type-I generalized Gaussian "shape" parameter beta for
- // the given color.
- // Details/Discussion:
- // Beta affects the scanline distribution as follows:
- // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
- // b.) beta == 2.0 just degenerates to a Gaussian
- // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
- // than a Gaussian. Whereas high sigmas widen and soften peaks, high
- // beta widen and sharpen peaks at the risk of aliasing.
- // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
- // transitions, whereas lower ones sharpen them (at the risk of aliasing).
- return beam_min_shape + shape_range * pow(color, float3(beam_shape_power));
- }
- float3 scanline_gaussian_integral_contrib(const float3 dist,
- const float3 color, const float pixel_height, const float sigma_range)
- {
- // Requires: 1.) dist is the distance of the [potentially separate R/G/B]
- // point(s) from a scanline in units of scanlines, where
- // 1.0 means the sample point straddles the next scanline.
- // 2.) color is the underlying source color along a scanline.
- // 3.) pixel_height is the output pixel height in scanlines.
- // 4.) Requirements of get_gaussian_sigma() must be met.
- // Returns: Return a scanline's light output over a given pixel.
- // Details:
- // The CRT beam profile follows a roughly Gaussian distribution which is
- // wider for bright colors than dark ones. The integral over the full
- // range of a Gaussian function is always 1.0, so we can vary the beam
- // with a standard deviation without affecting brightness. 'x' = distance:
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- // gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
- // Use a numerical approximation of the "error function" (the Gaussian
- // indefinite integral) to find the definite integral of the scanline's
- // average brightness over a given pixel area. Even if curved coords were
- // used in this pass, a flat scalar pixel height works almost as well as a
- // pixel height computed from a full pixel-space to scanline-space matrix.
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- const float3 ph_offset = float3(pixel_height * 0.5);
- const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
- const float3 integral_high = erf((dist + ph_offset)*denom_inv);
- const float3 integral_low = erf((dist - ph_offset)*denom_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_generalized_gaussian_integral_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel.
- // A generalized Gaussian distribution allows the shape (beta) to vary
- // as well as the width (alpha). "gamma" refers to the gamma function:
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- // ligamma(s, z) is the lower incomplete gamma function, for which we only
- // implement two of four branches (because we keep 1/beta <= 0.5):
- // generalized integral = 0.5 + 0.5* sign(x) *
- // ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
- // See get_generalized_gaussian_beta() for a discussion of beta.
- // We base alpha on the intended Gaussian sigma, but it only strictly
- // models models standard deviation at beta == 2, because the standard
- // deviation depends on both alpha and beta (keeping alpha independent is
- // faster and preserves intuitive behavior and a full spectrum of results).
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 s = float3(1.0)/beta;
- const float3 ph_offset = float3(pixel_height * 0.5);
- // Pass beta to gamma_impl to avoid repeated divides. Similarly pass
- // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
- const float3 dist1 = dist + ph_offset;
- const float3 dist0 = dist - ph_offset;
- const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
- s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
- const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
- s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
- const float pixel_height, const float sigma_range)
- {
- // See scanline_gaussian integral_contrib() for detailed comments!
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- // Avoid repeated divides:
- const float3 sigma_inv = float3(1.0)/sigma;
- const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
- const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel away in each direction as well:
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three pure Gaussian samples:
- const float3 scale = color/3.0 * outer_denom_inv;
- const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
- const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
- const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
- return scale * (weight1 + weight2 + weight3);
- }
- else
- {
- return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
- }
- }
- float3 scanline_generalized_gaussian_sampled_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // See scanline_generalized_gaussian_integral_contrib() for details!
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- // Avoid repeated divides:
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 beta_inv = float3(1.0)/beta;
- const float3 scale = color * beta * 0.5 * alpha_inv /
- gamma_impl(beta_inv, beta);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel closer to and farther from the scanline too.
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three generalized Gaussian samples:
- const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
- const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
- const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
- return scale/3.0 * (weight1 + weight2 + weight3);
- }
- else
- {
- return scale * exp(-pow(abs(dist*alpha_inv), beta));
- }
- }
- inline float3 scanline_contrib(float3 dist, float3 color,
- float pixel_height, const float sigma_range, const float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel, using
- // a generalized or pure Gaussian distribution and sampling or
- // integrals as desired by user codepath choices.
- if(beam_generalized_gaussian)
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_generalized_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- else
- {
- return scanline_generalized_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- }
- else
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range);
- }
- else
- {
- return scanline_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range);
- }
- }
- }
- inline float3 get_raw_interpolated_color(const float3 color0,
- const float3 color1, const float3 color2, const float3 color3,
- const float4 weights)
- {
- // Use max to avoid bizarre artifacts from negative colors:
- return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
- }
- float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
- const float3 color2, const float3 color3, const float4 weights)
- {
- // Requires: 1.) Requirements of include/gamma-management.h must be met:
- // intermediate_gamma must be globally defined, and input
- // colors are interpreted as linear RGB unless you #define
- // GAMMA_ENCODE_EVERY_FBO (in which case they are
- // interpreted as gamma-encoded with intermediate_gamma).
- // 2.) color0-3 are colors sampled from a texture with tex2D().
- // They are interpreted as defined in requirement 1.
- // 3.) weights contains weights for each color, summing to 1.0.
- // 4.) beam_horiz_linear_rgb_weight must be defined as a global
- // float in [0.0, 1.0] describing how much blending should
- // be done in linear RGB (rest is gamma-corrected RGB).
- // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
- // if beam_horiz_linear_rgb_weight is anything other than a
- // static constant, or we may try branching at runtime
- // without dynamic branches allowed (slow).
- // Returns: Return an interpolated color lookup between the four input
- // colors based on the weights in weights. The final color will
- // be a linear RGB value, but the blending will be done as
- // indicated above.
- const float intermediate_gamma = get_intermediate_gamma();
- // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
- // profile allows dynamic branches (faster than computing extra pows):
- #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #else
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #endif
- #endif
- #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- // beam_horiz_linear_rgb_weight is static, so we can branch:
- #ifdef GAMMA_ENCODE_EVERY_FBO
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), float3(intermediate_gamma));
- if(beam_horiz_linear_rgb_weight > 0.0)
- {
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return gamma_mixed_color;
- }
- #else
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- if(beam_horiz_linear_rgb_weight < 1.0)
- {
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return linear_mixed_color;
- }
- #endif // GAMMA_ENCODE_EVERY_FBO
- #else
- #ifdef GAMMA_ENCODE_EVERY_FBO
- // Inputs: color0-3 are colors in gamma-encoded RGB.
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), intermediate_gamma);
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #else
- // Inputs: color0-3 are colors in linear RGB.
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- // wtf fixme
- // const float beam_horiz_linear_rgb_weight1 = 1.0;
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #endif // GAMMA_ENCODE_EVERY_FBO
- #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- }
- float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
- const float2 uv_step_x, const float4 weights)
- {
- // Requires: 1.) scanline_uv must be vertically snapped to the caller's
- // desired line or scanline and horizontally snapped to the
- // texel just left of the output pixel (color1)
- // 2.) uv_step_x must contain the horizontal uv distance
- // between texels.
- // 3.) weights must contain interpolation filter weights for
- // color0, color1, color2, and color3, where color1 is just
- // left of the output pixel.
- // Returns: Return a horizontally interpolated texture lookup using 2-4
- // nearby texels, according to weights and the conventions of
- // get_interpolated_linear_color().
- // We can ignore the outside texture lookups for Quilez resampling.
- const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb;
- const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb;
- float3 color0 = float3(0.0);
- float3 color3 = float3(0.0);
- if(beam_horiz_filter > 0.5)
- {
- color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb;
- color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb;
- }
- // Sample the texture as-is, whether it's linear or gamma-encoded:
- // get_interpolated_linear_color() will handle the difference.
- return get_interpolated_linear_color(color0, color1, color2, color3, weights);
- }
- float3 sample_single_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Snap to the previous texel and get sample dists from 2/4 nearby texels:
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel =
- floor(curr_texel - float2(under_half)) + float2(0.5);
- const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
- const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
- const float prev_dist = curr_texel.x - prev_texel_hor.x;
- const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
- 1.0 - prev_dist, 2.0 - prev_dist);
- // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
- float4 weights;
- if(beam_horiz_filter < 0.5)
- {
- // Quilez:
- const float x = sample_dists.y;
- const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
- weights = float4(0.0, 1.0 - w2, w2, 0.0);
- }
- else if(beam_horiz_filter < 1.5)
- {
- // Gaussian:
- float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
- weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
- }
- else
- {
- // Lanczos2:
- const float4 pi_dists = FIX_ZERO(sample_dists * pi);
- weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
- (pi_dists * pi_dists);
- }
- // Ensure the weight sum == 1.0:
- const float4 final_weights = weights/dot(weights, float4(1.0));
- // Get the interpolated horizontal scanline color:
- const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
- return get_scanline_color(
- tex, prev_texel_hor_uv, uv_step_x, final_weights);
- }
- float3 sample_rgb_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Rely on a helper to make convergence easier.
- if(beam_misconvergence)
- {
- const float3 convergence_offsets_rgb =
- get_convergence_offsets_x_vector();
- const float3 offset_u_rgb =
- convergence_offsets_rgb * texture_size_inv.xxx;
- const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
- const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
- const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
- const float3 sample_r = sample_single_scanline_horizontal(
- tex, scanline_uv_r, tex_size, texture_size_inv);
- const float3 sample_g = sample_single_scanline_horizontal(
- tex, scanline_uv_g, tex_size, texture_size_inv);
- const float3 sample_b = sample_single_scanline_horizontal(
- tex, scanline_uv_b, tex_size, texture_size_inv);
- return float3(sample_r.r, sample_g.g, sample_b.b);
- }
- else
- {
- return sample_single_scanline_horizontal(tex, tex_uv, tex_size,
- texture_size_inv);
- }
- }
- float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv, const float2 il_step_multiple,
- const float frame_count, out float dist)
- {
- // Compute texture coords for the last/upper scanline, accounting for
- // interlacing: With interlacing, only consider even/odd scanlines every
- // other frame. Top-field first (TFF) order puts even scanlines on even
- // frames, and BFF order puts them on odd frames. Texels are centered at:
- // frac(tex_uv * tex_size) == x.5
- // Caution: If these coordinates ever seem incorrect, first make sure it's
- // not because anisotropic filtering is blurring across field boundaries.
- // Note: TFF/BFF won't matter for sources that double-weave or similar.
- // wtf fixme
- // const float interlace_bff1 = 1.0;
- const float field_offset = floor(il_step_multiple.y * 0.75) *
- fmod(frame_count + float(interlace_bff), 2.0);
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel_num = floor(curr_texel - float2(under_half));
- const float wrong_field = fmod(
- prev_texel_num.y + field_offset, il_step_multiple.y);
- const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
- // Snap to the center of the previous scanline in the current field:
- const float2 scanline_texel = scanline_texel_num + float2(0.5);
- const float2 scanline_uv = scanline_texel * texture_size_inv;
- // Save the sample's distance from the scanline, in units of scanlines:
- dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
- return scanline_uv;
- }
- inline bool is_interlaced(float num_lines)
- {
- // Detect interlacing based on the number of lines in the source.
- if(interlace_detect)
- {
- // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
- // NTSC Emulators: Typically 224 or 240 lines
- // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
- // PAL Emulators: ?
- // ATSC: 720p, 1080i, 1080p
- // Where do we place our cutoffs? Assumptions:
- // 1.) We only need to care about active lines.
- // 2.) Anything > 288 and <= 576 lines is probably interlaced.
- // 3.) Anything > 576 lines is probably not interlaced...
- // 4.) ...except 1080 lines, which is a crapshoot (user decision).
- // 5.) Just in case the main program uses calculated video sizes,
- // we should nudge the float thresholds a bit.
- const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
- const bool hd_interlace = bool(interlace_1080i) ?
- ((num_lines > 1079.5) && (num_lines < 1080.5)) :
- false;
- return (sd_interlace || hd_interlace);
- }
- else
- {
- return false;
- }
- }
- #endif // SCANLINE_FUNCTIONS_H
- ///////////////////////////// END SCANLINE-FUNCTIONS ////////////////////////////
- /////////////////////////////// END VERTEX INCLUDES /////////////////////////////
- ////////////////////////////// FRAGMENT INCLUDES //////////////////////////////
- //#include "../../../../include/blur-functions.h"
- //////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
- #ifndef BLUR_FUNCTIONS_H
- #define BLUR_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides reusable one-pass and separable (two-pass) blurs.
- // Requires: All blurs share these requirements (dxdy requirement is split):
- // 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) filter_linearN must == "true" in your .cgp preset unless
- // you're using tex2DblurNresize at 1x scale.
- // 3.) mipmap_inputN must == "true" in your .cgp preset if
- // output_size < video_size.
- // 4.) output_size == video_size / pow(2, M), where M is some
- // positive integer. tex2Dblur*resize can resize arbitrarily
- // (and the blur will be done after resizing), but arbitrary
- // resizes "fail" with other blurs due to the way they mix
- // static weights with bilinear sample exploitation.
- // 5.) In general, dxdy should contain the uv pixel spacing:
- // dxdy = (video_size/output_size)/texture_size
- // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
- // zero out the dxdy component in the unblurred dimension:
- // dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
- // Many blurs share these requirements:
- // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
- // or they will blur more in the lower-scaled dimension.
- // 2.) One-pass shared sample blurs require ddx(), ddy(), and
- // tex2Dlod() to be supported by the current Cg profile, and
- // the drivers must support high-quality derivatives.
- // 3.) One-pass shared sample blurs require:
- // tex_uv.w == log2(video_size/output_size).y;
- // Non-wrapper blurs share this requirement:
- // 1.) sigma is the intended standard deviation of the blur
- // Wrapper blurs share this requirement, which is automatically
- // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
- // 1.) blurN_std_dev must be global static const float values
- // specifying standard deviations for Nx blurs in units
- // of destination pixels
- // Optional: 1.) The including file (or an earlier included file) may
- // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
- // default standard deviations with those matching a binomial
- // distribution. (See below for details/properties.)
- // 2.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_BLUR_STD_DEVS and override:
- // static const float blur3_std_dev
- // static const float blur4_std_dev
- // static const float blur5_std_dev
- // static const float blur6_std_dev
- // static const float blur7_std_dev
- // static const float blur8_std_dev
- // static const float blur9_std_dev
- // static const float blur10_std_dev
- // static const float blur11_std_dev
- // static const float blur12_std_dev
- // static const float blur17_std_dev
- // static const float blur25_std_dev
- // static const float blur31_std_dev
- // static const float blur43_std_dev
- // 3.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_ERROR_BLURRING and override:
- // static const float error_blurring
- // This tuning value helps mitigate weighting errors from one-
- // pass shared-sample blurs sharing bilinear samples between
- // fragments. Values closer to 0.0 have "correct" blurriness
- // but allow more artifacts, and values closer to 1.0 blur away
- // artifacts by sampling closer to halfway between texels.
- // UPDATE 6/21/14: The above static constants may now be overridden
- // by non-static uniform constants. This permits exposing blur
- // standard deviations as runtime GUI shader parameters. However,
- // using them keeps weights from being statically computed, and the
- // speed hit depends on the blur: On my machine, uniforms kill over
- // 53% of the framerate with tex2Dblur12x12shared, but they only
- // drop the framerate by about 18% with tex2Dblur11fast.
- // Quality and Performance Comparisons:
- // For the purposes of the following discussion, "no sRGB" means
- // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
- // 1.) tex2DblurNfast is always faster than tex2DblurNresize.
- // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
- // well, because they're the only ones that don't exploit bilinear samples.
- // This also means they're the only functions which can be truly gamma-
- // correct without linear (or sRGB FBO) input, but only at 1x scale.
- // 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
- // They also have some inaccuracies due to their shared-[bilinear-]sample
- // design, which grow increasingly bothersome for smaller blurs and higher-
- // frequency source images (relative to their resolution). I had high
- // hopes for them, but their most realistic use case is limited to quickly
- // reblurring an already blurred input at full resolution. Otherwise:
- // a.) If you're blurring a low-resolution source, you want a better blur.
- // b.) If you're blurring a lower mipmap, you want a better blur.
- // c.) If you're blurring a high-resolution, high-frequency source, you
- // want a better blur.
- // 4.) The one-pass blurs without shared samples grow slower for larger blurs,
- // but they're competitive with separable blurs at 5x5 and smaller, and
- // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
- // Here are some framerates from a GeForce 8800GTS. The first pass resizes to
- // viewport size (4x in this test) and linearizes for sRGB codepaths, and the
- // remaining passes perform 6 full blurs. Mipmapped tests are performed at the
- // same scale, so they just measure the cost of mipmapping each FBO (only every
- // other FBO is mipmapped for separable blurs, to mimic realistic usage).
- // Mipmap Neither sRGB+Mipmap sRGB Function
- // 76.0 92.3 131.3 193.7 tex2Dblur3fast
- // 63.2 74.4 122.4 175.5 tex2Dblur3resize
- // 93.7 121.2 159.3 263.2 tex2Dblur3x3
- // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
- // 63.2 74.4 122.4 175.5 tex2Dblur5fast
- // 49.3 54.8 100.0 132.7 tex2Dblur5resize
- // 59.7 68.7 115.4 162.1 tex2Dblur5x5
- // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
- // 55.8 63.7 110.4 151.8 tex2Dblur7fast
- // 39.8 43.9 83.9 105.8 tex2Dblur7resize
- // 40.0 44.2 83.2 104.9 tex2Dblur7x7
- // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
- // 49.3 55.1 99.9 132.5 tex2Dblur9fast
- // 33.3 36.2 72.4 88.0 tex2Dblur9resize
- // 27.8 29.7 61.3 72.2 tex2Dblur9x9
- // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
- // 44.4 49.5 91.3 117.8 tex2Dblur11fast
- // 28.8 30.8 63.6 75.4 tex2Dblur11resize
- // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
- // TODO: Fill in benchmarks for new untested blurs.
- // tex2Dblur17fast
- // tex2Dblur25fast
- // tex2Dblur31fast
- // tex2Dblur43fast
- // tex2Dblur3x3resize
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // Set static standard deviations, but allow users to override them with their
- // own constants (even non-static uniforms if they're okay with the speed hit):
- #ifndef OVERRIDE_BLUR_STD_DEVS
- // blurN_std_dev values are specified in terms of dxdy strides.
- #ifdef USE_BINOMIAL_BLUR_STD_DEVS
- // By request, we can define standard deviations corresponding to a
- // binomial distribution with p = 0.5 (related to Pascal's triangle).
- // This distribution works such that blurring multiple times should
- // have the same result as a single larger blur. These values are
- // larger than default for blurs up to 6x and smaller thereafter.
- static const float blur3_std_dev = 0.84931640625;
- static const float blur4_std_dev = 0.84931640625;
- static const float blur5_std_dev = 1.0595703125;
- static const float blur6_std_dev = 1.06591796875;
- static const float blur7_std_dev = 1.17041015625;
- static const float blur8_std_dev = 1.1720703125;
- static const float blur9_std_dev = 1.2259765625;
- static const float blur10_std_dev = 1.21982421875;
- static const float blur11_std_dev = 1.25361328125;
- static const float blur12_std_dev = 1.2423828125;
- static const float blur17_std_dev = 1.27783203125;
- static const float blur25_std_dev = 1.2810546875;
- static const float blur31_std_dev = 1.28125;
- static const float blur43_std_dev = 1.28125;
- #else
- // The defaults are the largest values that keep the largest unused
- // blur term on each side <= 1.0/256.0. (We could get away with more
- // or be more conservative, but this compromise is pretty reasonable.)
- static const float blur3_std_dev = 0.62666015625;
- static const float blur4_std_dev = 0.66171875;
- static const float blur5_std_dev = 0.9845703125;
- static const float blur6_std_dev = 1.02626953125;
- static const float blur7_std_dev = 1.36103515625;
- static const float blur8_std_dev = 1.4080078125;
- static const float blur9_std_dev = 1.7533203125;
- static const float blur10_std_dev = 1.80478515625;
- static const float blur11_std_dev = 2.15986328125;
- static const float blur12_std_dev = 2.215234375;
- static const float blur17_std_dev = 3.45535583496;
- static const float blur25_std_dev = 5.3409576416;
- static const float blur31_std_dev = 6.86488037109;
- static const float blur43_std_dev = 10.1852050781;
- #endif // USE_BINOMIAL_BLUR_STD_DEVS
- #endif // OVERRIDE_BLUR_STD_DEVS
- #ifndef OVERRIDE_ERROR_BLURRING
- // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
- // in shared-sample blurs but increase blurring and feature shifting.
- static const float error_blurring = 0.5;
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // gamma-management.h relies on pass-specific settings to guide its behavior:
- // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
- //#include "gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "quad-pixel-communication.h"
- /////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
- #ifndef QUAD_PIXEL_COMMUNICATION_H
- #define QUAD_PIXEL_COMMUNICATION_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey*
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DISCLAIMER /////////////////////////////////
- // *This code was inspired by "Shader Amortization using Pixel Quad Message
- // Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
- // is not to plagiarize his fundamentally similar code and assert my own
- // copyright, but the algorithmic helper functions require so little code that
- // implementations can't vary by much except bugfixes and conventions. I just
- // wanted to license my own particular code here to avoid ambiguity and make it
- // clear that as far as I'm concerned, people can do as they please with it.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // Given screen pixel numbers, derive a "quad vector" describing a fragment's
- // position in its 2x2 pixel quad. Given that vector, obtain the values of any
- // variable at neighboring fragments.
- // Requires: Using this file in general requires:
- // 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // Functions will give incorrect results if this is not true,
- // so a test function is included.
- ///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
- float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Two measures of the current fragment's output pixel number
- // in the range ([0, output_size.x), [0, output_size.y)):
- // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
- // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
- // Returns: Two measures of the fragment's position in its 2x2 quad:
- // 1.) The .xy components are its 2x2 placement with respect to
- // uv direction (the origin (0, 0) is at the top-left):
- // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
- // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
- // You need this to arrange/weight shared texture samples.
- // 2.) The .zw components are its 2x2 placement with respect to
- // screen xy direction (position); the origin varies.
- // quad_gather needs this measure to work correctly.
- // Note: quad_vector.zw = quad_vector.xy * float2(
- // ddx(output_pixel_num_wrt_uvxy.x),
- // ddy(output_pixel_num_wrt_uvxy.y));
- // Caveats: This function assumes the GPU driver always starts 2x2 pixel
- // quads at even pixel numbers. This assumption can be wrong
- // for odd output resolutions (nondeterministically so).
- float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
- float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
- return quad_vector;
- }
- float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Same as get_quad_vector_naive() (see that first).
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- float4 quad_vector_guess =
- get_quad_vector_naive(output_pixel_num_wrt_uvxy);
- // If quad_vector_guess.zw doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
- ddy(quad_vector_guess.w));
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) output_pixel_num_wrt_uv must increase with uv coords and
- // measure the current fragment's output pixel number in:
- // ([0, output_size.x), [0, output_size.y))
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- // Caveats: This function requires less information than the version
- // taking a float4, but it's potentially slower.
- // Do screen coords increase with or against uv? Get the direction
- // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
- float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
- ddy(output_pixel_num_wrt_uv.y));
- float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
- float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
- float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
- // If quad_vector_screen_guess doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
- ddy(quad_vector_screen_guess.y));
- float4 quad_vector_guess = float4(
- quad_vector_uv_guess, quad_vector_screen_guess);
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- void quad_gather(float4 quad_vector, float4 curr,
- out float4 adjx, out float4 adjy, out float4 diag)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // 3.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 4.) curr is any vector you wish to get neighboring values of.
- // Returns: Values of an input vector (curr) at neighboring fragments
- // adjacent x, adjacent y, and diagonal (via out parameters).
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float3 curr,
- out float3 adjx, out float3 adjy, out float3 diag)
- {
- // Float3 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float2 curr,
- out float2 adjx, out float2 adjy, out float2 diag)
- {
- // Float2 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- float4 quad_gather(float4 quad_vector, float curr)
- {
- // Float version:
- // Returns: return.x == current
- // return.y == adjacent x
- // return.z == adjacent y
- // return.w == diagonal
- float4 all = float4(curr);
- all.y = all.x - ddx(all.x) * quad_vector.z;
- all.zw = all.xy - ddy(all.xy) * quad_vector.w;
- return all;
- }
- float4 quad_gather_sum(float4 quad_vector, float4 curr)
- {
- // Requires: Same as quad_gather()
- // Returns: Sum of an input vector (curr) at all fragments in a quad.
- float4 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float3 quad_gather_sum(float4 quad_vector, float3 curr)
- {
- // Float3 version:
- float3 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float2 quad_gather_sum(float4 quad_vector, float2 curr)
- {
- // Float2 version:
- float2 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float quad_gather_sum(float4 quad_vector, float curr)
- {
- // Float version:
- float4 all_values = quad_gather(quad_vector, curr);
- return (all_values.x + all_values.y + all_values.z + all_values.w);
- }
- bool fine_derivatives_working(float4 quad_vector, float4 curr)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 3.) curr must be a test vector with non-constant derivatives
- // (its value should change nonlinearly across fragments).
- // Returns: true if fine/hybrid/high-quality derivatives are used, or
- // false if coarse derivatives are used or inconclusive
- // Usage: Test whether quad-pixel communication is working!
- // Method: We can confirm fine derivatives are used if the following
- // holds (ever, for any value at any fragment):
- // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
- // The more values we test (e.g. test a float4 two ways), the
- // easier it is to demonstrate fine derivatives are working.
- // TODO: Check for floating point exact comparison issues!
- float4 ddx_curr = ddx(curr);
- float4 ddy_curr = ddy(curr);
- float4 adjx = curr - ddx_curr * quad_vector.z;
- float4 adjy = curr - ddy_curr * quad_vector.w;
- bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
- bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
- return any(bool2(ddy_different, ddx_different));
- }
- bool fine_derivatives_working_fast(float4 quad_vector, float curr)
- {
- // Requires: Same as fine_derivatives_working()
- // Returns: Same as fine_derivatives_working()
- // Usage: This is faster than fine_derivatives_working() but more
- // likely to return false negatives, so it's less useful for
- // offline testing/debugging. It's also useless as the basis
- // for dynamic runtime branching as of May 2014: Derivatives
- // (and quad-pixel communication) are currently disallowed in
- // branches. However, future GPU's may allow you to use them
- // in dynamic branches if you promise the branch condition
- // evaluates the same for every fragment in the quad (and/or if
- // the driver enforces that promise by making a single fragment
- // control branch decisions). If that ever happens, this
- // version may become a more economical choice.
- float ddx_curr = ddx(curr);
- float ddy_curr = ddy(curr);
- float adjx = curr - ddx_curr * quad_vector.z;
- return (ddy_curr != ddy(adjx));
- }
- #endif // QUAD_PIXEL_COMMUNICATION_H
- //////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
- //#include "special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////////// HELPERS //////////////////////////////////
- inline float4 uv2_to_uv4(float2 tex_uv)
- {
- // Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
- return float4(tex_uv, 0.0, 0.0);
- }
- // Make a length squared helper macro (for usage with static constants):
- #define LENGTH_SQ(vec) (dot(vec, vec))
- inline float get_fast_gaussian_weight_sum_inv(const float sigma)
- {
- // We can use the Gaussian integral to calculate the asymptotic weight for
- // the center pixel. Since the unnormalized center pixel weight is 1.0,
- // the normalized weight is the same as the weight sum inverse. Given a
- // large enough blur (9+), the asymptotic weight sum is close and faster:
- // center_weight = 0.5 *
- // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
- // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
- // However, we can get even faster results with curve-fitting. These are
- // also closer than the asymptotic results, because they were constructed
- // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
- // (0, blurN_std_dev), so the results for smaller sigmas are biased toward
- // smaller blurs. The max error is 0.0031793913.
- // Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
- //static const float temp = 0.5/sqrt(2.0);
- //return erf(temp/sigma);
- return min(exp(exp(0.348348412457428/
- (sigma - 0.0860587260734721))), 0.399334576340352/sigma);
- }
- //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
- float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // Calculate Gaussian blur kernel weights and a normalization factor for
- // distances of 0-4, ignoring constant factors (since we're normalizing).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Statically normalize weights, sum weighted samples, and return. Blurs are
- // currently optimized for dynamic weights.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- /////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
- float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: 1.) Global requirements must be met (see file description).
- // 2.) filter_linearN must = "true" in your .cgp file.
- // 3.) For gamma-correct bilinear filtering, global
- // gamma_aware_bilinear == true (from gamma-management.h)
- // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w45 = w4 + w5;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- const float w45_ratio = w5/w45;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 4 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w34 = w3 + w4;
- const float w12_ratio = w2/w12;
- const float w34_ratio = w4/w34;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 2 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w12_ratio = w2/w12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w01_ratio = w1/w01;
- // Weights for all samples are the same, so just average them:
- return 0.5 * (
- tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
- tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
- }
- //////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
- // Huge separable blurs come only in "fast" versions.
- float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- const float w16 = exp(-256.0 * denom_inv);
- const float w17 = exp(-289.0 * denom_inv);
- const float w18 = exp(-324.0 * denom_inv);
- const float w19 = exp(-361.0 * denom_inv);
- const float w20 = exp(-400.0 * denom_inv);
- const float w21 = exp(-441.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
- // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w16_17 = w16 + w17;
- const float w18_19 = w18 + w19;
- const float w20_21 = w20 + w21;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- const float w16_17_ratio = w17/w16_17;
- const float w18_19_ratio = w19/w18_19;
- const float w20_21_ratio = w21/w20_21;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
- // w9 + w10 + w11 + w12 + w13 + w14 + w15));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 12 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w9_10 = w9 + w10;
- const float w11_12 = w11 + w12;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- const float w9_10_ratio = w10/w9_10;
- const float w11_12_ratio = w12/w11_12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 8 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
- float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
- // resized input.
- // Description:
- // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
- // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
- const float denom_inv = 0.5/(sigma*sigma);
- // Load each sample. We need all 3x3 samples. Quad-pixel communication
- // won't help either: This should perform like tex2Dblur5x5, but sharing a
- // 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
- const float2 sample4_uv = tex_uv;
- const float2 dx = float2(dxdy.x, 0.0);
- const float2 dy = float2(0.0, dxdy.y);
- const float2 sample1_uv = sample4_uv - dy;
- const float2 sample7_uv = sample4_uv + dy;
- const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
- const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
- const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
- const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
- const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
- const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
- const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
- const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
- const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
- // Statically compute Gaussian sample weights:
- const float w4 = 1.0;
- const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
- // Weight and sum the samples:
- const float3 sum = w4 * sample4 +
- w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
- w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
- return sum * weight_sum_inv;
- }
- //////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
- float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
- // 5x5 carefully selected bilinear samples.
- // Description:
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
- // bilinear sample location to reflect the true Gaussian weights for each
- // underlying texel. The following diagram illustrates the relative
- // locations of bilinear samples. Each sample with the same number has the
- // same weight (notice the symmetry). The letters a, b, c, d distinguish
- // quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
- // distinguish 1D directions along the line containing the pixel center:
- // 6a 5a 2U 5b 6b
- // 4a 3a 1U 3b 4b
- // 2L 1L 0C 1R 2R
- // 4c 3c 1D 3d 4d
- // 6c 5c 2D 5d 6d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2, 2x1, 1x2, or 1x1 texel block:
- // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
- // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
- // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
- // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
- // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
- // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
- // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
- // Note there is only one C texel and only two texels for each U, D, L, or
- // R sample. The center sample is effectively a nearest neighbor sample,
- // and the U/D/L/R samples use 1D linear filtering. All other texels are
- // read with bilinear samples somewhere within their 2x2 texel blocks.
- // COMPUTE TEXTURE COORDS:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
- // the center, and reuse them independently for both dimensions. Compute
- // these offsets based on the relative 1D Gaussian weights of the texels
- // in question. (w1off means "Gaussian weight for the texel 1.0 texels
- // away from the pixel center," etc.).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float w4off = exp(-16.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- const float texel3to4ratio = w4off/(w3off + w4off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
- const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
- const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
- const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2R1 = w3off;
- const float w2R2 = w4off;
- const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
- const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
- const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
- const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2R1 + w2R2;
- const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
- const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
- const float w5 = w4;
- const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
- // LOAD TEXTURE SAMPLES:
- // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- // Sampling order doesn't seem to affect performance, so just be clear:
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
- const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
- const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
- const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
- const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
- const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
- const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
- const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
- const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
- const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2R + sample2D + sample2L + sample2U);
- sum += w3 * (sample3d + sample3c + sample3b + sample3a);
- sum += w4 * (sample4d + sample4c + sample4b + sample4a);
- sum += w5 * (sample5d + sample5c + sample5b + sample5a);
- sum += w6 * (sample6d + sample6c + sample6b + sample6a);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
- // 4x4 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 4a 3a 3b 4b
- // 2a 1a 1b 2b
- // 2c 1c 1d 2d
- // 4c 3c 3d 4d
- // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
- // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
- // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
- // the center texel):
- // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
- // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
- // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
- // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
- // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- const float texel2to3ratio = w3off/(w2off + w3off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1abcd = 1.0;
- const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
- const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
- const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights.
- // Split weights for shared texels between samples sharing them:
- const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
- const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
- const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
- // LOAD TEXTURE SAMPLES:
- // Load all 16 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * (sample1a + sample1b + sample1c + sample1d);
- sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
- sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
- sum += w4 * (sample4a + sample4b + sample4c + sample4d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
- // 3x3 carefully selected bilinear samples.
- // Description:
- // First see the description for tex2Dblur9x9(). This blur uses the same
- // concept and sample/texel locations except on a smaller scale. Samples:
- // 2a 1U 2b
- // 1L 0C 1R
- // 2c 1D 2d
- // Texels:
- // 2a4 2a3 1U2 2b3 2b4
- // 2a2 2a1 1U1 2b1 2b2
- // 1L2 1L1 0C1 1R1 1R2
- // 2c2 2c1 1D1 2d1 2d2
- // 2c4 2c3 1D2 2d3 2d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
- // LOAD TEXTURE SAMPLES:
- // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2a + sample2b + sample2c + sample2d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
- // 2x2 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 0a 0b
- // 0c 0d
- // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
- // a vertical column of texels, and samples 0a/0c and 0b/0d share a
- // horizontal row of texels (all samples share the center texel):
- // 0a3 0ab2 0b3
- // 0ac1 0*0 0bd1
- // 0c3 0cd2 0d3
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- // LOAD TEXTURE SAMPLES:
- // Load all 4 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
- const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
- const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
- const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Weights for all samples are the same, so just average them:
- return 0.25 * (sample0a + sample0b + sample0c + sample0d);
- }
- ////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
- float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: 1.) Same as tex2Dblur9()
- // 2.) ddx() and ddy() are present in the current Cg profile.
- // 3.) The GPU driver is using fine/high-quality derivatives.
- // 4.) quad_vector *correctly* describes the current fragment's
- // location in its pixel quad, by the conventions noted in
- // get_quad_vector[_naive].
- // 5.) tex_uv.w = log2(video_size/output_size).y
- // 6.) tex2Dlod() is present in the current Cg profile.
- // Optional: Tune artifacts vs. excessive blurriness with the global
- // float error_blurring.
- // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
- // blur (a 6x6 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // Perform a 1-pass blur with shared texture lookups across a pixel quad.
- // We'll get neighboring samples with high-quality ddx/ddy derivatives, as
- // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
- // Message Passing" by Eric Penner.
- //
- // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
- // bilinear samples, where bilinear sampling positions are computed from
- // the relative Gaussian weights of the 4 surrounding texels. The catch is
- // that the appropriate texel weights and sample coords differ for each
- // fragment, but we're reusing most of the same samples across a quad of
- // destination fragments. (We do use unique coords for the four nearest
- // samples at each fragment.) Mixing bilinear filtering and sample-sharing
- // therefore introduces some error into the weights, and this can get nasty
- // when the source image is small or high-frequency. Computing bilinear
- // ratios based on weights at the sample field center results in sharpening
- // and ringing artifacts, but we can move samples closer to halfway between
- // texels to try blurring away the error (which can move features around by
- // a texel or so). Tune this with the global float "error_blurring".
- //
- // The pixel quad's sample field covers 12x12 texels, accessed through 6x6
- // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
- // texels (5x5 bilinear taps), and each fragment is responsible for loading
- // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
- // to use unique bilinear coords for sample0* for each fragment. This
- // diagram illustrates the relative locations of bilinear samples 1-9 for
- // each quadrant a, b, c, d (note samples will not be equally spaced):
- // 8a 7a 6a 6b 7b 8b
- // 5a 4a 3a 3b 4b 5b
- // 2a 1a 0a 0b 1b 2b
- // 2c 1c 0c 0d 1d 2d
- // 5c 4c 3c 3d 4d 5d
- // 8c 7c 6c 6d 7d 8d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2 texel block:
- // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
- // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
- // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
- // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
- // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
- // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
- // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
- // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
- // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
- // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
- // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
- // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
- // With this symmetric arrangement, we don't have to know which absolute
- // quadrant a sample lies in to assign kernel weights; it's enough to know
- // the sample number and the relative quadrant of the sample (relative to
- // the current quadrant):
- // {current, adjacent x, adjacent y, diagonal}
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
- // and [4, 5] away from the fragment, and reuse them independently for both
- // dimensions. Use the sample field center as the estimated destination,
- // but nudge the result closer to halfway between texels to blur error.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // based on the sum of their 4 underlying texel weights. Assume a same-
- // resolution blur, so each symmetrically named sample weight will compute
- // the same at every fragment in the pixel quad: We can therefore compute
- // texel weights based only on the bottom-right quadrant (fragment at 0d0).
- // Too avoid too much boilerplate code, use a macro to get all 4 texel
- // weights for a bilinear sample based on the offset of its top-left texel:
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
- const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
- const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
- const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
- const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
- const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
- const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
- const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
- const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
- const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- float3 sample8adjx, sample8adjy, sample8diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
- sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
- sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
- sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
- // blur (a 5x5 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 25 of the 36 samples taken across the pixel quad (to cover a
- // 5x5 sample area, or 10x10 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 11 omitted samples
- // are always the "same:"
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 25 of the 36 sample weights. Skip the following weights:
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w4curr + w5curr + w6curr + w7curr + w8curr +
- w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
- w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
- w0diag + w1diag + w3diag + w4diag);
- // Statically pack most weights for runtime. Note the mixed packing:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
- const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad in order of need:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result. First do the simple ones:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- // Now do the mixed-sample ones:
- sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
- sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
- sum += w8curr * sample8curr;
- // Normalize the sum (so the weights add to 1.0) and return:
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
- // blur (a 4x4 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This function
- // shares the same concept and a similar sample placement, except each
- // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
- // respectively. There could be a total of 16 samples, 4 of which each
- // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
- // its own offset to reduce shared sample artifacts, bringing the sample
- // count for each fragment to 7. Sample placement:
- // 3a 2a 2b 3b
- // 1a 0a 0b 1b
- // 1c 0c 0d 1d
- // 3c 2c 2d 3d
- // Texel placement:
- // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
- // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
- // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
- // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
- // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
- // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
- // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
- // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
-
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
- // blur (a 3x3 blur of carefully selected bilinear samples)
- // of the given mip level. There will be some inaccuracies,subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur8x8shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 9 of the 16 samples taken across the pixel quad (to cover a
- // 3x3 sample area, or 6x6 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 7 omitted samples
- // are always the "same:"
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 9 of the 16 sample weights. Skip the following weights:
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
- // Statically pack some weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result for sample1*, and handle the rest
- // of the weights more directly/verbosely:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
- w2adjx * sample2adjx + w3curr * sample3curr;
- return sum * weight_sum_inv;
- }
- /////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
- // The following blurs are static wrappers around the dynamic blurs above.
- // HOPEFULLY, the compiler will be smart enough to do constant-folding.
- // Resizable separable blurs:
- inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Fast separable blurs:
- inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Huge, "fast" separable blurs:
- inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
- }
- inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
- }
- inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
- }
- inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
- }
- // Resizable one-pass blurs:
- inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" one-pass blurs:
- inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" shared-sample one-pass blurs:
- inline float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
- }
- inline float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
- }
- inline float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
- }
- inline float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
- }
- #endif // BLUR_FUNCTIONS_H
- //////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
- //#include "bloom-functions.h"
- //////////////////////////// BEGIN BLOOM-FUNCTIONS ///////////////////////////
- #ifndef BLOOM_FUNCTIONS_H
- #define BLOOM_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These utility functions and constants help several passes determine the
- // size and center texel weight of the phosphor bloom in a uniform manner.
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // We need to calculate the correct blur sigma using some .cgp constants:
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "../../../../include/blur-functions.h"
- //////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
- #ifndef BLUR_FUNCTIONS_H
- #define BLUR_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides reusable one-pass and separable (two-pass) blurs.
- // Requires: All blurs share these requirements (dxdy requirement is split):
- // 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) filter_linearN must == "true" in your .cgp preset unless
- // you're using tex2DblurNresize at 1x scale.
- // 3.) mipmap_inputN must == "true" in your .cgp preset if
- // output_size < video_size.
- // 4.) output_size == video_size / pow(2, M), where M is some
- // positive integer. tex2Dblur*resize can resize arbitrarily
- // (and the blur will be done after resizing), but arbitrary
- // resizes "fail" with other blurs due to the way they mix
- // static weights with bilinear sample exploitation.
- // 5.) In general, dxdy should contain the uv pixel spacing:
- // dxdy = (video_size/output_size)/texture_size
- // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
- // zero out the dxdy component in the unblurred dimension:
- // dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
- // Many blurs share these requirements:
- // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
- // or they will blur more in the lower-scaled dimension.
- // 2.) One-pass shared sample blurs require ddx(), ddy(), and
- // tex2Dlod() to be supported by the current Cg profile, and
- // the drivers must support high-quality derivatives.
- // 3.) One-pass shared sample blurs require:
- // tex_uv.w == log2(video_size/output_size).y;
- // Non-wrapper blurs share this requirement:
- // 1.) sigma is the intended standard deviation of the blur
- // Wrapper blurs share this requirement, which is automatically
- // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
- // 1.) blurN_std_dev must be global static const float values
- // specifying standard deviations for Nx blurs in units
- // of destination pixels
- // Optional: 1.) The including file (or an earlier included file) may
- // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
- // default standard deviations with those matching a binomial
- // distribution. (See below for details/properties.)
- // 2.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_BLUR_STD_DEVS and override:
- // static const float blur3_std_dev
- // static const float blur4_std_dev
- // static const float blur5_std_dev
- // static const float blur6_std_dev
- // static const float blur7_std_dev
- // static const float blur8_std_dev
- // static const float blur9_std_dev
- // static const float blur10_std_dev
- // static const float blur11_std_dev
- // static const float blur12_std_dev
- // static const float blur17_std_dev
- // static const float blur25_std_dev
- // static const float blur31_std_dev
- // static const float blur43_std_dev
- // 3.) The including file (or an earlier included file) may
- // optionally #define OVERRIDE_ERROR_BLURRING and override:
- // static const float error_blurring
- // This tuning value helps mitigate weighting errors from one-
- // pass shared-sample blurs sharing bilinear samples between
- // fragments. Values closer to 0.0 have "correct" blurriness
- // but allow more artifacts, and values closer to 1.0 blur away
- // artifacts by sampling closer to halfway between texels.
- // UPDATE 6/21/14: The above static constants may now be overridden
- // by non-static uniform constants. This permits exposing blur
- // standard deviations as runtime GUI shader parameters. However,
- // using them keeps weights from being statically computed, and the
- // speed hit depends on the blur: On my machine, uniforms kill over
- // 53% of the framerate with tex2Dblur12x12shared, but they only
- // drop the framerate by about 18% with tex2Dblur11fast.
- // Quality and Performance Comparisons:
- // For the purposes of the following discussion, "no sRGB" means
- // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
- // 1.) tex2DblurNfast is always faster than tex2DblurNresize.
- // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
- // well, because they're the only ones that don't exploit bilinear samples.
- // This also means they're the only functions which can be truly gamma-
- // correct without linear (or sRGB FBO) input, but only at 1x scale.
- // 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
- // They also have some inaccuracies due to their shared-[bilinear-]sample
- // design, which grow increasingly bothersome for smaller blurs and higher-
- // frequency source images (relative to their resolution). I had high
- // hopes for them, but their most realistic use case is limited to quickly
- // reblurring an already blurred input at full resolution. Otherwise:
- // a.) If you're blurring a low-resolution source, you want a better blur.
- // b.) If you're blurring a lower mipmap, you want a better blur.
- // c.) If you're blurring a high-resolution, high-frequency source, you
- // want a better blur.
- // 4.) The one-pass blurs without shared samples grow slower for larger blurs,
- // but they're competitive with separable blurs at 5x5 and smaller, and
- // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
- // Here are some framerates from a GeForce 8800GTS. The first pass resizes to
- // viewport size (4x in this test) and linearizes for sRGB codepaths, and the
- // remaining passes perform 6 full blurs. Mipmapped tests are performed at the
- // same scale, so they just measure the cost of mipmapping each FBO (only every
- // other FBO is mipmapped for separable blurs, to mimic realistic usage).
- // Mipmap Neither sRGB+Mipmap sRGB Function
- // 76.0 92.3 131.3 193.7 tex2Dblur3fast
- // 63.2 74.4 122.4 175.5 tex2Dblur3resize
- // 93.7 121.2 159.3 263.2 tex2Dblur3x3
- // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
- // 63.2 74.4 122.4 175.5 tex2Dblur5fast
- // 49.3 54.8 100.0 132.7 tex2Dblur5resize
- // 59.7 68.7 115.4 162.1 tex2Dblur5x5
- // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
- // 55.8 63.7 110.4 151.8 tex2Dblur7fast
- // 39.8 43.9 83.9 105.8 tex2Dblur7resize
- // 40.0 44.2 83.2 104.9 tex2Dblur7x7
- // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
- // 49.3 55.1 99.9 132.5 tex2Dblur9fast
- // 33.3 36.2 72.4 88.0 tex2Dblur9resize
- // 27.8 29.7 61.3 72.2 tex2Dblur9x9
- // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
- // 44.4 49.5 91.3 117.8 tex2Dblur11fast
- // 28.8 30.8 63.6 75.4 tex2Dblur11resize
- // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
- // TODO: Fill in benchmarks for new untested blurs.
- // tex2Dblur17fast
- // tex2Dblur25fast
- // tex2Dblur31fast
- // tex2Dblur43fast
- // tex2Dblur3x3resize
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // Set static standard deviations, but allow users to override them with their
- // own constants (even non-static uniforms if they're okay with the speed hit):
- #ifndef OVERRIDE_BLUR_STD_DEVS
- // blurN_std_dev values are specified in terms of dxdy strides.
- #ifdef USE_BINOMIAL_BLUR_STD_DEVS
- // By request, we can define standard deviations corresponding to a
- // binomial distribution with p = 0.5 (related to Pascal's triangle).
- // This distribution works such that blurring multiple times should
- // have the same result as a single larger blur. These values are
- // larger than default for blurs up to 6x and smaller thereafter.
- static const float blur3_std_dev = 0.84931640625;
- static const float blur4_std_dev = 0.84931640625;
- static const float blur5_std_dev = 1.0595703125;
- static const float blur6_std_dev = 1.06591796875;
- static const float blur7_std_dev = 1.17041015625;
- static const float blur8_std_dev = 1.1720703125;
- static const float blur9_std_dev = 1.2259765625;
- static const float blur10_std_dev = 1.21982421875;
- static const float blur11_std_dev = 1.25361328125;
- static const float blur12_std_dev = 1.2423828125;
- static const float blur17_std_dev = 1.27783203125;
- static const float blur25_std_dev = 1.2810546875;
- static const float blur31_std_dev = 1.28125;
- static const float blur43_std_dev = 1.28125;
- #else
- // The defaults are the largest values that keep the largest unused
- // blur term on each side <= 1.0/256.0. (We could get away with more
- // or be more conservative, but this compromise is pretty reasonable.)
- static const float blur3_std_dev = 0.62666015625;
- static const float blur4_std_dev = 0.66171875;
- static const float blur5_std_dev = 0.9845703125;
- static const float blur6_std_dev = 1.02626953125;
- static const float blur7_std_dev = 1.36103515625;
- static const float blur8_std_dev = 1.4080078125;
- static const float blur9_std_dev = 1.7533203125;
- static const float blur10_std_dev = 1.80478515625;
- static const float blur11_std_dev = 2.15986328125;
- static const float blur12_std_dev = 2.215234375;
- static const float blur17_std_dev = 3.45535583496;
- static const float blur25_std_dev = 5.3409576416;
- static const float blur31_std_dev = 6.86488037109;
- static const float blur43_std_dev = 10.1852050781;
- #endif // USE_BINOMIAL_BLUR_STD_DEVS
- #endif // OVERRIDE_BLUR_STD_DEVS
- #ifndef OVERRIDE_ERROR_BLURRING
- // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
- // in shared-sample blurs but increase blurring and feature shifting.
- static const float error_blurring = 0.5;
- #endif
- ////////////////////////////////// INCLUDES //////////////////////////////////
- // gamma-management.h relies on pass-specific settings to guide its behavior:
- // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
- //#include "gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "quad-pixel-communication.h"
- /////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
- #ifndef QUAD_PIXEL_COMMUNICATION_H
- #define QUAD_PIXEL_COMMUNICATION_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey*
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DISCLAIMER /////////////////////////////////
- // *This code was inspired by "Shader Amortization using Pixel Quad Message
- // Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
- // is not to plagiarize his fundamentally similar code and assert my own
- // copyright, but the algorithmic helper functions require so little code that
- // implementations can't vary by much except bugfixes and conventions. I just
- // wanted to license my own particular code here to avoid ambiguity and make it
- // clear that as far as I'm concerned, people can do as they please with it.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // Given screen pixel numbers, derive a "quad vector" describing a fragment's
- // position in its 2x2 pixel quad. Given that vector, obtain the values of any
- // variable at neighboring fragments.
- // Requires: Using this file in general requires:
- // 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // Functions will give incorrect results if this is not true,
- // so a test function is included.
- ///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
- float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Two measures of the current fragment's output pixel number
- // in the range ([0, output_size.x), [0, output_size.y)):
- // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
- // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
- // Returns: Two measures of the fragment's position in its 2x2 quad:
- // 1.) The .xy components are its 2x2 placement with respect to
- // uv direction (the origin (0, 0) is at the top-left):
- // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
- // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
- // You need this to arrange/weight shared texture samples.
- // 2.) The .zw components are its 2x2 placement with respect to
- // screen xy direction (position); the origin varies.
- // quad_gather needs this measure to work correctly.
- // Note: quad_vector.zw = quad_vector.xy * float2(
- // ddx(output_pixel_num_wrt_uvxy.x),
- // ddy(output_pixel_num_wrt_uvxy.y));
- // Caveats: This function assumes the GPU driver always starts 2x2 pixel
- // quads at even pixel numbers. This assumption can be wrong
- // for odd output resolutions (nondeterministically so).
- float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
- float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
- return quad_vector;
- }
- float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
- {
- // Requires: Same as get_quad_vector_naive() (see that first).
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- float4 quad_vector_guess =
- get_quad_vector_naive(output_pixel_num_wrt_uvxy);
- // If quad_vector_guess.zw doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
- ddy(quad_vector_guess.w));
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) output_pixel_num_wrt_uv must increase with uv coords and
- // measure the current fragment's output pixel number in:
- // ([0, output_size.x), [0, output_size.y))
- // Returns: Same as get_quad_vector_naive() (see that first), but it's
- // correct even if the 2x2 pixel quad starts at an odd pixel,
- // which can occur at odd resolutions.
- // Caveats: This function requires less information than the version
- // taking a float4, but it's potentially slower.
- // Do screen coords increase with or against uv? Get the direction
- // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
- float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
- ddy(output_pixel_num_wrt_uv.y));
- float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
- float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
- float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
- // If quad_vector_screen_guess doesn't increase with screen xy, we know
- // the 2x2 pixel quad starts at an odd pixel:
- float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
- ddy(quad_vector_screen_guess.y));
- float4 quad_vector_guess = float4(
- quad_vector_uv_guess, quad_vector_screen_guess);
- return quad_vector_guess * odd_start_mirror.xyxy;
- }
- void quad_gather(float4 quad_vector, float4 curr,
- out float4 adjx, out float4 adjy, out float4 diag)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) The GPU driver is using fine/high-quality derivatives.
- // 3.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 4.) curr is any vector you wish to get neighboring values of.
- // Returns: Values of an input vector (curr) at neighboring fragments
- // adjacent x, adjacent y, and diagonal (via out parameters).
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float3 curr,
- out float3 adjx, out float3 adjy, out float3 diag)
- {
- // Float3 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- void quad_gather(float4 quad_vector, float2 curr,
- out float2 adjx, out float2 adjy, out float2 diag)
- {
- // Float2 version
- adjx = curr - ddx(curr) * quad_vector.z;
- adjy = curr - ddy(curr) * quad_vector.w;
- diag = adjx - ddy(adjx) * quad_vector.w;
- }
- float4 quad_gather(float4 quad_vector, float curr)
- {
- // Float version:
- // Returns: return.x == current
- // return.y == adjacent x
- // return.z == adjacent y
- // return.w == diagonal
- float4 all = float4(curr);
- all.y = all.x - ddx(all.x) * quad_vector.z;
- all.zw = all.xy - ddy(all.xy) * quad_vector.w;
- return all;
- }
- float4 quad_gather_sum(float4 quad_vector, float4 curr)
- {
- // Requires: Same as quad_gather()
- // Returns: Sum of an input vector (curr) at all fragments in a quad.
- float4 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float3 quad_gather_sum(float4 quad_vector, float3 curr)
- {
- // Float3 version:
- float3 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float2 quad_gather_sum(float4 quad_vector, float2 curr)
- {
- // Float2 version:
- float2 adjx, adjy, diag;
- quad_gather(quad_vector, curr, adjx, adjy, diag);
- return (curr + adjx + adjy + diag);
- }
- float quad_gather_sum(float4 quad_vector, float curr)
- {
- // Float version:
- float4 all_values = quad_gather(quad_vector, curr);
- return (all_values.x + all_values.y + all_values.z + all_values.w);
- }
- bool fine_derivatives_working(float4 quad_vector, float4 curr)
- {
- // Requires: 1.) ddx() and ddy() are present in the current Cg profile.
- // 2.) quad_vector describes the current fragment's location in
- // its 2x2 pixel quad using get_quad_vector()'s conventions.
- // 3.) curr must be a test vector with non-constant derivatives
- // (its value should change nonlinearly across fragments).
- // Returns: true if fine/hybrid/high-quality derivatives are used, or
- // false if coarse derivatives are used or inconclusive
- // Usage: Test whether quad-pixel communication is working!
- // Method: We can confirm fine derivatives are used if the following
- // holds (ever, for any value at any fragment):
- // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
- // The more values we test (e.g. test a float4 two ways), the
- // easier it is to demonstrate fine derivatives are working.
- // TODO: Check for floating point exact comparison issues!
- float4 ddx_curr = ddx(curr);
- float4 ddy_curr = ddy(curr);
- float4 adjx = curr - ddx_curr * quad_vector.z;
- float4 adjy = curr - ddy_curr * quad_vector.w;
- bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
- bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
- return any(bool2(ddy_different, ddx_different));
- }
- bool fine_derivatives_working_fast(float4 quad_vector, float curr)
- {
- // Requires: Same as fine_derivatives_working()
- // Returns: Same as fine_derivatives_working()
- // Usage: This is faster than fine_derivatives_working() but more
- // likely to return false negatives, so it's less useful for
- // offline testing/debugging. It's also useless as the basis
- // for dynamic runtime branching as of May 2014: Derivatives
- // (and quad-pixel communication) are currently disallowed in
- // branches. However, future GPU's may allow you to use them
- // in dynamic branches if you promise the branch condition
- // evaluates the same for every fragment in the quad (and/or if
- // the driver enforces that promise by making a single fragment
- // control branch decisions). If that ever happens, this
- // version may become a more economical choice.
- float ddx_curr = ddx(curr);
- float ddy_curr = ddy(curr);
- float adjx = curr - ddx_curr * quad_vector.z;
- return (ddy_curr != ddy(adjx));
- }
- #endif // QUAD_PIXEL_COMMUNICATION_H
- //////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
- //#include "special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////////// HELPERS //////////////////////////////////
- inline float4 uv2_to_uv4(float2 tex_uv)
- {
- // Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
- return float4(tex_uv, 0.0, 0.0);
- }
- // Make a length squared helper macro (for usage with static constants):
- #define LENGTH_SQ(vec) (dot(vec, vec))
- inline float get_fast_gaussian_weight_sum_inv(const float sigma)
- {
- // We can use the Gaussian integral to calculate the asymptotic weight for
- // the center pixel. Since the unnormalized center pixel weight is 1.0,
- // the normalized weight is the same as the weight sum inverse. Given a
- // large enough blur (9+), the asymptotic weight sum is close and faster:
- // center_weight = 0.5 *
- // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
- // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
- // However, we can get even faster results with curve-fitting. These are
- // also closer than the asymptotic results, because they were constructed
- // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
- // (0, blurN_std_dev), so the results for smaller sigmas are biased toward
- // smaller blurs. The max error is 0.0031793913.
- // Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
- //static const float temp = 0.5/sqrt(2.0);
- //return erf(temp/sigma);
- return min(exp(exp(0.348348412457428/
- (sigma - 0.0860587260734721))), 0.399334576340352/sigma);
- }
- //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
- float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // Calculate Gaussian blur kernel weights and a normalization factor for
- // distances of 0-4, ignoring constant factors (since we're normalizing).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Statically normalize weights, sum weighted samples, and return. Blurs are
- // currently optimized for dynamic weights.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
- // It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- /////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
- float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: 1.) Global requirements must be met (see file description).
- // 2.) filter_linearN must = "true" in your .cgp file.
- // 3.) For gamma-correct bilinear filtering, global
- // gamma_aware_bilinear == true (from gamma-management.h)
- // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w45 = w4 + w5;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- const float w45_ratio = w5/w45;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 4 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w34 = w3 + w4;
- const float w12_ratio = w2/w12;
- const float w34_ratio = w4/w34;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w23 = w2 + w3;
- const float w01_ratio = w1/w01;
- const float w23_ratio = w3/w23;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
- sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
- sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 2 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w12 = w1 + w2;
- const float w12_ratio = w2/w12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w01 = w0 * 0.5 + w1;
- const float w01_ratio = w1/w01;
- // Weights for all samples are the same, so just average them:
- return 0.5 * (
- tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
- tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
- }
- //////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
- // Huge separable blurs come only in "fast" versions.
- float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- const float w16 = exp(-256.0 * denom_inv);
- const float w17 = exp(-289.0 * denom_inv);
- const float w18 = exp(-324.0 * denom_inv);
- const float w19 = exp(-361.0 * denom_inv);
- const float w20 = exp(-400.0 * denom_inv);
- const float w21 = exp(-441.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
- // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w16_17 = w16 + w17;
- const float w18_19 = w18 + w19;
- const float w20_21 = w20 + w21;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- const float w16_17_ratio = w17/w16_17;
- const float w18_19_ratio = w19/w18_19;
- const float w20_21_ratio = w21/w20_21;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
- sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
- sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
- // taps. It may be mipmapped depending on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- //const float weight_sum_inv = 1.0 /
- // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
- // w9 + w10 + w11 + w12 + w13 + w14 + w15));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- // The center texel (with weight w0) is used twice, so halve its weight.
- const float w0_1 = w0 * 0.5 + w1;
- const float w2_3 = w2 + w3;
- const float w4_5 = w4 + w5;
- const float w6_7 = w6 + w7;
- const float w8_9 = w8 + w9;
- const float w10_11 = w10 + w11;
- const float w12_13 = w12 + w13;
- const float w14_15 = w14 + w15;
- const float w0_1_ratio = w1/w0_1;
- const float w2_3_ratio = w3/w2_3;
- const float w4_5_ratio = w5/w4_5;
- const float w6_7_ratio = w7/w6_7;
- const float w8_9_ratio = w9/w8_9;
- const float w10_11_ratio = w11/w10_11;
- const float w12_13_ratio = w13/w12_13;
- const float w14_15_ratio = w15/w14_15;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
- sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
- sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
- sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
- sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
- sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
- sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
- sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
- sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 12 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w9_10 = w9 + w10;
- const float w11_12 = w11 + w12;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- const float w9_10_ratio = w10/w9_10;
- const float w11_12_ratio = w12/w11_12;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
- sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Same as tex2Dblur11()
- // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
- // neighbor and 8 linear taps. It may be mipmapped depending
- // on settings and dxdy.
- // First get the texel weights and normalization factor as above.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- //const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
- // Calculate combined weights and linear sample ratios between texel pairs.
- const float w1_2 = w1 + w2;
- const float w3_4 = w3 + w4;
- const float w5_6 = w5 + w6;
- const float w7_8 = w7 + w8;
- const float w1_2_ratio = w2/w1_2;
- const float w3_4_ratio = w4/w3_4;
- const float w5_6_ratio = w6/w5_6;
- const float w7_8_ratio = w8/w7_8;
- // Statically normalize weights, sum weighted samples, and return:
- float3 sum = float3(0.0,0.0,0.0);
- sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
- sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
- sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
- sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
- sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
- return sum * weight_sum_inv;
- }
- //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
- float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Requires: Global requirements must be met (see file description).
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
- // resized input.
- // Description:
- // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
- // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
- const float denom_inv = 0.5/(sigma*sigma);
- // Load each sample. We need all 3x3 samples. Quad-pixel communication
- // won't help either: This should perform like tex2Dblur5x5, but sharing a
- // 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
- const float2 sample4_uv = tex_uv;
- const float2 dx = float2(dxdy.x, 0.0);
- const float2 dy = float2(0.0, dxdy.y);
- const float2 sample1_uv = sample4_uv - dy;
- const float2 sample7_uv = sample4_uv + dy;
- const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
- const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
- const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
- const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
- const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
- const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
- const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
- const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
- const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
- // Statically compute Gaussian sample weights:
- const float w4 = 1.0;
- const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
- // Weight and sum the samples:
- const float3 sum = w4 * sample4 +
- w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
- w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
- return sum * weight_sum_inv;
- }
- //////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
- float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
- // 5x5 carefully selected bilinear samples.
- // Description:
- // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
- // bilinear sample location to reflect the true Gaussian weights for each
- // underlying texel. The following diagram illustrates the relative
- // locations of bilinear samples. Each sample with the same number has the
- // same weight (notice the symmetry). The letters a, b, c, d distinguish
- // quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
- // distinguish 1D directions along the line containing the pixel center:
- // 6a 5a 2U 5b 6b
- // 4a 3a 1U 3b 4b
- // 2L 1L 0C 1R 2R
- // 4c 3c 1D 3d 4d
- // 6c 5c 2D 5d 6d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2, 2x1, 1x2, or 1x1 texel block:
- // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
- // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
- // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
- // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
- // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
- // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
- // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
- // Note there is only one C texel and only two texels for each U, D, L, or
- // R sample. The center sample is effectively a nearest neighbor sample,
- // and the U/D/L/R samples use 1D linear filtering. All other texels are
- // read with bilinear samples somewhere within their 2x2 texel blocks.
- // COMPUTE TEXTURE COORDS:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
- // the center, and reuse them independently for both dimensions. Compute
- // these offsets based on the relative 1D Gaussian weights of the texels
- // in question. (w1off means "Gaussian weight for the texel 1.0 texels
- // away from the pixel center," etc.).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float w4off = exp(-16.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- const float texel3to4ratio = w4off/(w3off + w4off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
- const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
- const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
- const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2R1 = w3off;
- const float w2R2 = w4off;
- const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
- const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
- const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
- const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2R1 + w2R2;
- const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
- const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
- const float w5 = w4;
- const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
- // LOAD TEXTURE SAMPLES:
- // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- // Sampling order doesn't seem to affect performance, so just be clear:
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
- const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
- const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
- const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
- const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
- const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
- const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
- const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
- const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
- const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2R + sample2D + sample2L + sample2U);
- sum += w3 * (sample3d + sample3c + sample3b + sample3a);
- sum += w4 * (sample4d + sample4c + sample4b + sample4a);
- sum += w5 * (sample5d + sample5c + sample5b + sample5a);
- sum += w6 * (sample6d + sample6c + sample6b + sample6a);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
- // 4x4 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 4a 3a 3b 4b
- // 2a 1a 1b 2b
- // 2c 1c 1d 2d
- // 4c 3c 3d 4d
- // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
- // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
- // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
- // the center texel):
- // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
- // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
- // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
- // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
- // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
- // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
- // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float w3off = exp(-9.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- const float texel2to3ratio = w3off/(w2off + w3off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1abcd = 1.0;
- const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
- const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
- const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
- const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
- const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
- const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights.
- // Split weights for shared texels between samples sharing them:
- const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
- const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
- const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv =
- 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
- // LOAD TEXTURE SAMPLES:
- // Load all 16 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
- const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
- const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
- const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
- const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
- const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
- const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
- const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = float3(0.0,0.0,0.0);
- sum += w1 * (sample1a + sample1b + sample1c + sample1d);
- sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
- sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
- sum += w4 * (sample4a + sample4b + sample4c + sample4d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
- // 3x3 carefully selected bilinear samples.
- // Description:
- // First see the description for tex2Dblur9x9(). This blur uses the same
- // concept and sample/texel locations except on a smaller scale. Samples:
- // 2a 1U 2b
- // 1L 0C 1R
- // 2c 1D 2d
- // Texels:
- // 2a4 2a3 1U2 2b3 2b4
- // 2a2 2a1 1U1 2b1 2b2
- // 1L2 1L1 0C1 1R1 1R2
- // 2c2 2c1 1D1 2d1 2d2
- // 2c4 2c3 1D2 2d3 2d4
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w1off = exp(-1.0 * denom_inv);
- const float w2off = exp(-4.0 * denom_inv);
- const float texel1to2ratio = w2off/(w1off + w2off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including x-axis-aligned:
- const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
- const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
- // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
- // Statically compute Gaussian texel weights for the bottom-right quadrant.
- // Read underscores as "and."
- const float w1R1 = w1off;
- const float w1R2 = w2off;
- const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
- const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
- const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
- // Statically add texel weights in each sample to get sample weights:
- const float w0 = 1.0;
- const float w1 = w1R1 + w1R2;
- const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
- // LOAD TEXTURE SAMPLES:
- // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
- const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
- const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
- const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
- const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
- const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
- const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
- const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- float3 sum = w0 * sample0C;
- sum += w1 * (sample1R + sample1D + sample1L + sample1U);
- sum += w2 * (sample2a + sample2b + sample2c + sample2d);
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
- // Requires: Same as tex2Dblur9()
- // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
- // 2x2 carefully selected bilinear samples.
- // Description:
- // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
- // blur mixes concepts from both. The sample layout is as follows:
- // 0a 0b
- // 0c 0d
- // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
- // a vertical column of texels, and samples 0a/0c and 0b/0d share a
- // horizontal row of texels (all samples share the center texel):
- // 0a3 0ab2 0b3
- // 0ac1 0*0 0bd1
- // 0c3 0cd2 0d3
- // COMPUTE TEXTURE COORDS:
- // Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w1off = exp(-1.0 * denom_inv);
- const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
- // Statically compute texel offsets from the fragment center to each
- // bilinear sample in the bottom-right quadrant, including axis-aligned:
- const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
- // LOAD TEXTURE SAMPLES:
- // Load all 4 samples using symmetry:
- const float2 mirror_x = float2(-1.0, 1.0);
- const float2 mirror_y = float2(1.0, -1.0);
- const float2 mirror_xy = float2(-1.0, -1.0);
- const float2 dxdy_mirror_x = dxdy * mirror_x;
- const float2 dxdy_mirror_y = dxdy * mirror_y;
- const float2 dxdy_mirror_xy = dxdy * mirror_xy;
- const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
- const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
- const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
- const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
- // SUM WEIGHTED SAMPLES:
- // Weights for all samples are the same, so just average them:
- return 0.25 * (sample0a + sample0b + sample0c + sample0d);
- }
- ////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
- float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: 1.) Same as tex2Dblur9()
- // 2.) ddx() and ddy() are present in the current Cg profile.
- // 3.) The GPU driver is using fine/high-quality derivatives.
- // 4.) quad_vector *correctly* describes the current fragment's
- // location in its pixel quad, by the conventions noted in
- // get_quad_vector[_naive].
- // 5.) tex_uv.w = log2(video_size/output_size).y
- // 6.) tex2Dlod() is present in the current Cg profile.
- // Optional: Tune artifacts vs. excessive blurriness with the global
- // float error_blurring.
- // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
- // blur (a 6x6 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // Perform a 1-pass blur with shared texture lookups across a pixel quad.
- // We'll get neighboring samples with high-quality ddx/ddy derivatives, as
- // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
- // Message Passing" by Eric Penner.
- //
- // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
- // bilinear samples, where bilinear sampling positions are computed from
- // the relative Gaussian weights of the 4 surrounding texels. The catch is
- // that the appropriate texel weights and sample coords differ for each
- // fragment, but we're reusing most of the same samples across a quad of
- // destination fragments. (We do use unique coords for the four nearest
- // samples at each fragment.) Mixing bilinear filtering and sample-sharing
- // therefore introduces some error into the weights, and this can get nasty
- // when the source image is small or high-frequency. Computing bilinear
- // ratios based on weights at the sample field center results in sharpening
- // and ringing artifacts, but we can move samples closer to halfway between
- // texels to try blurring away the error (which can move features around by
- // a texel or so). Tune this with the global float "error_blurring".
- //
- // The pixel quad's sample field covers 12x12 texels, accessed through 6x6
- // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
- // texels (5x5 bilinear taps), and each fragment is responsible for loading
- // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
- // to use unique bilinear coords for sample0* for each fragment. This
- // diagram illustrates the relative locations of bilinear samples 1-9 for
- // each quadrant a, b, c, d (note samples will not be equally spaced):
- // 8a 7a 6a 6b 7b 8b
- // 5a 4a 3a 3b 4b 5b
- // 2a 1a 0a 0b 1b 2b
- // 2c 1c 0c 0d 1d 2d
- // 5c 4c 3c 3d 4d 5d
- // 8c 7c 6c 6d 7d 8d
- // The following diagram illustrates the underlying equally spaced texels,
- // named after the sample that accesses them and subnamed by their location
- // within their 2x2 texel block:
- // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
- // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
- // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
- // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
- // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
- // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
- // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
- // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
- // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
- // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
- // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
- // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
- // With this symmetric arrangement, we don't have to know which absolute
- // quadrant a sample lies in to assign kernel weights; it's enough to know
- // the sample number and the relative quadrant of the sample (relative to
- // the current quadrant):
- // {current, adjacent x, adjacent y, diagonal}
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute sampling offsets within each 2x2 texel block, based
- // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
- // and [4, 5] away from the fragment, and reuse them independently for both
- // dimensions. Use the sample field center as the estimated destination,
- // but nudge the result closer to halfway between texels to blur error.
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // based on the sum of their 4 underlying texel weights. Assume a same-
- // resolution blur, so each symmetrically named sample weight will compute
- // the same at every fragment in the pixel quad: We can therefore compute
- // texel weights based only on the bottom-right quadrant (fragment at 0d0).
- // Too avoid too much boilerplate code, use a macro to get all 4 texel
- // weights for a bilinear sample based on the offset of its top-left texel:
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
- const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
- const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
- const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
- const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
- const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
- const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
- const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
- const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
- const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- float3 sample8adjx, sample8adjy, sample8diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
- sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
- sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
- sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
- // blur (a 5x5 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 25 of the 36 samples taken across the pixel quad (to cover a
- // 5x5 sample area, or 10x10 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 11 omitted samples
- // are always the "same:"
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float w4_5off = exp(-(4.5*4.5) * denom_inv);
- const float w5_5off = exp(-(5.5*5.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
- const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
- const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
- const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
- const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 25 of the 36 sample weights. Skip the following weights:
- // 8adjx, 2adjx, 5adjx,
- // 6adjy, 7adjy, 8adjy,
- // 2diag, 5diag, 6diag, 7diag, 8diag
- const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
- const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
- const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
- const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
- const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
- const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
- const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w4curr + w5curr + w6curr + w7curr + w8curr +
- w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
- w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
- w0diag + w1diag + w3diag + w4diag);
- // Statically pack most weights for runtime. Note the mixed packing:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
- const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
- const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
- const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
- const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
- const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
- const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad in order of need:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- float3 sample4adjx, sample4adjy, sample4diag;
- float3 sample5adjx, sample5adjy, sample5diag;
- float3 sample6adjx, sample6adjy, sample6diag;
- float3 sample7adjx, sample7adjy, sample7diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
- quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
- quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
- quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result. First do the simple ones:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
- // Now do the mixed-sample ones:
- sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
- sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
- sum += w8curr * sample8curr;
- // Normalize the sum (so the weights add to 1.0) and return:
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
- // blur (a 4x4 blur of carefully selected bilinear samples)
- // of the given mip level. There will be subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur12x12shared(). This function
- // shares the same concept and a similar sample placement, except each
- // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
- // respectively. There could be a total of 16 samples, 4 of which each
- // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
- // its own offset to reduce shared sample artifacts, bringing the sample
- // count for each fragment to 7. Sample placement:
- // 3a 2a 2b 3b
- // 1a 0a 0b 1b
- // 1c 0c 0d 1d
- // 3c 2c 2d 3d
- // Texel placement:
- // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
- // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
- // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
- // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
- // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
- // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
- // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
- // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
-
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
- const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
- const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
- const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
- const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Statically pack weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
- const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
- const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
- // Get the weight sum inverse (normalization factor):
- const float4 weight_sum4 = w0 + w1 + w2 + w3;
- const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
- const float weight_sum = weight_sum2.x + weight_sum2.y;
- const float weight_sum_inv = 1.0/(weight_sum);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- float3 sample3adjx, sample3adjy, sample3diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
- sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
- sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
- return sum * weight_sum_inv;
- }
- float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
- const float sigma)
- {
- // Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
- // Requires: Same as tex2Dblur12x12shared()
- // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
- // blur (a 3x3 blur of carefully selected bilinear samples)
- // of the given mip level. There will be some inaccuracies,subtle inaccuracies,
- // especially for small or high-frequency detailed sources.
- // Description:
- // First see the description for tex2Dblur8x8shared(). This
- // function shares the same concept and sample placement, but each fragment
- // only uses 9 of the 16 samples taken across the pixel quad (to cover a
- // 3x3 sample area, or 6x6 texel area), and it uses a lower standard
- // deviation to compensate. Thanks to symmetry, the 7 omitted samples
- // are always the "same:"
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0off = 1.0;
- const float w0_5off = exp(-(0.5*0.5) * denom_inv);
- const float w1off = exp(-(1.0*1.0) * denom_inv);
- const float w1_5off = exp(-(1.5*1.5) * denom_inv);
- const float w2off = exp(-(2.0*2.0) * denom_inv);
- const float w2_5off = exp(-(2.5*2.5) * denom_inv);
- const float w3_5off = exp(-(3.5*3.5) * denom_inv);
- const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
- const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
- // We don't share sample0*, so use the nearest destination fragment:
- const float texel0to1ratio_nearest = w1off/(w0off + w1off);
- const float texel1to2ratio_nearest = w2off/(w1off + w2off);
- // Statically compute texel offsets from the bottom-right fragment to each
- // bilinear sample in the bottom-right quadrant:
- const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
- const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
- const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
- const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
- const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
- // CALCULATE KERNEL WEIGHTS:
- // Statically compute bilinear sample weights at each destination fragment
- // from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
- #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
- (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
- exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
- // We only need 9 of the 16 sample weights. Skip the following weights:
- // 1adjx, 3adjx
- // 2adjy, 3adjy
- // 1diag, 2diag, 3diag
- const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
- const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
- const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
- const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
- const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
- const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
- const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
- const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
- const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
- #undef GET_TEXEL_QUAD_WEIGHTS
- // Get the weight sum inverse (normalization factor):
- const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
- w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
- // Statically pack some weights for runtime:
- const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
- // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
- // Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
- const float2 dxdy_curr = dxdy * quad_vector.xy;
- // Load bilinear samples for the current quadrant (for this fragment):
- const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
- const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
- const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
- const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
- const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
- const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
- const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
- // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
- // Fetch the samples from other fragments in the 2x2 quad:
- float3 sample1adjx, sample1adjy, sample1diag;
- float3 sample2adjx, sample2adjy, sample2diag;
- quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
- quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
- // Statically normalize weights (so total = 1.0), and sum weighted samples.
- // Fill each row of a matrix with an rgb sample and pre-multiply by the
- // weights to obtain a weighted result for sample1*, and handle the rest
- // of the weights more directly/verbosely:
- float3 sum = float3(0.0,0.0,0.0);
- sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
- sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
- w2adjx * sample2adjx + w3curr * sample3curr;
- return sum * weight_sum_inv;
- }
- /////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
- // The following blurs are static wrappers around the dynamic blurs above.
- // HOPEFULLY, the compiler will be smart enough to do constant-folding.
- // Resizable separable blurs:
- inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Fast separable blurs:
- inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
- }
- inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // Huge, "fast" separable blurs:
- inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
- }
- inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
- }
- inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
- }
- inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
- }
- // Resizable one-pass blurs:
- inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" one-pass blurs:
- inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
- }
- inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
- }
- inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
- }
- inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
- const float2 dxdy)
- {
- return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
- }
- // "Fast" shared-sample one-pass blurs:
- inline float3 tex2Dblur12x12shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
- }
- inline float3 tex2Dblur10x10shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
- }
- inline float3 tex2Dblur8x8shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
- }
- inline float3 tex2Dblur6x6shared(const sampler2D tex,
- const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
- {
- return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
- }
- #endif // BLUR_FUNCTIONS_H
- //////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
- /////////////////////////////// BLOOM CONSTANTS //////////////////////////////
- // Compute constants with manual inlines of the functions below:
- static const float bloom_diff_thresh = 1.0/256.0;
- /////////////////////////////////// HELPERS //////////////////////////////////
- inline float get_min_sigma_to_blur_triad(const float triad_size,
- const float thresh)
- {
- // Requires: 1.) triad_size is the final phosphor triad size in pixels
- // 2.) thresh is the max desired pixel difference in the
- // blurred triad (e.g. 1.0/256.0).
- // Returns: Return the minimum sigma that will fully blur a phosphor
- // triad on the screen to an even color, within thresh.
- // This closed-form function was found by curve-fitting data.
- // Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
- return -0.05168 + 0.6113*triad_size -
- 1.122*triad_size*sqrt(0.000416 + thresh);
- // Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
- //return 0.5985*triad_size - triad_size*sqrt(thresh)
- }
- inline float get_absolute_scale_blur_sigma(const float thresh)
- {
- // Requires: 1.) min_expected_triads must be a global float. The number
- // of horizontal phosphor triads in the final image must be
- // >= min_allowed_viewport_triads.x for realistic results.
- // 2.) bloom_approx_scale_x must be a global float equal to the
- // absolute horizontal scale of BLOOM_APPROX.
- // 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
- // should be <= 1.1658025090 to keep the final result <
- // 0.62666015625 (the largest sigma ensuring the largest
- // unused texel weight stays < 1.0/256.0 for a 3x3 blur).
- // 4.) thresh is the max desired pixel difference in the
- // blurred triad (e.g. 1.0/256.0).
- // Returns: Return the minimum Gaussian sigma that will blur the pass
- // output as much as it would have taken to blur away
- // bloom_approx_scale_x horizontal phosphor triads.
- // Description:
- // BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
- // use the same blur sigma as the actual phosphor bloom and scale it down
- // to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
- // we don't know the viewport size in this pass. Instead, we'll blur as
- // much as it would take to blur away min_allowed_viewport_triads.x. This
- // will blur "more than necessary" if the user actually uses more triads,
- // but that's not terrible either, because blurring a constant fraction of
- // the viewport may better resemble a true optical bloom anyway (since the
- // viewport will generally be about the same fraction of each player's
- // field of view, regardless of screen size and resolution).
- // Assume an extremely large viewport size for asymptotic results.
- return bloom_approx_scale_x/max_viewport_size_x *
- get_min_sigma_to_blur_triad(
- max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
- }
- inline float get_center_weight(const float sigma)
- {
- // Given a Gaussian blur sigma, get the blur weight for the center texel.
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- return get_fast_gaussian_weight_sum_inv(sigma);
- #else
- const float denom_inv = 0.5/(sigma*sigma);
- const float w0 = 1.0;
- const float w1 = exp(-1.0 * denom_inv);
- const float w2 = exp(-4.0 * denom_inv);
- const float w3 = exp(-9.0 * denom_inv);
- const float w4 = exp(-16.0 * denom_inv);
- const float w5 = exp(-25.0 * denom_inv);
- const float w6 = exp(-36.0 * denom_inv);
- const float w7 = exp(-49.0 * denom_inv);
- const float w8 = exp(-64.0 * denom_inv);
- const float w9 = exp(-81.0 * denom_inv);
- const float w10 = exp(-100.0 * denom_inv);
- const float w11 = exp(-121.0 * denom_inv);
- const float w12 = exp(-144.0 * denom_inv);
- const float w13 = exp(-169.0 * denom_inv);
- const float w14 = exp(-196.0 * denom_inv);
- const float w15 = exp(-225.0 * denom_inv);
- const float w16 = exp(-256.0 * denom_inv);
- const float w17 = exp(-289.0 * denom_inv);
- const float w18 = exp(-324.0 * denom_inv);
- const float w19 = exp(-361.0 * denom_inv);
- const float w20 = exp(-400.0 * denom_inv);
- const float w21 = exp(-441.0 * denom_inv);
- // Note: If the implementation uses a smaller blur than the max allowed,
- // the worst case scenario is that the center weight will be overestimated,
- // so we'll put a bit more energy into the brightpass...no huge deal.
- // Then again, if the implementation uses a larger blur than the max
- // "allowed" because of dynamic branching, the center weight could be
- // underestimated, which is more of a problem...consider always using
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // 43x blur:
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
- w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- // 31x blur:
- const float weight_sum_inv = 1.0 /
- (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
- w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- // 25x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- // 17x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
- w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
- #else
- // 9x blur:
- const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- const float center_weight = weight_sum_inv * weight_sum_inv;
- return center_weight;
- #endif
- }
- inline float3 tex2DblurNfast(const sampler2D texture, const float2 tex_uv,
- const float2 dxdy, const float sigma)
- {
- // If sigma is static, we can safely branch and use the smallest blur
- // that's big enough. Ignore #define hints, because we'll only use a
- // large blur if we actually need it, and the branches cost nothing.
- #ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- #else
- // It's still worth branching if the profile supports dynamic branches:
- // It's much faster than using a hugely excessive blur, but each branch
- // eats ~1% FPS.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- #endif
- #endif
- // Failed optimization notes:
- // I originally created a same-size mipmapped 5-tap separable blur10 that
- // could handle any sigma by reaching into lower mip levels. It was
- // as fast as blur25fast for runtime sigmas and a tad faster than
- // blur31fast for static sigmas, but mipmapping two viewport-size passes
- // ate 10% of FPS across all codepaths, so it wasn't worth it.
- #ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- if(sigma <= blur9_std_dev)
- {
- return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur17_std_dev)
- {
- return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur25_std_dev)
- {
- return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
- }
- else if(sigma <= blur31_std_dev)
- {
- return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
- }
- else
- {
- return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
- }
- #else
- // If we can't afford to branch, we can only guess at what blur
- // size we need. Therefore, use the largest blur allowed.
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
- #else
- #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
- #else
- return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- #endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
- }
- inline float get_bloom_approx_sigma(const float output_size_x_runtime,
- const float estimated_viewport_size_x)
- {
- // Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
- // This is included for dynamic codepaths just in case the
- // following two globals are incorrect:
- // 2.) bloom_approx_size_x_for_skip should == the same
- // if PHOSPHOR_BLOOM_FAKE is #defined
- // 3.) bloom_approx_size_x should == the same otherwise
- // Returns: For gaussian4x4, return a dynamic small bloom sigma that's
- // as close to optimal as possible given available information.
- // For blur3x3, return the a static small bloom sigma that
- // works well for typical cases. Otherwise, we're using simple
- // bilinear filtering, so use static calculations.
- // Assume the default static value. This is a compromise that ensures
- // typical triads are blurred, even if unusually large ones aren't.
- static const float mask_num_triads_static =
- max(min_allowed_viewport_triads.x, mask_num_triads_desired_static);
- const float mask_num_triads_from_size =
- estimated_viewport_size_x/mask_triad_size_desired;
- const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
- lerp(mask_num_triads_from_size, mask_num_triads_desired,
- mask_specify_num_triads));
- // Assume an extremely large viewport size for asymptotic results:
- static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
- if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
- {
- // Use the runtime num triads and output size:
- const float asymptotic_triad_size =
- max_viewport_size_x/mask_num_triads_runtime;
- const float asymptotic_sigma = get_min_sigma_to_blur_triad(
- asymptotic_triad_size, bloom_diff_thresh);
- const float bloom_approx_sigma =
- asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
- // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
- // account for the Gaussian scanline sigma from the last pass too.
- // The bloom will be too wide horizontally but tall enough vertically.
- return length(float2(bloom_approx_sigma, beam_max_sigma));
- }
- else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
- {
- // We're either using blur3x3 or bilinear filtering. The biggest
- // reason to choose blur3x3 is to avoid dynamic weights, so use a
- // static calculation.
- #ifdef PHOSPHOR_BLOOM_FAKE
- static const float output_size_x_static =
- bloom_approx_size_x_for_fake;
- #else
- static const float output_size_x_static = bloom_approx_size_x;
- #endif
- static const float asymptotic_triad_size =
- max_viewport_size_x/mask_num_triads_static;
- const float asymptotic_sigma = get_min_sigma_to_blur_triad(
- asymptotic_triad_size, bloom_diff_thresh);
- const float bloom_approx_sigma =
- asymptotic_sigma * output_size_x_static/max_viewport_size_x;
- // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
- // try accounting for the Gaussian scanline sigma from the last pass
- // too; use the static default value:
- return length(float2(bloom_approx_sigma, beam_max_sigma_static));
- }
- }
- inline float get_final_bloom_sigma(const float bloom_sigma_runtime)
- {
- // Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
- // optimal for the [known] triad size.
- // 2.) Call this from a fragment shader (not a vertex shader),
- // or blurring with static sigmas won't be constant-folded.
- // Returns: Return the optimistic static sigma if the triad size is
- // known at compile time. Otherwise return the optimal runtime
- // sigma (10% slower) or an implementation-specific compromise
- // between an optimistic or pessimistic static sigma.
- // Notes: Call this from the fragment shader, NOT the vertex shader,
- // so static sigmas can be constant-folded!
- const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
- mask_triad_size_desired_static, bloom_diff_thresh);
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- return bloom_sigma_runtime;
- #else
- // Overblurring looks as bad as underblurring, so assume average-size
- // triads, not worst-case huge triads:
- return bloom_sigma_optimistic;
- #endif
- }
- #endif // BLOOM_FUNCTIONS_H
- //////////////////////////// END BLOOM-FUNCTIONS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- /////////////////////////////////// HELPERS //////////////////////////////////
- float3 tex2Dresize_gaussian4x4(sampler2D tex, float2 tex_uv, float2 dxdy, float2 tex_size, float2 texture_size_inv, float2 tex_uv_to_pixel_scale, float sigma)
- {
- // Requires: 1.) All requirements of gamma-management.h must be satisfied!
- // 2.) filter_linearN must == "true" in your .cgp preset.
- // 3.) mipmap_inputN must == "true" in your .cgp preset if
- // output_size << SRC.video_size.
- // 4.) dxdy should contain the uv pixel spacing:
- // dxdy = max(float2(1.0),
- // SRC.video_size/output_size)/SRC.texture_size;
- // 5.) texture_size == SRC.texture_size
- // 6.) texture_size_inv == float2(1.0)/SRC.texture_size
- // 7.) tex_uv_to_pixel_scale == output_size *
- // SRC.texture_size / SRC.video_size;
- // 8.) sigma is the desired Gaussian standard deviation, in
- // terms of output pixels. It should be < ~0.66171875 to
- // ensure the first unused sample (outside the 4x4 box) has
- // a weight < 1.0/256.0.
- // Returns: A true 4x4 Gaussian resize of the input.
- // Description:
- // Given correct inputs, this Gaussian resizer samples 4 pixel locations
- // along each downsized dimension and/or 4 texel locations along each
- // upsized dimension. It computes dynamic weights based on the pixel-space
- // distance of each sample from the destination pixel. It is arbitrarily
- // resizable and higher quality than tex2Dblur3x3_resize, but it's slower.
- // TODO: Move this to a more suitable file once there are others like it.
- const float denom_inv = 0.5/(sigma*sigma);
- // We're taking 4x4 samples, and we're snapping to texels for upsizing.
- // Find texture coords for sample 5 (second row, second column):
- const float2 curr_texel = tex_uv * tex_size;
- const float2 prev_texel =
- floor(curr_texel - float2(under_half)) + float2(0.5);
- const float2 prev_texel_uv = prev_texel * texture_size_inv;
- const float2 snap = float2((dxdy.x <= texture_size_inv.x), (dxdy.y <= texture_size_inv.y));
- const float2 sample5_downsize_uv = tex_uv - 0.5 * dxdy;
- const float2 sample5_uv = lerp(sample5_downsize_uv, prev_texel_uv, snap);
- // Compute texture coords for other samples:
- const float2 dx = float2(dxdy.x, 0.0);
- const float2 sample0_uv = sample5_uv - dxdy;
- const float2 sample10_uv = sample5_uv + dxdy;
- const float2 sample15_uv = sample5_uv + 2.0 * dxdy;
- const float2 sample1_uv = sample0_uv + dx;
- const float2 sample2_uv = sample0_uv + 2.0 * dx;
- const float2 sample3_uv = sample0_uv + 3.0 * dx;
- const float2 sample4_uv = sample5_uv - dx;
- const float2 sample6_uv = sample5_uv + dx;
- const float2 sample7_uv = sample5_uv + 2.0 * dx;
- const float2 sample8_uv = sample10_uv - 2.0 * dx;
- const float2 sample9_uv = sample10_uv - dx;
- const float2 sample11_uv = sample10_uv + dx;
- const float2 sample12_uv = sample15_uv - 3.0 * dx;
- const float2 sample13_uv = sample15_uv - 2.0 * dx;
- const float2 sample14_uv = sample15_uv - dx;
- // Load each sample:
- float3 sample0 = tex2D_linearize(tex, sample0_uv).rgb;
- float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
- float3 sample2 = tex2D_linearize(tex, dx).rgb;
- float3 sample3 = tex2D_linearize(tex, sample3_uv).rgb;
- float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
- float3 sample5 = tex2D_linearize(tex, sample5_uv).rgb;
- float3 sample6 = tex2D_linearize(tex, sample6_uv).rgb;
- float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
- float3 sample8 = tex2D_linearize(tex, sample8_uv).rgb;
- float3 sample9 = tex2D_linearize(tex, sample9_uv).rgb;
- float3 sample10 = tex2D_linearize(tex, sample10_uv).rgb;
- float3 sample11 = tex2D_linearize(tex, sample11_uv).rgb;
- float3 sample12 = tex2D_linearize(tex, sample12_uv).rgb;
- float3 sample13 = tex2D_linearize(tex, sample13_uv).rgb;
- float3 sample14 = tex2D_linearize(tex, sample14_uv).rgb;
- float3 sample15 = tex2D_linearize(tex, sample15_uv).rgb;
- // Compute destination pixel offsets for each sample:
- const float2 dest_pixel = tex_uv * tex_uv_to_pixel_scale;
- const float2 sample0_offset = sample0_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample1_offset = sample1_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample2_offset = sample2_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample3_offset = sample3_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample4_offset = sample4_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample5_offset = sample5_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample6_offset = sample6_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample7_offset = sample7_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample8_offset = sample8_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample9_offset = sample9_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample10_offset = sample10_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample11_offset = sample11_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample12_offset = sample12_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample13_offset = sample13_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample14_offset = sample14_uv * tex_uv_to_pixel_scale - dest_pixel;
- const float2 sample15_offset = sample15_uv * tex_uv_to_pixel_scale - dest_pixel;
- // Compute Gaussian sample weights:
- const float w0 = exp(-LENGTH_SQ(sample0_offset) * denom_inv);
- const float w1 = exp(-LENGTH_SQ(sample1_offset) * denom_inv);
- const float w2 = exp(-LENGTH_SQ(sample2_offset) * denom_inv);
- const float w3 = exp(-LENGTH_SQ(sample3_offset) * denom_inv);
- const float w4 = exp(-LENGTH_SQ(sample4_offset) * denom_inv);
- const float w5 = exp(-LENGTH_SQ(sample5_offset) * denom_inv);
- const float w6 = exp(-LENGTH_SQ(sample6_offset) * denom_inv);
- const float w7 = exp(-LENGTH_SQ(sample7_offset) * denom_inv);
- const float w8 = exp(-LENGTH_SQ(sample8_offset) * denom_inv);
- const float w9 = exp(-LENGTH_SQ(sample9_offset) * denom_inv);
- const float w10 = exp(-LENGTH_SQ(sample10_offset) * denom_inv);
- const float w11 = exp(-LENGTH_SQ(sample11_offset) * denom_inv);
- const float w12 = exp(-LENGTH_SQ(sample12_offset) * denom_inv);
- const float w13 = exp(-LENGTH_SQ(sample13_offset) * denom_inv);
- const float w14 = exp(-LENGTH_SQ(sample14_offset) * denom_inv);
- const float w15 = exp(-LENGTH_SQ(sample15_offset) * denom_inv);
- const float weight_sum_inv = 1.0/(
- w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 +
- w8 +w9 + w10 + w11 + w12 + w13 + w14 + w15);
- // Weight and sum the samples:
- const float3 sum = w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
- w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
- w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
- w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15;
- return sum * weight_sum_inv;
- }
- void main() {
- // Would a viewport-relative size work better for this pass? (No.)
- // PROS:
- // 1.) Instead of writing an absolute size to user-cgp-constants.h, we'd
- // write a viewport scale. That number could be used to directly scale
- // the viewport-resolution bloom sigma and/or triad size to a smaller
- // scale. This way, we could calculate an optimal dynamic sigma no
- // matter how the dot pitch is specified.
- // CONS:
- // 1.) Texel smearing would be much worse at small viewport sizes, but
- // performance would be much worse at large viewport sizes, so there
- // would be no easy way to calculate a decent scale.
- // 2.) Worse, we could no longer get away with using a constant-size blur!
- // Instead, we'd have to face all the same difficulties as the real
- // phosphor bloom, which requires static #ifdefs to decide the blur
- // size based on the expected triad size...a dynamic value.
- // 3.) Like the phosphor bloom, we'd have less control over making the blur
- // size correct for an optical blur. That said, we likely overblur (to
- // maintain brightness) more than the eye would do by itself: 20/20
- // human vision distinguishes ~1 arc minute, or 1/60 of a degree. The
- // highest viewing angle recommendation I know of is THX's 40.04 degree
- // recommendation, at which 20/20 vision can distinguish about 2402.4
- // lines. Assuming the "TV lines" definition, that means 1201.2
- // distinct light lines and 1201.2 distinct dark lines can be told
- // apart, i.e. 1201.2 pairs of lines. This would correspond to 1201.2
- // pairs of alternating lit/unlit phosphors, so 2402.4 phosphors total
- // (if they're alternately lit). That's a max of 800.8 triads. Using
- // a more popular 30 degree viewing angle recommendation, 20/20 vision
- // can distinguish 1800 lines, or 600 triads of alternately lit
- // phosphors. In contrast, we currently blur phosphors all the way
- // down to 341.3 triads to ensure full brightness.
- // 4.) Realistically speaking, we're usually just going to use bilinear
- // filtering in this pass anyway, but it only works well to limit
- // bandwidth if it's done at a small constant scale.
-
- // Get the constants we need to sample:
- // const sampler2D texture = ORIG_LINEARIZED.texture;
- // const float2 tex_uv = tex_uv;
- // const float2 blur_dxdy = blur_dxdy;
- const float2 texture_size_ = ORIG_LINEARIZEDtexture_size;
- // const float2 texture_size_inv = texture_size_inv;
- // const float2 tex_uv_to_pixel_scale = tex_uv_to_pixel_scale;
- float2 tex_uv_r, tex_uv_g, tex_uv_b;
- if(beam_misconvergence)
- {
- const float2 uv_scanline_step = uv_scanline_step;
- const float2 convergence_offsets_r = get_convergence_offsets_r_vector();
- const float2 convergence_offsets_g = get_convergence_offsets_g_vector();
- const float2 convergence_offsets_b = get_convergence_offsets_b_vector();
- tex_uv_r = tex_uv - convergence_offsets_r * uv_scanline_step;
- tex_uv_g = tex_uv - convergence_offsets_g * uv_scanline_step;
- tex_uv_b = tex_uv - convergence_offsets_b * uv_scanline_step;
- }
- // Get the blur sigma:
- const float bloom_approx_sigma = get_bloom_approx_sigma(output_size.x,
- estimated_viewport_size_x);
- // Sample the resized and blurred texture, and apply convergence offsets if
- // necessary. Applying convergence offsets here triples our samples from
- // 16/9/1 to 48/27/3, but faster and easier than sampling BLOOM_APPROX and
- // HALATION_BLUR 3 times at full resolution every time they're used.
- float3 color_r, color_g, color_b, color;
- if(bloom_approx_filter > 1.5)
- {
- // Use a 4x4 Gaussian resize. This is slower but technically correct.
- if(beam_misconvergence)
- {
- color_r = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_r,
- blur_dxdy, texture_size_, texture_size_inv,
- tex_uv_to_pixel_scale, bloom_approx_sigma);
- color_g = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_g,
- blur_dxdy, texture_size_, texture_size_inv,
- tex_uv_to_pixel_scale, bloom_approx_sigma);
- color_b = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_b,
- blur_dxdy, texture_size_, texture_size_inv,
- tex_uv_to_pixel_scale, bloom_approx_sigma);
- }
- else
- {
- color = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv,
- blur_dxdy, texture_size_, texture_size_inv,
- tex_uv_to_pixel_scale, bloom_approx_sigma);
- }
- }
- else if(bloom_approx_filter > 0.5)
- {
- // Use a 3x3 resize blur. This is the softest option, because we're
- // blurring already blurry bilinear samples. It doesn't play quite as
- // nicely with convergence offsets, but it has its charms.
- if(beam_misconvergence)
- {
- color_r = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_r,
- blur_dxdy, bloom_approx_sigma);
- color_g = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_g,
- blur_dxdy, bloom_approx_sigma);
- color_b = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_b,
- blur_dxdy, bloom_approx_sigma);
- }
- else
- {
- color = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv, blur_dxdy);
- }
- }
- else
- {
- // Use bilinear sampling. This approximates a 4x4 Gaussian resize MUCH
- // better than tex2Dblur3x3_resize for the very small sigmas we're
- // likely to use at small output resolutions. (This estimate becomes
- // too sharp above ~400x300, but the blurs break down above that
- // resolution too, unless min_allowed_viewport_triads is high enough to
- // keep bloom_approx_scale_x/min_allowed_viewport_triads < ~1.1658025.)
- if(beam_misconvergence)
- {
- color_r = tex2D_linearize(ORIG_LINEARIZED, tex_uv_r).rgb;
- color_g = tex2D_linearize(ORIG_LINEARIZED, tex_uv_g).rgb;
- color_b = tex2D_linearize(ORIG_LINEARIZED, tex_uv_b).rgb;
- }
- else
- {
- color = tex2D_linearize(ORIG_LINEARIZED, tex_uv).rgb;
- }
- }
- // Pack the colors from the red/green/blue beams into a single vector:
- if(beam_misconvergence)
- {
- color = float3(color_r.r, color_g.g, color_b.b);
- }
- // Encode and output the blurred image:
- FragColor = encode_output(float4(tex2D_linearize(ORIG_LINEARIZED, tex_uv)));
- }
|