sha224.hpp 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. #pragma once
  2. #include <nall/hash/hash.hpp>
  3. namespace nall::Hash {
  4. struct SHA224 : Hash {
  5. using Hash::input;
  6. SHA224(array_view<uint8_t> buffer = {}) {
  7. reset();
  8. input(buffer);
  9. }
  10. auto reset() -> void override {
  11. for(auto& n : queue) n = 0;
  12. for(auto& n : w) n = 0;
  13. for(auto n : range(8)) h[n] = square(n);
  14. queued = length = 0;
  15. }
  16. auto input(uint8_t value) -> void override {
  17. byte(value);
  18. length++;
  19. }
  20. auto output() const -> vector<uint8_t> override {
  21. SHA224 self(*this);
  22. self.finish();
  23. vector<uint8_t> result;
  24. for(auto h : range(7)) {
  25. for(auto n : reverse(range(4))) result.append(self.h[h] >> n * 8);
  26. }
  27. return result;
  28. }
  29. auto value() const -> uint256_t {
  30. uint256_t value = 0;
  31. for(auto byte : output()) value = value << 8 | byte;
  32. return value;
  33. }
  34. private:
  35. auto byte(uint8_t value) -> void {
  36. uint32_t shift = (3 - (queued & 3)) * 8;
  37. queue[queued >> 2] &= ~(0xff << shift);
  38. queue[queued >> 2] |= (value << shift);
  39. if(++queued == 64) block(), queued = 0;
  40. }
  41. auto block() -> void {
  42. for(auto n : range(16)) w[n] = queue[n];
  43. for(auto n : range(16, 64)) {
  44. uint32_t a = ror(w[n - 15], 7) ^ ror(w[n - 15], 18) ^ (w[n - 15] >> 3);
  45. uint32_t b = ror(w[n - 2], 17) ^ ror(w[n - 2], 19) ^ (w[n - 2] >> 10);
  46. w[n] = w[n - 16] + w[n - 7] + a + b;
  47. }
  48. uint32_t t[8];
  49. for(auto n : range(8)) t[n] = h[n];
  50. for(auto n : range(64)) {
  51. uint32_t a = ror(t[0], 2) ^ ror(t[0], 13) ^ ror(t[0], 22);
  52. uint32_t b = ror(t[4], 6) ^ ror(t[4], 11) ^ ror(t[4], 25);
  53. uint32_t c = (t[0] & t[1]) ^ (t[0] & t[2]) ^ (t[1] & t[2]);
  54. uint32_t d = (t[4] & t[5]) ^ (~t[4] & t[6]);
  55. uint32_t e = t[7] + w[n] + cube(n) + b + d;
  56. t[7] = t[6]; t[6] = t[5]; t[5] = t[4]; t[4] = t[3] + e;
  57. t[3] = t[2]; t[2] = t[1]; t[1] = t[0]; t[0] = a + c + e;
  58. }
  59. for(auto n : range(8)) h[n] += t[n];
  60. }
  61. auto finish() -> void {
  62. byte(0x80);
  63. while(queued != 56) byte(0x00);
  64. for(auto n : range(8)) byte(length * 8 >> (7 - n) * 8);
  65. }
  66. auto square(uint n) -> uint32_t {
  67. static const uint32_t value[8] = {
  68. 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4,
  69. };
  70. return value[n];
  71. }
  72. auto cube(uint n) -> uint32_t {
  73. static const uint32_t value[64] = {
  74. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  75. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  76. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  77. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  78. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  79. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  80. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  81. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
  82. };
  83. return value[n];
  84. }
  85. uint32_t queue[16] = {0};
  86. uint32_t w[64] = {0};
  87. uint32_t h[8] = {0};
  88. uint32_t queued = 0;
  89. uint64_t length = 0;
  90. };
  91. }