123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /*
- * jdct.h
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file contains common declarations for the forward and
- * inverse DCT modules. These declarations are private to the DCT managers
- * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
- * The individual DCT algorithms are kept in separate files to ease
- * machine-dependent tuning (e.g., assembly coding).
- */
- /*
- * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
- * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
- * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
- * implementations use an array of type FAST_FLOAT, instead.)
- * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
- * The DCT outputs are returned scaled up by a factor of 8; they therefore
- * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
- * convention improves accuracy in integer implementations and saves some
- * work in floating-point ones.
- * Quantization of the output coefficients is done by jcdctmgr.c.
- */
- #ifndef __jdct_h__
- #define __jdct_h__
- #if BITS_IN_JSAMPLE == 8
- typedef int DCTELEM; /* 16 or 32 bits is fine */
- #else
- typedef INT32 DCTELEM; /* must have 32 bits */
- #endif
- typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
- typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
- /*
- * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
- * to an output sample array. The routine must dequantize the input data as
- * well as perform the IDCT; for dequantization, it uses the multiplier table
- * pointed to by compptr->dct_table. The output data is to be placed into the
- * sample array starting at a specified column. (Any row offset needed will
- * be applied to the array pointer before it is passed to the IDCT code.)
- * Note that the number of samples emitted by the IDCT routine is
- * DCT_scaled_size * DCT_scaled_size.
- */
- /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
- /*
- * Each IDCT routine has its own ideas about the best dct_table element type.
- */
- typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
- #if BITS_IN_JSAMPLE == 8
- typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
- #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
- #else
- typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
- #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
- #endif
- typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
- /*
- * Each IDCT routine is responsible for range-limiting its results and
- * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- * be quite far out of range if the input data is corrupt, so a bulletproof
- * range-limiting step is required. We use a mask-and-table-lookup method
- * to do the combined operations quickly. See the comments with
- * prepare_range_limit_table (in jdmaster.c) for more info.
- */
- #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
- #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
- /* Short forms of external names for systems with brain-damaged linkers. */
- #ifdef NEED_SHORT_EXTERNAL_NAMES
- #define jpeg_fdct_islow jFDislow
- #define jpeg_fdct_ifast jFDifast
- #define jpeg_fdct_float jFDfloat
- #define jpeg_idct_islow jRDislow
- #define jpeg_idct_ifast jRDifast
- #define jpeg_idct_float jRDfloat
- #define jpeg_idct_4x4 jRD4x4
- #define jpeg_idct_2x2 jRD2x2
- #define jpeg_idct_1x1 jRD1x1
- #endif /* NEED_SHORT_EXTERNAL_NAMES */
- /* Extern declarations for the forward and inverse DCT routines. */
- EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
- EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
- EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
- EXTERN(void) jpeg_idct_islow
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- EXTERN(void) jpeg_idct_ifast
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- EXTERN(void) jpeg_idct_float
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- EXTERN(void) jpeg_idct_4x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- EXTERN(void) jpeg_idct_2x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- EXTERN(void) jpeg_idct_1x1
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
- /*
- * Macros for handling fixed-point arithmetic; these are used by many
- * but not all of the DCT/IDCT modules.
- *
- * All values are expected to be of type INT32.
- * Fractional constants are scaled left by CONST_BITS bits.
- * CONST_BITS is defined within each module using these macros,
- * and may differ from one module to the next.
- */
- #define ONE ((INT32) 1)
- #define CONST_SCALE (ONE << CONST_BITS)
- /* Convert a positive real constant to an integer scaled by CONST_SCALE.
- * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
- * thus causing a lot of useless floating-point operations at run time.
- */
- #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
- /* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
- #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
- /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * This macro is used only when the two inputs will actually be no more than
- * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
- * full 32x32 multiply. This provides a useful speedup on many machines.
- * Unfortunately there is no way to specify a 16x16->32 multiply portably
- * in C, but some C compilers will do the right thing if you provide the
- * correct combination of casts.
- */
- #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
- #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
- #endif
- #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
- #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
- #endif
- #ifndef MULTIPLY16C16 /* default definition */
- #define MULTIPLY16C16(var,const) ((var) * (const))
- #endif
- /* Same except both inputs are variables. */
- #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
- #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
- #endif
- #ifndef MULTIPLY16V16 /* default definition */
- #define MULTIPLY16V16(var1,var2) ((var1) * (var2))
- #endif
- #endif
|