12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748 |
- #version 150
- uniform sampler2D source[];
- uniform vec4 sourceSize[];
- uniform vec4 targetSize;
- uniform int phase;
- in Vertex {
- vec2 vTexCoord;
- vec2 uv_step;
- float interlaced;
- };
- out vec4 FragColor;
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- // USER SETTINGS BLOCK //
- #define crt_gamma 2.400000
- #define lcd_gamma 2.400000
- #define levels_contrast 0.740000
- #define halation_weight 0.004600
- #define diffusion_weight 0.001000
- #define bloom_underestimate_levels 0.800000
- #define bloom_excess 0.000000
- #define beam_min_sigma 0.020000
- #define beam_max_sigma 0.200000
- #define beam_spot_power 0.370000
- #define beam_min_shape 2.000000
- #define beam_max_shape 4.000000
- #define beam_shape_power 0.250000
- #define beam_horiz_filter 0.000000
- #define beam_horiz_sigma 0.545000
- #define beam_horiz_linear_rgb_weight 1.000000
- #define convergence_offset_x_r -0.050000
- #define convergence_offset_x_g 0.000000
- #define convergence_offset_x_b 0.000000
- #define convergence_offset_y_r 0.100000
- #define convergence_offset_y_g -0.050000
- #define convergence_offset_y_b 0.100000
- #define mask_type 0.000000
- #define mask_sample_mode_desired 0.000000
- #define mask_specify_num_triads 0.000000
- #define mask_triad_size_desired 1.000000
- #define mask_num_triads_desired 900.000000
- #define aa_subpixel_r_offset_x_runtime -0.333333
- #define aa_subpixel_r_offset_y_runtime 0.000000
- #define aa_cubic_c 0.500000
- #define aa_gauss_sigma 0.500000
- #define geom_mode_runtime 0.000000
- #define geom_radius 3.000000
- #define geom_view_dist 2.000000
- #define geom_tilt_angle_x 0.000000
- #define geom_tilt_angle_y 0.000000
- #define geom_aspect_ratio_x 432.000000
- #define geom_aspect_ratio_y 329.000000
- #define geom_overscan_x 1.000000
- #define geom_overscan_y 1.000000
- #define border_size 0.005000
- #define border_darkness 0.000000
- #define border_compress 2.500000
- #define interlace_bff 0.000000
- #define interlace_1080i 0.000000
- // END USER SETTINGS BLOCK //
- // compatibility macros for transparently converting HLSLisms into GLSLisms
- #define mul(a,b) (b*a)
- #define lerp(a,b,c) mix(a,b,c)
- #define saturate(c) clamp(c, 0.0, 1.0)
- #define frac(x) (fract(x))
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #define float2x2 mat2x2
- #define float3x3 mat3x3
- #define float4x4 mat4x4
- #define float4x3 mat4x3
- #define float2x4 mat2x4
- #define IN params
- #define texture_size sourceSize[0].xy
- #define video_size sourceSize[0].xy
- #define output_size targetSize.xy
- #define frame_count phase
- #define static
- #define inline
- #define const
- #define fmod(x,y) mod(x,y)
- #define ddx(c) dFdx(c)
- #define ddy(c) dFdy(c)
- #define atan2(x,y) atan(y,x)
- #define rsqrt(c) inversesqrt(c)
- #define input_texture source[0]
- #ifdef GL_ES
- #ifdef GL_FRAGMENT_PRECISION_HIGH
- precision highp float;
- #else
- precision mediump float;
- #endif
- #define COMPAT_PRECISION mediump
- #else
- #define COMPAT_PRECISION
- #endif
- #if __VERSION__ >= 130
- #define COMPAT_VARYING in
- #define COMPAT_TEXTURE texture
- #else
- #define COMPAT_VARYING varying
- #define FragColor gl_FragColor
- #define COMPAT_TEXTURE texture2D
- #endif
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- // PASS SETTINGS:
- // gamma-management.h needs to know what kind of pipeline we're using and
- // what pass this is in that pipeline. This will become obsolete if/when we
- // can #define things like this in the .cgp preset file.
- #define FIRST_PASS
- #define SIMULATE_CRT_ON_LCD
- ////////////////////////////////// INCLUDES //////////////////////////////////
- //#include "bind-shader-h"
- ///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
- #ifndef BIND_SHADER_PARAMS_H
- #define BIND_SHADER_PARAMS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "derived-settings-and-constants.h"
- ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- // Override some parameters for gamma-management.h and tex2Dantialias.h:
- #define OVERRIDE_DEVICE_GAMMA
- static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
- #define ANTIALIAS_OVERRIDE_BASICS
- #define ANTIALIAS_OVERRIDE_PARAMETERS
- // Provide accessors for vector constants that pack scalar uniforms:
- inline float2 get_aspect_vector(const float geom_aspect_ratio)
- {
- // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
- // the absolute scale from affecting the uv-mapping for curvature:
- const float geom_clamped_aspect_ratio =
- min(geom_aspect_ratio, geom_max_aspect_ratio);
- const float2 geom_aspect =
- normalize(float2(geom_clamped_aspect_ratio, 1.0));
- return geom_aspect;
- }
- inline float2 get_geom_overscan_vector()
- {
- return float2(geom_overscan_x, geom_overscan_y);
- }
- inline float2 get_geom_tilt_angle_vector()
- {
- return float2(geom_tilt_angle_x, geom_tilt_angle_y);
- }
- inline float3 get_convergence_offsets_x_vector()
- {
- return float3(convergence_offset_x_r, convergence_offset_x_g,
- convergence_offset_x_b);
- }
- inline float3 get_convergence_offsets_y_vector()
- {
- return float3(convergence_offset_y_r, convergence_offset_y_g,
- convergence_offset_y_b);
- }
- inline float2 get_convergence_offsets_r_vector()
- {
- return float2(convergence_offset_x_r, convergence_offset_y_r);
- }
- inline float2 get_convergence_offsets_g_vector()
- {
- return float2(convergence_offset_x_g, convergence_offset_y_g);
- }
- inline float2 get_convergence_offsets_b_vector()
- {
- return float2(convergence_offset_x_b, convergence_offset_y_b);
- }
- inline float2 get_aa_subpixel_r_offset()
- {
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // WARNING: THIS IS EXTREMELY EXPENSIVE.
- return float2(aa_subpixel_r_offset_x_runtime,
- aa_subpixel_r_offset_y_runtime);
- #else
- return aa_subpixel_r_offset_static;
- #endif
- #else
- return aa_subpixel_r_offset_static;
- #endif
- }
- // Provide accessors settings which still need "cooking:"
- inline float get_mask_amplify()
- {
- static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
- static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
- static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
- return mask_type < 0.5 ? mask_grille_amplify :
- mask_type < 1.5 ? mask_slot_amplify :
- mask_shadow_amplify;
- }
- inline float get_mask_sample_mode()
- {
- #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_desired;
- #else
- return clamp(mask_sample_mode_desired, 1.0, 2.0);
- #endif
- #else
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- return mask_sample_mode_static;
- #else
- return clamp(mask_sample_mode_static, 1.0, 2.0);
- #endif
- #endif
- }
- #endif // BIND_SHADER_PARAMS_H
- //////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //#include "scanline-functions.h"
- ///////////////////////////// BEGIN SCANLINE-FUNCTIONS ////////////////////////////
- #ifndef SCANLINE_FUNCTIONS_H
- #define SCANLINE_FUNCTIONS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- //////////////////////////// END USER-SETTINGS //////////////////////////
- //#include "derived-settings-and-constants.h"
- //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
- #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
- #define DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
- // crt-royale: A full-featured CRT shader, with cheese.
- // Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
- //
- // This program is free software; you can redistribute it and/or modify it
- // under the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 2 of the License, or any later version.
- //
- // This program is distributed in the hope that it will be useful, but WITHOUT
- // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- // more details.
- //
- // You should have received a copy of the GNU General Public License along with
- // this program; if not, write to the Free Software Foundation, Inc., 59 Temple
- // Place, Suite 330, Boston, MA 02111-1307 USA
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // These macros and constants can be used across the whole codebase.
- // Unlike the values in user-settings.cgh, end users shouldn't modify these.
- /////////////////////////////// BEGIN INCLUDES ///////////////////////////////
- //#include "../user-settings.h"
- ///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
- #ifndef USER_SETTINGS_H
- #define USER_SETTINGS_H
- ///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
- // The Cg compiler uses different "profiles" with different capabilities.
- // This shader requires a Cg compilation profile >= arbfp1, but a few options
- // require higher profiles like fp30 or fp40. The shader can't detect profile
- // or driver capabilities, so instead you must comment or uncomment the lines
- // below with "//" before "#define." Disable an option if you get compilation
- // errors resembling those listed. Generally speaking, all of these options
- // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
- // likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
- // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
- // Among other things, derivatives help us fix anisotropic filtering artifacts
- // with curved manually tiled phosphor mask coords. Related errors:
- // error C3004: function "float2 ddx(float2);" not supported in this profile
- // error C3004: function "float2 ddy(float2);" not supported in this profile
- //#define DRIVERS_ALLOW_DERIVATIVES
- // Fine derivatives: Unsupported on older ATI cards.
- // Fine derivatives enable 2x2 fragment block communication, letting us perform
- // fast single-pass blur operations. If your card uses coarse derivatives and
- // these are enabled, blurs could look broken. Derivatives are a prerequisite.
- #ifdef DRIVERS_ALLOW_DERIVATIVES
- #define DRIVERS_ALLOW_FINE_DERIVATIVES
- #endif
- // Dynamic looping: Requires an fp30 or newer profile.
- // This makes phosphor mask resampling faster in some cases. Related errors:
- // error C5013: profile does not support "for" statements and "for" could not
- // be unrolled
- //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
- // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
- // Using one static loop avoids overhead if the user is right, but if the user
- // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
- // binary search can potentially save some iterations. However, it may fail:
- // error C6001: Temporary register limit of 32 exceeded; 35 registers
- // needed to compile program
- //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
- // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
- // anisotropic filtering, thereby fixing related artifacts. Related errors:
- // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
- // this profile
- //#define DRIVERS_ALLOW_TEX2DLOD
- // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
- // artifacts from anisotropic filtering and mipmapping. Related errors:
- // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
- // in this profile
- //#define DRIVERS_ALLOW_TEX2DBIAS
- // Integrated graphics compatibility: Integrated graphics like Intel HD 4000
- // impose stricter limitations on register counts and instructions. Enable
- // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
- // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
- // to compile program.
- // Enabling integrated graphics compatibility mode will automatically disable:
- // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
- // (This may be reenabled in a later release.)
- // 2.) RUNTIME_GEOMETRY_MODE
- // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
- //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- //////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
- // To disable a #define option, turn its line into a comment with "//."
- // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
- // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
- // many of the options in this file and allow real-time tuning, but many of
- // them are slower. Disabling them and using this text file will boost FPS.
- #define RUNTIME_SHADER_PARAMS_ENABLE
- // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
- // it's the only way to do a wide-enough full bloom with a runtime dot pitch.
- #define RUNTIME_PHOSPHOR_BLOOM_SIGMA
- // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
- #define RUNTIME_ANTIALIAS_WEIGHTS
- // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
- //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
- // parameters? This will require more math or dynamic branching.
- #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- // Specify the tilt at runtime? This makes things about 3% slower.
- #define RUNTIME_GEOMETRY_TILT
- // Specify the geometry mode at runtime?
- #define RUNTIME_GEOMETRY_MODE
- // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
- // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
- // dynamic branches? This is cheap if mask_resize_viewport_scale is small.
- #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- // PHOSPHOR MASK:
- // Manually resize the phosphor mask for best results (slower)? Disabling this
- // removes the option to do so, but it may be faster without dynamic branches.
- #define PHOSPHOR_MASK_MANUALLY_RESIZE
- // If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
- #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
- // Larger blurs are expensive, but we need them to blur larger triads. We can
- // detect the right blur if the triad size is static or our profile allows
- // dynamic branches, but otherwise we use the largest blur the user indicates
- // they might need:
- #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
- //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
- // Here's a helpful chart:
- // MaxTriadSize BlurSize MinTriadCountsByResolution
- // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
- /////////////////////////////// USER PARAMETERS //////////////////////////////
- // Note: Many of these static parameters are overridden by runtime shader
- // parameters when those are enabled. However, many others are static codepath
- // options that were cleaner or more convert to code as static constants.
- // GAMMA:
- static const float crt_gamma_static = 2.5; // range [1, 5]
- static const float lcd_gamma_static = 2.2; // range [1, 5]
- // LEVELS MANAGEMENT:
- // Control the final multiplicative image contrast:
- static const float levels_contrast_static = 1.0; // range [0, 4)
- // We auto-dim to avoid clipping between passes and restore brightness
- // later. Control the dim factor here: Lower values clip less but crush
- // blacks more (static only for now).
- static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
- // HALATION/DIFFUSION/BLOOM:
- // Halation weight: How much energy should be lost to electrons bounding
- // around under the CRT glass and exciting random phosphors?
- static const float halation_weight_static = 0.0; // range [0, 1]
- // Refractive diffusion weight: How much light should spread/diffuse from
- // refracting through the CRT glass?
- static const float diffusion_weight_static = 0.075; // range [0, 1]
- // Underestimate brightness: Bright areas bloom more, but we can base the
- // bloom brightpass on a lower brightness to sharpen phosphors, or a higher
- // brightness to soften them. Low values clip, but >= 0.8 looks okay.
- static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
- // Blur all colors more than necessary for a softer phosphor bloom?
- static const float bloom_excess_static = 0.0; // range [0, 1]
- // The BLOOM_APPROX pass approximates a phosphor blur early on with a small
- // blurred resize of the input (convergence offsets are applied as well).
- // There are three filter options (static option only for now):
- // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
- // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
- // and beam_max_sigma is low.
- // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
- // always uses a static sigma regardless of beam_max_sigma or
- // mask_num_triads_desired.
- // 2.) True 4x4 Gaussian resize: Slowest, technically correct.
- // These options are more pronounced for the fast, unbloomed shader version.
- #ifndef RADEON_FIX
- static const float bloom_approx_filter_static = 2.0;
- #else
- static const float bloom_approx_filter_static = 1.0;
- #endif
- // ELECTRON BEAM SCANLINE DISTRIBUTION:
- // How many scanlines should contribute light to each pixel? Using more
- // scanlines is slower (especially for a generalized Gaussian) but less
- // distorted with larger beam sigmas (especially for a pure Gaussian). The
- // max_beam_sigma at which the closest unused weight is guaranteed <
- // 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
- // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
- // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
- // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
- // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
- // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
- static const float beam_num_scanlines = 3.0; // range [2, 6]
- // A generalized Gaussian beam varies shape with color too, now just width.
- // It's slower but more flexible (static option only for now).
- static const bool beam_generalized_gaussian = true;
- // What kind of scanline antialiasing do you want?
- // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
- // Integrals are slow (especially for generalized Gaussians) and rarely any
- // better than 3x antialiasing (static option only for now).
- static const float beam_antialias_level = 1.0; // range [0, 2]
- // Min/max standard deviations for scanline beams: Higher values widen and
- // soften scanlines. Depending on other options, low min sigmas can alias.
- static const float beam_min_sigma_static = 0.02; // range (0, 1]
- static const float beam_max_sigma_static = 0.3; // range (0, 1]
- // Beam width varies as a function of color: A power function (0) is more
- // configurable, but a spherical function (1) gives the widest beam
- // variability without aliasing (static option only for now).
- static const float beam_spot_shape_function = 0.0;
- // Spot shape power: Powers <= 1 give smoother spot shapes but lower
- // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
- static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
- // Generalized Gaussian max shape parameters: Higher values give flatter
- // scanline plateaus and steeper dropoffs, simultaneously widening and
- // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
- // values > ~40.0 cause artifacts with integrals.
- static const float beam_min_shape_static = 2.0; // range [2, 32]
- static const float beam_max_shape_static = 4.0; // range [2, 32]
- // Generalized Gaussian shape power: Affects how quickly the distribution
- // changes shape from Gaussian to steep/plateaued as color increases from 0
- // to 1.0. Higher powers appear softer for most colors, and lower powers
- // appear sharper for most colors.
- static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
- // What filter should be used to sample scanlines horizontally?
- // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
- static const float beam_horiz_filter_static = 0.0;
- // Standard deviation for horizontal Gaussian resampling:
- static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
- // Do horizontal scanline sampling in linear RGB (correct light mixing),
- // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
- // limiting circuitry in some CRT's), or a weighted avg.?
- static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
- // Simulate scanline misconvergence? This needs 3x horizontal texture
- // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
- // later passes (static option only for now).
- static const bool beam_misconvergence = true;
- // Convergence offsets in x/y directions for R/G/B scanline beams in units
- // of scanlines. Positive offsets go right/down; ranges [-2, 2]
- static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
- static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
- static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
- // Detect interlacing (static option only for now)?
- static const bool interlace_detect = true;
- // Assume 1080-line sources are interlaced?
- static const bool interlace_1080i_static = false;
- // For interlaced sources, assume TFF (top-field first) or BFF order?
- // (Whether this matters depends on the nature of the interlaced input.)
- static const bool interlace_bff_static = false;
- // ANTIALIASING:
- // What AA level do you want for curvature/overscan/subpixels? Options:
- // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
- // (Static option only for now)
- static const float aa_level = 12.0; // range [0, 24]
- // What antialiasing filter do you want (static option only)? Options:
- // 0: Box (separable), 1: Box (cylindrical),
- // 2: Tent (separable), 3: Tent (cylindrical),
- // 4: Gaussian (separable), 5: Gaussian (cylindrical),
- // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
- // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
- // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
- static const float aa_filter = 6.0; // range [0, 9]
- // Flip the sample grid on odd/even frames (static option only for now)?
- static const bool aa_temporal = false;
- // Use RGB subpixel offsets for antialiasing? The pixel is at green, and
- // the blue offset is the negative r offset; range [0, 0.5]
- static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
- // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
- // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
- // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
- // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
- // 4.) C = 0.0 is a soft spline filter.
- static const float aa_cubic_c_static = 0.5; // range [0, 4]
- // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
- static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
- // PHOSPHOR MASK:
- // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
- static const float mask_type_static = 1.0; // range [0, 2]
- // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
- // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
- // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
- // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
- // is halfway decent with LUT mipmapping but atrocious without it.
- // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
- // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
- // This mode reuses the same masks, so triads will be enormous unless
- // you change the mask LUT filenames in your .cgp file.
- static const float mask_sample_mode_static = 0.0; // range [0, 2]
- // Prefer setting the triad size (0.0) or number on the screen (1.0)?
- // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
- // will always be used to calculate the full bloom sigma statically.
- static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
- // Specify the phosphor triad size, in pixels. Each tile (usually with 8
- // triads) will be rounded to the nearest integer tile size and clamped to
- // obey minimum size constraints (imposed to reduce downsize taps) and
- // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
- // To increase the size limit, double the viewport-relative scales for the
- // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- static const float mask_triad_size_desired_static = 24.0 / 8.0;
- // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
- // final size will be rounded and constrained as above); default 480.0
- static const float mask_num_triads_desired_static = 480.0;
- // How many lobes should the sinc/Lanczos resizer use? More lobes require
- // more samples and avoid moire a bit better, but some is unavoidable
- // depending on the destination size (static option for now).
- static const float mask_sinc_lobes = 3.0; // range [2, 4]
- // The mask is resized using a variable number of taps in each dimension,
- // but some Cg profiles always fetch a constant number of taps no matter
- // what (no dynamic branching). We can limit the maximum number of taps if
- // we statically limit the minimum phosphor triad size. Larger values are
- // faster, but the limit IS enforced (static option only, forever);
- // range [1, mask_texture_small_size/mask_triads_per_tile]
- // TODO: Make this 1.0 and compensate with smarter sampling!
- static const float mask_min_allowed_triad_size = 2.0;
- // GEOMETRY:
- // Geometry mode:
- // 0: Off (default), 1: Spherical mapping (like cgwg's),
- // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
- static const float geom_mode_static = 0.0; // range [0, 3]
- // Radius of curvature: Measured in units of your viewport's diagonal size.
- static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
- // View dist is the distance from the player to their physical screen, in
- // units of the viewport's diagonal size. It controls the field of view.
- static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
- // Tilt angle in radians (clockwise around up and right vectors):
- static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
- // Aspect ratio: When the true viewport size is unknown, this value is used
- // to help convert between the phosphor triad size and count, along with
- // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
- // this equal to Retroarch's display aspect ratio (DAR) for best results;
- // range [1, geom_max_aspect_ratio from user-cgp-constants.h];
- // default (256/224)*(54/47) = 1.313069909 (see below)
- static const float geom_aspect_ratio_static = 1.313069909;
- // Before getting into overscan, here's some general aspect ratio info:
- // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
- // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
- // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
- // Geometry processing has to "undo" the screen-space 2D DAR to calculate
- // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
- // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
- // a.) Enable Retroarch's "Crop Overscan"
- // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
- // Real consoles use horizontal black padding in the signal, but emulators
- // often crop this without cropping the vertical padding; a 256x224 [S]NES
- // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
- // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
- // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
- // http://forums.nesdev.com/viewtopic.php?p=24815#p24815
- // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
- // without doing a. or b., but horizontal image borders will be tighter
- // than vertical ones, messing up curvature and overscan. Fixing the
- // padding first corrects this.
- // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
- // or adjust x/y independently to e.g. readd horizontal padding, as noted
- // above: Values < 1.0 zoom out; range (0, inf)
- static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
- // Compute a proper pixel-space to texture-space matrix even without ddx()/
- // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
- // with strong curvature (static option only for now).
- static const bool geom_force_correct_tangent_matrix = true;
- // BORDERS:
- // Rounded border size in texture uv coords:
- static const float border_size_static = 0.015; // range [0, 0.5]
- // Border darkness: Moderate values darken the border smoothly, and high
- // values make the image very dark just inside the border:
- static const float border_darkness_static = 2.0; // range [0, inf)
- // Border compression: High numbers compress border transitions, narrowing
- // the dark border area.
- static const float border_compress_static = 2.5; // range [1, inf)
- #endif // USER_SETTINGS_H
- ///////////////////////////// END USER-SETTINGS ////////////////////////////
- //#include "user-cgp-constants.h"
- ///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
- #ifndef USER_CGP_CONSTANTS_H
- #define USER_CGP_CONSTANTS_H
- // IMPORTANT:
- // These constants MUST be set appropriately for the settings in crt-royale.cgp
- // (or whatever related .cgp file you're using). If they aren't, you're likely
- // to get artifacts, the wrong phosphor mask size, etc. I wish these could be
- // set directly in the .cgp file to make things easier, but...they can't.
- // PASS SCALES AND RELATED CONSTANTS:
- // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
- // this shader: One does a viewport-scale bloom, and the other skips it. The
- // latter benefits from a higher bloom_approx_scale_x, so save both separately:
- static const float bloom_approx_size_x = 320.0;
- static const float bloom_approx_size_x_for_fake = 400.0;
- // Copy the viewport-relative scales of the phosphor mask resize passes
- // (MASK_RESIZE and the pass immediately preceding it):
- static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
- // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
- static const float geom_max_aspect_ratio = 4.0/3.0;
- // PHOSPHOR MASK TEXTURE CONSTANTS:
- // Set the following constants to reflect the properties of the phosphor mask
- // texture named in crt-royale.cgp. The shader optionally resizes a mask tile
- // based on user settings, then repeats a single tile until filling the screen.
- // The shader must know the input texture size (default 64x64), and to manually
- // resize, it must also know the horizontal triads per tile (default 8).
- static const float2 mask_texture_small_size = float2(64.0, 64.0);
- static const float2 mask_texture_large_size = float2(512.0, 512.0);
- static const float mask_triads_per_tile = 8.0;
- // We need the average brightness of the phosphor mask to compensate for the
- // dimming it causes. The following four values are roughly correct for the
- // masks included with the shader. Update the value for any LUT texture you
- // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
- // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
- //#define PHOSPHOR_MASK_GRILLE14
- static const float mask_grille14_avg_color = 50.6666666/255.0;
- // TileableLinearApertureGrille14Wide7d33Spacing*.png
- // TileableLinearApertureGrille14Wide10And6Spacing*.png
- static const float mask_grille15_avg_color = 53.0/255.0;
- // TileableLinearApertureGrille15Wide6d33Spacing*.png
- // TileableLinearApertureGrille15Wide8And5d5Spacing*.png
- static const float mask_slot_avg_color = 46.0/255.0;
- // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
- // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
- static const float mask_shadow_avg_color = 41.0/255.0;
- // TileableLinearShadowMask*.png
- // TileableLinearShadowMaskEDP*.png
- #ifdef PHOSPHOR_MASK_GRILLE14
- static const float mask_grille_avg_color = mask_grille14_avg_color;
- #else
- static const float mask_grille_avg_color = mask_grille15_avg_color;
- #endif
- #endif // USER_CGP_CONSTANTS_H
- ////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- /////////////////////////////// FIXED SETTINGS ///////////////////////////////
- // Avoid dividing by zero; using a macro overloads for float, float2, etc.:
- #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
- // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
- #ifndef SIMULATE_CRT_ON_LCD
- #define SIMULATE_CRT_ON_LCD
- #endif
- // Manually tiling a manually resized texture creates texture coord derivative
- // discontinuities and confuses anisotropic filtering, causing discolored tile
- // seams in the phosphor mask. Workarounds:
- // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
- // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
- // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
- // b.) "Tile flat twice" requires drawing two full tiles without border padding
- // to the resized mask FBO, and it's incompatible with same-pass curvature.
- // (Same-pass curvature isn't used but could be in the future...maybe.)
- // c.) "Fix discontinuities" requires derivatives and drawing one tile with
- // border padding to the resized mask FBO, but it works with same-pass
- // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
- // Precedence: a, then, b, then c (if multiple strategies are #defined).
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
- #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
- // Also, manually resampling the phosphor mask is slightly blurrier with
- // anisotropic filtering. (Resampling with mipmapping is even worse: It
- // creates artifacts, but only with the fully bloomed shader.) The difference
- // is subtle with small triads, but you can fix it for a small cost.
- //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- ////////////////////////////// DERIVED SETTINGS //////////////////////////////
- // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
- // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
- // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
- // #defined by either user-settings.h or a wrapper .cg that #includes the
- // current .cg pass.)
- #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
- #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
- #undef PHOSPHOR_MASK_MANUALLY_RESIZE
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
- // inferior in most cases, so replace 2.0 with 0.0:
- static const float bloom_approx_filter =
- bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
- #else
- static const float bloom_approx_filter = bloom_approx_filter_static;
- #endif
- // Disable slow runtime paths if static parameters are used. Most of these
- // won't be a problem anyway once the params are disabled, but some will.
- #ifndef RUNTIME_SHADER_PARAMS_ENABLE
- #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
- #endif
- #ifdef RUNTIME_ANTIALIAS_WEIGHTS
- #undef RUNTIME_ANTIALIAS_WEIGHTS
- #endif
- #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
- #endif
- #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #endif
- #ifdef RUNTIME_GEOMETRY_TILT
- #undef RUNTIME_GEOMETRY_TILT
- #endif
- #ifdef RUNTIME_GEOMETRY_MODE
- #undef RUNTIME_GEOMETRY_MODE
- #endif
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // Make tex2Dbias a backup for tex2Dlod for wider compatibility.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- // Rule out unavailable anisotropic compatibility strategies:
- #ifndef DRIVERS_ALLOW_DERIVATIVES
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #endif
- #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
- #undef ANTIALIAS_DISABLE_ANISOTROPIC
- #endif
- #endif
- #ifndef DRIVERS_ALLOW_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- // Prioritize anisotropic tiling compatibility strategies by performance and
- // disable unused strategies. This concentrates all the nesting in one place.
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #else
- // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
- // flat texture coords in the same pass, but that's all we use.
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- #endif
- #endif
- #endif
- #endif
- // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
- // reduce some #ifdef nesting in the next section by essentially OR'ing them:
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
- #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- #endif
- // Prioritize anisotropic resampling compatibility strategies the same way:
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
- #endif
- #endif
- /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
- // If we can use the large mipmapped LUT without mipmapping artifacts, we
- // should: It gives us more options for using fewer samples.
- #ifdef DRIVERS_ALLOW_TEX2DLOD
- #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
- // TODO: Take advantage of this!
- #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
- static const float2 mask_resize_src_lut_size = mask_texture_large_size;
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- #else
- static const float2 mask_resize_src_lut_size = mask_texture_small_size;
- #endif
- // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
- // main_fragment, or a static alias of one of the above. This makes it hard
- // to select the phosphor mask at runtime: We can't even assign to a uniform
- // global in the vertex shader or select a sampler2D in the vertex shader and
- // pass it to the fragment shader (even with explicit TEXUNIT# bindings),
- // because it just gives us the input texture or a black screen. However, we
- // can get around these limitations by calling tex2D three times with different
- // uniform samplers (or resizing the phosphor mask three times altogether).
- // With dynamic branches, we can process only one of these branches on top of
- // quickly discarding fragments we don't need (cgc seems able to overcome
- // limigations around dependent texture fetches inside of branches). Without
- // dynamic branches, we have to process every branch for every fragment...which
- // is slower. Runtime sampling mode selection is slower without dynamic
- // branches as well. Let the user's static #defines decide if it's worth it.
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #else
- #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
- #endif
- #endif
- // We need to render some minimum number of tiles in the resize passes.
- // We need at least 1.0 just to repeat a single tile, and we need extra
- // padding beyond that for anisotropic filtering, discontinuitity fixing,
- // antialiasing, same-pass curvature (not currently used), etc. First
- // determine how many border texels and tiles we need, based on how the result
- // will be sampled:
- #ifdef GEOMETRY_EARLY
- static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
- // Most antialiasing filters have a base radius of 4.0 pixels:
- static const float max_aa_base_pixel_border = 4.0 +
- max_subpixel_offset;
- #else
- static const float max_aa_base_pixel_border = 0.0;
- #endif
- // Anisotropic filtering adds about 0.5 to the pixel border:
- #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
- static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
- #else
- static const float max_aniso_pixel_border = max_aa_base_pixel_border;
- #endif
- // Fixing discontinuities adds 1.0 more to the pixel border:
- #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
- static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
- #else
- static const float max_tiled_pixel_border = max_aniso_pixel_border;
- #endif
- // Convert the pixel border to an integer texel border. Assume same-pass
- // curvature about triples the texel frequency:
- #ifdef GEOMETRY_EARLY
- static const float max_mask_texel_border =
- ceil(max_tiled_pixel_border * 3.0);
- #else
- static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
- #endif
- // Convert the texel border to a tile border using worst-case assumptions:
- static const float max_mask_tile_border = max_mask_texel_border/
- (mask_min_allowed_triad_size * mask_triads_per_tile);
- // Finally, set the number of resized tiles to render to MASK_RESIZE, and set
- // the starting texel (inside borders) for sampling it.
- #ifndef GEOMETRY_EARLY
- #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
- // Special case: Render two tiles without borders. Anisotropic
- // filtering doesn't seem to be a problem here.
- static const float mask_resize_num_tiles = 1.0 + 1.0;
- static const float mask_start_texels = 0.0;
- #else
- static const float mask_resize_num_tiles = 1.0 +
- 2.0 * max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- #else
- static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
- static const float mask_start_texels = max_mask_texel_border;
- #endif
- // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
- // mask_resize_viewport_scale. This limits the maximum final triad size.
- // Estimate the minimum number of triads we can split the screen into in each
- // dimension (we'll be as correct as mask_resize_viewport_scale is):
- static const float mask_resize_num_triads =
- mask_resize_num_tiles * mask_triads_per_tile;
- static const float2 min_allowed_viewport_triads =
- float2(mask_resize_num_triads) / mask_resize_viewport_scale;
- //////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
- static const float pi = 3.141592653589;
- // We often want to find the location of the previous texel, e.g.:
- // const float2 curr_texel = uv * texture_size;
- // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
- // const float2 prev_texel_uv = prev_texel / texture_size;
- // However, many GPU drivers round incorrectly around exact texel locations.
- // We need to subtract a little less than 0.5 before flooring, and some GPU's
- // require this value to be farther from 0.5 than others; define it here.
- // const float2 prev_texel =
- // floor(curr_texel - float2(under_half)) + float2(0.5);
- static const float under_half = 0.4995;
- #endif // DERIVED_SETTINGS_AND_CONSTANTS_H
- ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
- //#include "../../../../include/special-functions.h"
- /////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
- #ifndef SPECIAL_FUNCTIONS_H
- #define SPECIAL_FUNCTIONS_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file implements the following mathematical special functions:
- // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
- // 2.) gamma(s), a real-numbered extension of the integer factorial function
- // It also implements normalized_ligamma(s, z), a normalized lower incomplete
- // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
- // be called with an _impl suffix to use an implementation version with a few
- // extra precomputed parameters (which may be useful for the caller to reuse).
- // See below for details.
- //
- // Design Rationale:
- // Pretty much every line of code in this file is duplicated four times for
- // different input types (float4/float3/float2/float). This is unfortunate,
- // but Cg doesn't allow function templates. Macros would be far less verbose,
- // but they would make the code harder to document and read. I don't expect
- // these functions will require a whole lot of maintenance changes unless
- // someone ever has need for more robust incomplete gamma functions, so code
- // duplication seems to be the lesser evil in this case.
- /////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
- float4 erf6(float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Return an Abramowitz/Stegun approximation of erf(), where:
- // erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
- // This approximation has a max absolute error of 2.5*10**-5
- // with solid numerical robustness and efficiency. See:
- // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
- static const float4 one = float4(1.0);
- const float4 sign_x = sign(x);
- const float4 t = one/(one + 0.47047*abs(x));
- const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float3 erf6(const float3 x)
- {
- // Float3 version:
- static const float3 one = float3(1.0);
- const float3 sign_x = sign(x);
- const float3 t = one/(one + 0.47047*abs(x));
- const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float2 erf6(const float2 x)
- {
- // Float2 version:
- static const float2 one = float2(1.0);
- const float2 sign_x = sign(x);
- const float2 t = one/(one + 0.47047*abs(x));
- const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float erf6(const float x)
- {
- // Float version:
- const float sign_x = sign(x);
- const float t = 1.0/(1.0 + 0.47047*abs(x));
- const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
- exp(-(x*x));
- return result * sign_x;
- }
- float4 erft(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Approximate erf() with the hyperbolic tangent. The error is
- // visually noticeable, but it's blazing fast and perceptually
- // close...at least on ATI hardware. See:
- // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
- // Warning: Only use this if your hardware drivers correctly implement
- // tanh(): My nVidia 8800GTS returns garbage output.
- return tanh(1.202760580 * x);
- }
- float3 erft(const float3 x)
- {
- // Float3 version:
- return tanh(1.202760580 * x);
- }
- float2 erft(const float2 x)
- {
- // Float2 version:
- return tanh(1.202760580 * x);
- }
- float erft(const float x)
- {
- // Float version:
- return tanh(1.202760580 * x);
- }
- inline float4 erf(const float4 x)
- {
- // Requires: x is the standard parameter to erf().
- // Returns: Some approximation of erf(x), depending on user settings.
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float3 erf(const float3 x)
- {
- // Float3 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float2 erf(const float2 x)
- {
- // Float2 version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- inline float erf(const float x)
- {
- // Float version:
- #ifdef ERF_FAST_APPROXIMATION
- return erft(x);
- #else
- return erf6(x);
- #endif
- }
- /////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
- float4 gamma_impl(const float4 s, const float4 s_inv)
- {
- // Requires: 1.) s is the standard parameter to the gamma function, and
- // it should lie in the [0, 36] range.
- // 2.) s_inv = 1.0/s. This implementation function requires
- // the caller to precompute this value, giving users the
- // opportunity to reuse it.
- // Returns: Return approximate gamma function (real-numbered factorial)
- // output using the Lanczos approximation with two coefficients
- // calculated using Paul Godfrey's method here:
- // http://my.fit.edu/~gabdo/gamma.txt
- // An optimal g value for s in [0, 36] is ~1.12906830989, with
- // a maximum relative error of 0.000463 for 2**16 equally
- // evals. We could use three coeffs (0.0000346 error) without
- // hurting latency, but this allows more parallelism with
- // outside instructions.
- static const float4 g = float4(1.12906830989);
- static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
- static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
- static const float4 e = float4(2.71828182845904523536028747135266249775724709);
- const float4 sph = s + float4(0.5);
- const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
- const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
- // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
- // This has less error for small s's than (s -= 1.0) at the beginning.
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float3 gamma_impl(const float3 s, const float3 s_inv)
- {
- // Float3 version:
- static const float3 g = float3(1.12906830989);
- static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
- static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
- static const float3 e = float3(2.71828182845904523536028747135266249775724709);
- const float3 sph = s + float3(0.5);
- const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
- const float3 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float2 gamma_impl(const float2 s, const float2 s_inv)
- {
- // Float2 version:
- static const float2 g = float2(1.12906830989);
- static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
- static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
- static const float2 e = float2(2.71828182845904523536028747135266249775724709);
- const float2 sph = s + float2(0.5);
- const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
- const float2 base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float gamma_impl(const float s, const float s_inv)
- {
- // Float version:
- static const float g = 1.12906830989;
- static const float c0 = 0.8109119309638332633713423362694399653724431;
- static const float c1 = 0.4808354605142681877121661197951496120000040;
- static const float e = 2.71828182845904523536028747135266249775724709;
- const float sph = s + 0.5;
- const float lanczos_sum = c0 + c1/(s + 1.0);
- const float base = (sph + g)/e;
- return (pow(base, sph) * lanczos_sum) * s_inv;
- }
- float4 gamma(const float4 s)
- {
- // Requires: s is the standard parameter to the gamma function, and it
- // should lie in the [0, 36] range.
- // Returns: Return approximate gamma function output with a maximum
- // relative error of 0.000463. See gamma_impl for details.
- return gamma_impl(s, float4(1.0)/s);
- }
- float3 gamma(const float3 s)
- {
- // Float3 version:
- return gamma_impl(s, float3(1.0)/s);
- }
- float2 gamma(const float2 s)
- {
- // Float2 version:
- return gamma_impl(s, float2(1.0)/s);
- }
- float gamma(const float s)
- {
- // Float version:
- return gamma_impl(s, 1.0/s);
- }
- //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
- // Lower incomplete gamma function for small s and z (implementation):
- float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z <= ~0.775075
- // 3.) s_inv = 1.0/s (precomputed for outside reuse)
- // Returns: A series representation for the lower incomplete gamma
- // function for small s and small z (4 terms).
- // The actual "rolled up" summation looks like:
- // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
- // sum = last_sign * last_pow / ((s + k) * last_factorial)
- // for(int i = 0; i < 4; ++i)
- // {
- // last_sign *= -1.0; last_pow *= z; last_factorial *= i;
- // sum += last_sign * last_pow / ((s + k) * last_factorial);
- // }
- // Unrolled, constant-unfolded and arranged for madds and parallelism:
- const float4 scale = pow(z, s);
- float4 sum = s_inv; // Summation iteration 0 result
- // Summation iterations 1, 2, and 3:
- const float4 z_sq = z*z;
- const float4 denom1 = s + float4(1.0);
- const float4 denom2 = 2.0*s + float4(4.0);
- const float4 denom3 = 6.0*s + float4(18.0);
- //float4 denom4 = 24.0*s + float4(96.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- //sum += z_sq * z_sq / denom4;
- // Scale and return:
- return scale * sum;
- }
- float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
- {
- // Float3 version:
- const float3 scale = pow(z, s);
- float3 sum = s_inv;
- const float3 z_sq = z*z;
- const float3 denom1 = s + float3(1.0);
- const float3 denom2 = 2.0*s + float3(4.0);
- const float3 denom3 = 6.0*s + float3(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
- {
- // Float2 version:
- const float2 scale = pow(z, s);
- float2 sum = s_inv;
- const float2 z_sq = z*z;
- const float2 denom1 = s + float2(1.0);
- const float2 denom2 = 2.0*s + float2(4.0);
- const float2 denom3 = 6.0*s + float2(18.0);
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- float ligamma_small_z_impl(const float s, const float z, const float s_inv)
- {
- // Float version:
- const float scale = pow(z, s);
- float sum = s_inv;
- const float z_sq = z*z;
- const float denom1 = s + 1.0;
- const float denom2 = 2.0*s + 4.0;
- const float denom3 = 6.0*s + 18.0;
- sum -= z/denom1;
- sum += z_sq/denom2;
- sum -= z * z_sq/denom3;
- return scale * sum;
- }
- // Upper incomplete gamma function for small s and large z (implementation):
- float4 uigamma_large_z_impl(const float4 s, const float4 z)
- {
- // Requires: 1.) s < ~0.5
- // 2.) z > ~0.775075
- // Returns: Gauss's continued fraction representation for the upper
- // incomplete gamma function (4 terms).
- // The "rolled up" continued fraction looks like this. The denominator
- // is truncated, and it's calculated "from the bottom up:"
- // denom = float4('inf');
- // float4 one = float4(1.0);
- // for(int i = 4; i > 0; --i)
- // {
- // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
- // }
- // Unrolled and constant-unfolded for madds and parallelism:
- const float4 numerator = pow(z, s) * exp(-z);
- float4 denom = float4(7.0) + z - s;
- denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
- denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
- denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
- return numerator / denom;
- }
- float3 uigamma_large_z_impl(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 numerator = pow(z, s) * exp(-z);
- float3 denom = float3(7.0) + z - s;
- denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
- denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
- denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
- return numerator / denom;
- }
- float2 uigamma_large_z_impl(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 numerator = pow(z, s) * exp(-z);
- float2 denom = float2(7.0) + z - s;
- denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
- denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
- denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
- return numerator / denom;
- }
- float uigamma_large_z_impl(const float s, const float z)
- {
- // Float version:
- const float numerator = pow(z, s) * exp(-z);
- float denom = 7.0 + z - s;
- denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
- denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
- denom = 1.0 + z - s + (s - 1.0)/denom;
- return numerator / denom;
- }
- // Normalized lower incomplete gamma function for small s (implementation):
- float4 normalized_ligamma_impl(const float4 s, const float4 z,
- const float4 s_inv, const float4 gamma_s_inv)
- {
- // Requires: 1.) s < ~0.5
- // 2.) s_inv = 1/s (precomputed for outside reuse)
- // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. Since we only care about s < 0.5, we only need
- // to evaluate two branches (not four) based on z. Each branch
- // uses four terms, with a max relative error of ~0.00182. The
- // branch threshold and specifics were adapted for fewer terms
- // from Gil/Segura/Temme's paper here:
- // http://oai.cwi.nl/oai/asset/20433/20433B.pdf
- // Evaluate both branches: Real branches test slower even when available.
- static const float4 thresh = float4(0.775075);
- bool4 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- z_is_large.w = z.w > thresh.w;
- const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- // Combine the results from both branches:
- bool4 inverse_z_is_large = not(z_is_large);
- return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
- }
- float3 normalized_ligamma_impl(const float3 s, const float3 z,
- const float3 s_inv, const float3 gamma_s_inv)
- {
- // Float3 version:
- static const float3 thresh = float3(0.775075);
- bool3 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- z_is_large.z = z.z > thresh.z;
- const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool3 inverse_z_is_large = not(z_is_large);
- return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
- }
- float2 normalized_ligamma_impl(const float2 s, const float2 z,
- const float2 s_inv, const float2 gamma_s_inv)
- {
- // Float2 version:
- static const float2 thresh = float2(0.775075);
- bool2 z_is_large;
- z_is_large.x = z.x > thresh.x;
- z_is_large.y = z.y > thresh.y;
- const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- bool2 inverse_z_is_large = not(z_is_large);
- return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
- }
- float normalized_ligamma_impl(const float s, const float z,
- const float s_inv, const float gamma_s_inv)
- {
- // Float version:
- static const float thresh = 0.775075;
- const bool z_is_large = z > thresh;
- const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
- const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
- return large_z * float(z_is_large) + small_z * float(!z_is_large);
- }
- // Normalized lower incomplete gamma function for small s:
- float4 normalized_ligamma(const float4 s, const float4 z)
- {
- // Requires: s < ~0.5
- // Returns: Approximate the normalized lower incomplete gamma function
- // for s < 0.5. See normalized_ligamma_impl() for details.
- const float4 s_inv = float4(1.0)/s;
- const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float3 normalized_ligamma(const float3 s, const float3 z)
- {
- // Float3 version:
- const float3 s_inv = float3(1.0)/s;
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float2 normalized_ligamma(const float2 s, const float2 z)
- {
- // Float2 version:
- const float2 s_inv = float2(1.0)/s;
- const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- float normalized_ligamma(const float s, const float z)
- {
- // Float version:
- const float s_inv = 1.0/s;
- const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
- return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
- }
- #endif // SPECIAL_FUNCTIONS_H
- //////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
- //#include "../../../../include/gamma-management.h"
- //////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
- #ifndef GAMMA_MANAGEMENT_H
- #define GAMMA_MANAGEMENT_H
- ///////////////////////////////// MIT LICENSE ////////////////////////////////
- // Copyright (C) 2014 TroggleMonkey
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- ///////////////////////////////// DESCRIPTION ////////////////////////////////
- // This file provides gamma-aware tex*D*() and encode_output() functions.
- // Requires: Before #include-ing this file, the including file must #define
- // the following macros when applicable and follow their rules:
- // 1.) #define FIRST_PASS if this is the first pass.
- // 2.) #define LAST_PASS if this is the last pass.
- // 3.) If sRGB is available, set srgb_framebufferN = "true" for
- // every pass except the last in your .cgp preset.
- // 4.) If sRGB isn't available but you want gamma-correctness with
- // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
- // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
- // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
- // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
- // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
- // If an option in [5, 8] is #defined in the first or last pass, it
- // should be #defined for both. It shouldn't make a difference
- // whether it's #defined for intermediate passes or not.
- // Optional: The including file (or an earlier included file) may optionally
- // #define a number of macros indicating it will override certain
- // macros and associated constants are as follows:
- // static constants with either static or uniform constants. The
- // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
- // static const float ntsc_gamma
- // static const float pal_gamma
- // static const float crt_reference_gamma_high
- // static const float crt_reference_gamma_low
- // static const float lcd_reference_gamma
- // static const float crt_office_gamma
- // static const float lcd_office_gamma
- // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
- // static const float crt_gamma
- // static const float gba_gamma
- // static const float lcd_gamma
- // 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
- // static const float input_gamma
- // static const float intermediate_gamma
- // static const float output_gamma
- // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
- // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
- // static const bool assume_opaque_alpha
- // The gamma constant overrides must be used in every pass or none,
- // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
- // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
- // Usage: After setting macros appropriately, ignore gamma correction and
- // replace all tex*D*() calls with equivalent gamma-aware
- // tex*D*_linearize calls, except:
- // 1.) When you read an LUT, use regular tex*D or a gamma-specified
- // function, depending on its gamma encoding:
- // tex*D*_linearize_gamma (takes a runtime gamma parameter)
- // 2.) If you must read pass0's original input in a later pass, use
- // tex2D_linearize_ntsc_gamma. If you want to read pass0's
- // input with gamma-corrected bilinear filtering, consider
- // creating a first linearizing pass and reading from the input
- // of pass1 later.
- // Then, return encode_output(color) from every fragment shader.
- // Finally, use the global gamma_aware_bilinear boolean if you want
- // to statically branch based on whether bilinear filtering is
- // gamma-correct or not (e.g. for placing Gaussian blur samples).
- //
- // Detailed Policy:
- // tex*D*_linearize() functions enforce a consistent gamma-management policy
- // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
- // their input texture has the same encoding characteristics as the input for
- // the current pass (which doesn't apply to the exceptions listed above).
- // Similarly, encode_output() enforces a policy based on the LAST_PASS and
- // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
- // following two pipelines.
- // Typical pipeline with intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = linear_color; // Automatic sRGB encoding
- // linear_color = intermediate_output; // Automatic sRGB decoding
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Typical pipeline without intermediate sRGB framebuffers:
- // linear_color = pow(pass0_encoded_color, input_gamma);
- // intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
- // linear_color = pow(intermediate_output, intermediate_gamma);
- // final_output = pow(intermediate_output, 1.0/output_gamma);
- // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
- // easily get gamma-correctness without banding on devices where sRGB isn't
- // supported.
- //
- // Use This Header to Maximize Code Reuse:
- // The purpose of this header is to provide a consistent interface for texture
- // reads and output gamma-encoding that localizes and abstracts away all the
- // annoying details. This greatly reduces the amount of code in each shader
- // pass that depends on the pass number in the .cgp preset or whether sRGB
- // FBO's are being used: You can trivially change the gamma behavior of your
- // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
- // code in your first, Nth, and last passes, you can even put it all in another
- // header file and #include it from skeleton .cg files that #define the
- // appropriate pass-specific settings.
- //
- // Rationale for Using Three Macros:
- // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
- // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
- // a lower maintenance burden on each pass. At first glance it seems we could
- // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
- // This works for simple use cases where input_gamma == output_gamma, but it
- // breaks down for more complex scenarios like CRT simulation, where the pass
- // number determines the gamma encoding of the input and output.
- /////////////////////////////// BASE CONSTANTS ///////////////////////////////
- // Set standard gamma constants, but allow users to override them:
- #ifndef OVERRIDE_STANDARD_GAMMA
- // Standard encoding gammas:
- static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
- static const float pal_gamma = 2.8; // Never actually 2.8 in practice
- // Typical device decoding gammas (only use for emulating devices):
- // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
- // gammas: The standards purposely undercorrected for an analog CRT's
- // assumed 2.5 reference display gamma to maintain contrast in assumed
- // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
- // These unstated assumptions about display gamma and perceptual rendering
- // intent caused a lot of confusion, and more modern CRT's seemed to target
- // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
- // (they struggle near black with 2.5 gamma anyway), especially PC/laptop
- // displays designed to view sRGB in bright environments. (Standards are
- // also in flux again with BT.1886, but it's underspecified for displays.)
- static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
- static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
- static const float lcd_reference_gamma = 2.5; // To match CRT
- static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
- static const float lcd_office_gamma = 2.2; // Approximates sRGB
- #endif // OVERRIDE_STANDARD_GAMMA
- // Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
- // but only if they're aware of it.
- #ifndef OVERRIDE_ALPHA_ASSUMPTIONS
- static const bool assume_opaque_alpha = false;
- #endif
- /////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
- // gamma-management.h should be compatible with overriding gamma values with
- // runtime user parameters, but we can only define other global constants in
- // terms of static constants, not uniform user parameters. To get around this
- // limitation, we need to define derived constants using functions.
- // Set device gamma constants, but allow users to override them:
- #ifdef OVERRIDE_DEVICE_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_crt_gamma() { return crt_gamma; }
- inline float get_gba_gamma() { return gba_gamma; }
- inline float get_lcd_gamma() { return lcd_gamma; }
- #else
- inline float get_crt_gamma() { return crt_reference_gamma_high; }
- inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
- inline float get_lcd_gamma() { return lcd_office_gamma; }
- #endif // OVERRIDE_DEVICE_GAMMA
- // Set decoding/encoding gammas for the first/lass passes, but allow overrides:
- #ifdef OVERRIDE_FINAL_GAMMA
- // The user promises to globally define the appropriate constants:
- inline float get_intermediate_gamma() { return intermediate_gamma; }
- inline float get_input_gamma() { return input_gamma; }
- inline float get_output_gamma() { return output_gamma; }
- #else
- // If we gamma-correct every pass, always use ntsc_gamma between passes to
- // ensure middle passes don't need to care if anything is being simulated:
- inline float get_intermediate_gamma() { return ntsc_gamma; }
- #ifdef SIMULATE_CRT_ON_LCD
- inline float get_input_gamma() { return get_crt_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_LCD
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_lcd_gamma(); }
- #else
- #ifdef SIMULATE_LCD_ON_CRT
- inline float get_input_gamma() { return get_lcd_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else
- #ifdef SIMULATE_GBA_ON_CRT
- inline float get_input_gamma() { return get_gba_gamma(); }
- inline float get_output_gamma() { return get_crt_gamma(); }
- #else // Don't simulate anything:
- inline float get_input_gamma() { return ntsc_gamma; }
- inline float get_output_gamma() { return ntsc_gamma; }
- #endif // SIMULATE_GBA_ON_CRT
- #endif // SIMULATE_LCD_ON_CRT
- #endif // SIMULATE_GBA_ON_LCD
- #endif // SIMULATE_CRT_ON_LCD
- #endif // OVERRIDE_FINAL_GAMMA
- // Set decoding/encoding gammas for the current pass. Use static constants for
- // linearize_input and gamma_encode_output, because they aren't derived, and
- // they let the compiler do dead-code elimination.
- #ifndef GAMMA_ENCODE_EVERY_FBO
- #ifdef FIRST_PASS
- static const bool linearize_input = true;
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- static const bool linearize_input = false;
- inline float get_pass_input_gamma() { return 1.0; }
- #endif
- #ifdef LAST_PASS
- static const bool gamma_encode_output = true;
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- static const bool gamma_encode_output = false;
- inline float get_pass_output_gamma() { return 1.0; }
- #endif
- #else
- static const bool linearize_input = true;
- static const bool gamma_encode_output = true;
- #ifdef FIRST_PASS
- inline float get_pass_input_gamma() { return get_input_gamma(); }
- #else
- inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
- #endif
- #ifdef LAST_PASS
- inline float get_pass_output_gamma() { return get_output_gamma(); }
- #else
- inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
- #endif
- #endif
- // Users might want to know if bilinear filtering will be gamma-correct:
- static const bool gamma_aware_bilinear = !linearize_input;
- ////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
- inline float4 encode_output(const float4 color)
- {
- if(gamma_encode_output)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_input(const float4 color)
- {
- if(linearize_input)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
- }
- }
- else
- {
- return color;
- }
- }
- inline float4 decode_gamma_input(const float4 color, const float3 gamma)
- {
- if(assume_opaque_alpha)
- {
- return float4(pow(color.rgb, gamma), 1.0);
- }
- else
- {
- return float4(pow(color.rgb, gamma), color.a);
- }
- }
- //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
- //#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
- // EDIT: it's the 'const' in front of the coords that's doing it
- /////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
- // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a wide array of linearizing texture lookup wrapper functions. The
- // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
- // lookups are provided for completeness in case that changes someday. Nobody
- // is likely to use the *fetch and *proj functions, but they're included just
- // in case. The only tex*D texture sampling functions omitted are:
- // - tex*Dcmpbias
- // - tex*Dcmplod
- // - tex*DARRAY*
- // - tex*DMS*
- // - Variants returning integers
- // Standard line length restrictions are ignored below for vertical brevity.
- /*
- // tex1D:
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1D(tex, tex_coords)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
- { return decode_input(tex1D(tex, tex_coords, dx, dy)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
- { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
- // tex1Dbias:
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dbias(tex, tex_coords)); }
- inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
- // tex1Dfetch:
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
- { return decode_input(tex1Dfetch(tex, tex_coords)); }
- inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
- // tex1Dlod:
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
- { return decode_input(tex1Dlod(tex, tex_coords)); }
- inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
- // tex1Dproj:
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
- { return decode_input(tex1Dproj(tex, tex_coords)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
- */
- // tex2D:
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
- { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
- inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords, texel_off)); }
- inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
- //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
- // tex2Dbias:
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
- //{ return decode_input(tex2Dbias(tex, tex_coords)); }
- //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
- // tex2Dfetch:
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
- //{ return decode_input(tex2Dfetch(tex, tex_coords)); }
- //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
- // tex2Dlod:
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
- { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
- inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
- { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
- /*
- // tex2Dproj:
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
- { return decode_input(tex2Dproj(tex, tex_coords)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
- */
- /*
- // tex3D:
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
- { return decode_input(tex3D(tex, tex_coords)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, texel_off)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
- { return decode_input(tex3D(tex, tex_coords, dx, dy)); }
- inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
- { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
- // tex3Dbias:
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dbias(tex, tex_coords)); }
- inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
- // tex3Dfetch:
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
- { return decode_input(tex3Dfetch(tex, tex_coords)); }
- inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
- { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
- // tex3Dlod:
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dlod(tex, tex_coords)); }
- inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
- // tex3Dproj:
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
- { return decode_input(tex3Dproj(tex, tex_coords)); }
- inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
- { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
- /////////*
- // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // This narrow selection of nonstandard tex2D* functions can be useful:
- // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
- //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
- //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
- // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
- // Provide a narrower selection of tex2D* wrapper functions that decode an
- // input sample with a specified gamma value. These are useful for reading
- // LUT's and for reading the input of pass0 in a later pass.
- // tex2D:
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
- inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
- { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
- //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
- /*
- // tex2Dbias:
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
- inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
- // tex2Dfetch:
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
- inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
- { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
- */
- // tex2Dlod:
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
- inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
- { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
- #endif // GAMMA_MANAGEMENT_H
- //////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
- //////////////////////////////// END INCLUDES ////////////////////////////////
- ///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
- inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
- {
- // Requires: Globals:
- // 1.) beam_min_sigma and beam_max_sigma are global floats
- // containing the desired minimum and maximum beam standard
- // deviations, for dim and bright colors respectively.
- // 2.) beam_max_sigma must be > 0.0
- // 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
- // 4.) beam_spot_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
- // sigma_range as a parameter to avoid repeated computation
- // when beam_{min, max}_sigma are runtime shader parameters
- // Optional: Users may set beam_spot_shape_function to 1 to define the
- // inner f(color) subfunction (see below) as:
- // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
- // Otherwise (technically, if beam_spot_shape_function < 0.5):
- // f(color) = pow(color, beam_spot_power)
- // Returns: The standard deviation of the Gaussian beam for "color:"
- // sigma = beam_min_sigma + sigma_range * f(color)
- // Details/Discussion:
- // The beam's spot shape vaguely resembles an aspect-corrected f() in the
- // range [0, 1] (not quite, but it's related). f(color) = color makes
- // spots look like diamonds, and a spherical function or cube balances
- // between variable width and a soft/realistic shape. A beam_spot_power
- // > 1.0 can produce an ugly spot shape and more initial clipping, but the
- // final shape also differs based on the horizontal resampling filter and
- // the phosphor bloom. For instance, resampling horizontally in nonlinear
- // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
- // shape, but a sixth root is still quite soft. A power function (default
- // 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
- // has the highest variability without an awful spot shape.
- //
- // beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
- // difference from beam_max_sigma affects beam width variability. It only
- // affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
- // a conservative estimate for a more complex constraint).
- //
- // beam_max_sigma affects clipping and increasing scanline width/softness
- // as color increases. The wider this is, the more scanlines need to be
- // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
- // at which the first unused scanline always has a weight < 1.0/255.0 is:
- // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
- // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
- // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
- // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
- // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
- // Generalized Gaussians permit more leeway here as steepness increases.
- if(beam_spot_shape_function < 0.5)
- {
- // Use a power function:
- return float3(beam_min_sigma) + sigma_range *
- pow(color, float3(beam_spot_power));
- }
- else
- {
- // Use a spherical function:
- const float3 color_minus_1 = color - float3(1.0);
- return float3(beam_min_sigma) + sigma_range *
- sqrt(float3(1.0) - color_minus_1*color_minus_1);
- }
- }
- inline float3 get_generalized_gaussian_beta(const float3 color,
- const float shape_range)
- {
- // Requires: Globals:
- // 1.) beam_min_shape and beam_max_shape are global floats
- // containing the desired min/max generalized Gaussian
- // beta parameters, for dim and bright colors respectively.
- // 2.) beam_max_shape must be >= 2.0
- // 3.) beam_min_shape must be in [2.0, beam_max_shape]
- // 4.) beam_shape_power must be defined as a global float.
- // Parameters:
- // 1.) color is the underlying source color along a scanline
- // 2.) shape_range = beam_max_shape - beam_min_shape; we take
- // shape_range as a parameter to avoid repeated computation
- // when beam_{min, max}_shape are runtime shader parameters
- // Returns: The type-I generalized Gaussian "shape" parameter beta for
- // the given color.
- // Details/Discussion:
- // Beta affects the scanline distribution as follows:
- // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
- // b.) beta == 2.0 just degenerates to a Gaussian
- // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
- // than a Gaussian. Whereas high sigmas widen and soften peaks, high
- // beta widen and sharpen peaks at the risk of aliasing.
- // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
- // transitions, whereas lower ones sharpen them (at the risk of aliasing).
- return beam_min_shape + shape_range * pow(color, float3(beam_shape_power));
- }
- float3 scanline_gaussian_integral_contrib(const float3 dist,
- const float3 color, const float pixel_height, const float sigma_range)
- {
- // Requires: 1.) dist is the distance of the [potentially separate R/G/B]
- // point(s) from a scanline in units of scanlines, where
- // 1.0 means the sample point straddles the next scanline.
- // 2.) color is the underlying source color along a scanline.
- // 3.) pixel_height is the output pixel height in scanlines.
- // 4.) Requirements of get_gaussian_sigma() must be met.
- // Returns: Return a scanline's light output over a given pixel.
- // Details:
- // The CRT beam profile follows a roughly Gaussian distribution which is
- // wider for bright colors than dark ones. The integral over the full
- // range of a Gaussian function is always 1.0, so we can vary the beam
- // with a standard deviation without affecting brightness. 'x' = distance:
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- // gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
- // Use a numerical approximation of the "error function" (the Gaussian
- // indefinite integral) to find the definite integral of the scanline's
- // average brightness over a given pixel area. Even if curved coords were
- // used in this pass, a flat scalar pixel height works almost as well as a
- // pixel height computed from a full pixel-space to scanline-space matrix.
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- const float3 ph_offset = float3(pixel_height * 0.5);
- const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
- const float3 integral_high = erf((dist + ph_offset)*denom_inv);
- const float3 integral_low = erf((dist - ph_offset)*denom_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_generalized_gaussian_integral_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel.
- // A generalized Gaussian distribution allows the shape (beta) to vary
- // as well as the width (alpha). "gamma" refers to the gamma function:
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- // ligamma(s, z) is the lower incomplete gamma function, for which we only
- // implement two of four branches (because we keep 1/beta <= 0.5):
- // generalized integral = 0.5 + 0.5* sign(x) *
- // ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
- // See get_generalized_gaussian_beta() for a discussion of beta.
- // We base alpha on the intended Gaussian sigma, but it only strictly
- // models models standard deviation at beta == 2, because the standard
- // deviation depends on both alpha and beta (keeping alpha independent is
- // faster and preserves intuitive behavior and a full spectrum of results).
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 s = float3(1.0)/beta;
- const float3 ph_offset = float3(pixel_height * 0.5);
- // Pass beta to gamma_impl to avoid repeated divides. Similarly pass
- // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
- const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
- const float3 dist1 = dist + ph_offset;
- const float3 dist0 = dist - ph_offset;
- const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
- s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
- const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
- s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
- return color * 0.5*(integral_high - integral_low)/pixel_height;
- }
- float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
- const float pixel_height, const float sigma_range)
- {
- // See scanline_gaussian integral_contrib() for detailed comments!
- // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
- const float3 sigma = get_gaussian_sigma(color, sigma_range);
- // Avoid repeated divides:
- const float3 sigma_inv = float3(1.0)/sigma;
- const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
- const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel away in each direction as well:
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three pure Gaussian samples:
- const float3 scale = color/3.0 * outer_denom_inv;
- const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
- const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
- const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
- return scale * (weight1 + weight2 + weight3);
- }
- else
- {
- return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
- }
- }
- float3 scanline_generalized_gaussian_sampled_contrib(float3 dist,
- float3 color, float pixel_height, float sigma_range,
- float shape_range)
- {
- // See scanline_generalized_gaussian_integral_contrib() for details!
- // generalized sample =
- // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
- const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
- const float3 beta = get_generalized_gaussian_beta(color, shape_range);
- // Avoid repeated divides:
- const float3 alpha_inv = float3(1.0)/alpha;
- const float3 beta_inv = float3(1.0)/beta;
- const float3 scale = color * beta * 0.5 * alpha_inv /
- gamma_impl(beta_inv, beta);
- if(beam_antialias_level > 0.5)
- {
- // Sample 1/3 pixel closer to and farther from the scanline too.
- const float3 sample_offset = float3(pixel_height/3.0);
- const float3 dist2 = dist + sample_offset;
- const float3 dist3 = abs(dist - sample_offset);
- // Average three generalized Gaussian samples:
- const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
- const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
- const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
- return scale/3.0 * (weight1 + weight2 + weight3);
- }
- else
- {
- return scale * exp(-pow(abs(dist*alpha_inv), beta));
- }
- }
- inline float3 scanline_contrib(float3 dist, float3 color,
- float pixel_height, const float sigma_range, const float shape_range)
- {
- // Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
- // must be met.
- // 2.) Requirements of get_gaussian_sigma() must be met.
- // 3.) Requirements of get_generalized_gaussian_beta() must be
- // met.
- // Returns: Return a scanline's light output over a given pixel, using
- // a generalized or pure Gaussian distribution and sampling or
- // integrals as desired by user codepath choices.
- if(beam_generalized_gaussian)
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_generalized_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- else
- {
- return scanline_generalized_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range, shape_range);
- }
- }
- else
- {
- if(beam_antialias_level > 1.5)
- {
- return scanline_gaussian_integral_contrib(
- dist, color, pixel_height, sigma_range);
- }
- else
- {
- return scanline_gaussian_sampled_contrib(
- dist, color, pixel_height, sigma_range);
- }
- }
- }
- inline float3 get_raw_interpolated_color(const float3 color0,
- const float3 color1, const float3 color2, const float3 color3,
- const float4 weights)
- {
- // Use max to avoid bizarre artifacts from negative colors:
- return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
- }
- float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
- const float3 color2, const float3 color3, const float4 weights)
- {
- // Requires: 1.) Requirements of include/gamma-management.h must be met:
- // intermediate_gamma must be globally defined, and input
- // colors are interpreted as linear RGB unless you #define
- // GAMMA_ENCODE_EVERY_FBO (in which case they are
- // interpreted as gamma-encoded with intermediate_gamma).
- // 2.) color0-3 are colors sampled from a texture with tex2D().
- // They are interpreted as defined in requirement 1.
- // 3.) weights contains weights for each color, summing to 1.0.
- // 4.) beam_horiz_linear_rgb_weight must be defined as a global
- // float in [0.0, 1.0] describing how much blending should
- // be done in linear RGB (rest is gamma-corrected RGB).
- // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
- // if beam_horiz_linear_rgb_weight is anything other than a
- // static constant, or we may try branching at runtime
- // without dynamic branches allowed (slow).
- // Returns: Return an interpolated color lookup between the four input
- // colors based on the weights in weights. The final color will
- // be a linear RGB value, but the blending will be done as
- // indicated above.
- const float intermediate_gamma = get_intermediate_gamma();
- // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
- // profile allows dynamic branches (faster than computing extra pows):
- #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #else
- #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
- #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- #endif
- #endif
- #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- // beam_horiz_linear_rgb_weight is static, so we can branch:
- #ifdef GAMMA_ENCODE_EVERY_FBO
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), float3(intermediate_gamma));
- if(beam_horiz_linear_rgb_weight > 0.0)
- {
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return gamma_mixed_color;
- }
- #else
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- if(beam_horiz_linear_rgb_weight < 1.0)
- {
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- }
- else
- {
- return linear_mixed_color;
- }
- #endif // GAMMA_ENCODE_EVERY_FBO
- #else
- #ifdef GAMMA_ENCODE_EVERY_FBO
- // Inputs: color0-3 are colors in gamma-encoded RGB.
- const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
- color0, color1, color2, color3, weights), intermediate_gamma);
- const float3 linear_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(intermediate_gamma)),
- pow(color1, float3(intermediate_gamma)),
- pow(color2, float3(intermediate_gamma)),
- pow(color3, float3(intermediate_gamma)),
- weights);
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #else
- // Inputs: color0-3 are colors in linear RGB.
- const float3 linear_mixed_color = get_raw_interpolated_color(
- color0, color1, color2, color3, weights);
- const float3 gamma_mixed_color = get_raw_interpolated_color(
- pow(color0, float3(1.0/intermediate_gamma)),
- pow(color1, float3(1.0/intermediate_gamma)),
- pow(color2, float3(1.0/intermediate_gamma)),
- pow(color3, float3(1.0/intermediate_gamma)),
- weights);
- // wtf fixme
- // const float beam_horiz_linear_rgb_weight1 = 1.0;
- return lerp(gamma_mixed_color, linear_mixed_color,
- beam_horiz_linear_rgb_weight);
- #endif // GAMMA_ENCODE_EVERY_FBO
- #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
- }
- float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
- const float2 uv_step_x, const float4 weights)
- {
- // Requires: 1.) scanline_uv must be vertically snapped to the caller's
- // desired line or scanline and horizontally snapped to the
- // texel just left of the output pixel (color1)
- // 2.) uv_step_x must contain the horizontal uv distance
- // between texels.
- // 3.) weights must contain interpolation filter weights for
- // color0, color1, color2, and color3, where color1 is just
- // left of the output pixel.
- // Returns: Return a horizontally interpolated texture lookup using 2-4
- // nearby texels, according to weights and the conventions of
- // get_interpolated_linear_color().
- // We can ignore the outside texture lookups for Quilez resampling.
- const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb;
- const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb;
- float3 color0 = float3(0.0);
- float3 color3 = float3(0.0);
- if(beam_horiz_filter > 0.5)
- {
- color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb;
- color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb;
- }
- // Sample the texture as-is, whether it's linear or gamma-encoded:
- // get_interpolated_linear_color() will handle the difference.
- return get_interpolated_linear_color(color0, color1, color2, color3, weights);
- }
- float3 sample_single_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Snap to the previous texel and get sample dists from 2/4 nearby texels:
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel =
- floor(curr_texel - float2(under_half)) + float2(0.5);
- const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
- const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
- const float prev_dist = curr_texel.x - prev_texel_hor.x;
- const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
- 1.0 - prev_dist, 2.0 - prev_dist);
- // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
- float4 weights;
- if(beam_horiz_filter < 0.5)
- {
- // Quilez:
- const float x = sample_dists.y;
- const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
- weights = float4(0.0, 1.0 - w2, w2, 0.0);
- }
- else if(beam_horiz_filter < 1.5)
- {
- // Gaussian:
- float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
- weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
- }
- else
- {
- // Lanczos2:
- const float4 pi_dists = FIX_ZERO(sample_dists * pi);
- weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
- (pi_dists * pi_dists);
- }
- // Ensure the weight sum == 1.0:
- const float4 final_weights = weights/dot(weights, float4(1.0));
- // Get the interpolated horizontal scanline color:
- const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
- return get_scanline_color(
- tex, prev_texel_hor_uv, uv_step_x, final_weights);
- }
- float3 sample_rgb_scanline_horizontal(const sampler2D tex,
- const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv)
- {
- // TODO: Add function requirements.
- // Rely on a helper to make convergence easier.
- if(beam_misconvergence)
- {
- const float3 convergence_offsets_rgb =
- get_convergence_offsets_x_vector();
- const float3 offset_u_rgb =
- convergence_offsets_rgb * texture_size_inv.xxx;
- const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
- const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
- const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
- const float3 sample_r = sample_single_scanline_horizontal(
- tex, scanline_uv_r, tex_size, texture_size_inv);
- const float3 sample_g = sample_single_scanline_horizontal(
- tex, scanline_uv_g, tex_size, texture_size_inv);
- const float3 sample_b = sample_single_scanline_horizontal(
- tex, scanline_uv_b, tex_size, texture_size_inv);
- return float3(sample_r.r, sample_g.g, sample_b.b);
- }
- else
- {
- return sample_single_scanline_horizontal(tex, tex_uv, tex_size,
- texture_size_inv);
- }
- }
- float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size,
- const float2 texture_size_inv, const float2 il_step_multiple,
- const float frame_count, out float dist)
- {
- // Compute texture coords for the last/upper scanline, accounting for
- // interlacing: With interlacing, only consider even/odd scanlines every
- // other frame. Top-field first (TFF) order puts even scanlines on even
- // frames, and BFF order puts them on odd frames. Texels are centered at:
- // frac(tex_uv * tex_size) == x.5
- // Caution: If these coordinates ever seem incorrect, first make sure it's
- // not because anisotropic filtering is blurring across field boundaries.
- // Note: TFF/BFF won't matter for sources that double-weave or similar.
- // wtf fixme
- // const float interlace_bff1 = 1.0;
- const float field_offset = floor(il_step_multiple.y * 0.75) *
- fmod(frame_count + float(interlace_bff), 2.0);
- const float2 curr_texel = tex_uv * tex_size;
- // Use under_half to fix a rounding bug right around exact texel locations.
- const float2 prev_texel_num = floor(curr_texel - float2(under_half));
- const float wrong_field = fmod(
- prev_texel_num.y + field_offset, il_step_multiple.y);
- const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
- // Snap to the center of the previous scanline in the current field:
- const float2 scanline_texel = scanline_texel_num + float2(0.5);
- const float2 scanline_uv = scanline_texel * texture_size_inv;
- // Save the sample's distance from the scanline, in units of scanlines:
- dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
- return scanline_uv;
- }
- inline bool is_interlaced(float num_lines)
- {
- // Detect interlacing based on the number of lines in the source.
- if(interlace_detect)
- {
- // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
- // NTSC Emulators: Typically 224 or 240 lines
- // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
- // PAL Emulators: ?
- // ATSC: 720p, 1080i, 1080p
- // Where do we place our cutoffs? Assumptions:
- // 1.) We only need to care about active lines.
- // 2.) Anything > 288 and <= 576 lines is probably interlaced.
- // 3.) Anything > 576 lines is probably not interlaced...
- // 4.) ...except 1080 lines, which is a crapshoot (user decision).
- // 5.) Just in case the main program uses calculated video sizes,
- // we should nudge the float thresholds a bit.
- const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
- const bool hd_interlace = bool(interlace_1080i) ?
- ((num_lines > 1079.5) && (num_lines < 1080.5)) :
- false;
- return (sd_interlace || hd_interlace);
- }
- else
- {
- return false;
- }
- }
- #endif // SCANLINE_FUNCTIONS_H
- ///////////////////////////// END SCANLINE-FUNCTIONS ////////////////////////////
- void main() {
- const float2 tex_uv = vTexCoord.xy;
- // Linearize the input based on CRT gamma and bob interlaced fields.
- // Bobbing ensures we can immediately blur without getting artifacts.
- // Note: TFF/BFF won't matter for sources that double-weave or similar.
- if(bool(interlace_detect))
- {
- // Sample the current line and an average of the previous/next line;
- // tex2D_linearize will decode CRT gamma. Don't bother branching:
- const float2 v_step = float2(0.0, uv_step.y);
- const float3 curr_line = tex2D_linearize(
- input_texture, tex_uv).rgb;
- const float3 last_line = tex2D_linearize(
- input_texture, tex_uv - v_step).rgb;
- const float3 next_line = tex2D_linearize(
- input_texture, tex_uv + v_step).rgb;
- const float3 interpolated_line = 0.5 * (last_line + next_line);
- // If we're interlacing, determine which field curr_line is in:
- const float modulus = interlaced + 1.0;
- const float field_offset =
- fmod(frame_count + interlace_bff, modulus);
- const float curr_line_texel = tex_uv.y * texture_size.y;
- // Use under_half to fix a rounding bug around exact texel locations.
- const float line_num_last = floor(curr_line_texel - under_half);
- const float wrong_field = fmod(line_num_last + field_offset, modulus);
- // Select the correct color, and output the result:
- const float3 color = lerp(curr_line, interpolated_line, wrong_field);
- FragColor = encode_output(float4(color, 1.0));
- }
- else
- {
- FragColor = encode_output(tex2D_linearize(input_texture, tex_uv));
- }
- }
|