Switch.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2011-2014 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "Demarc.hpp"
  46. #include "CMWC4096.hpp"
  47. #include "../version.h"
  48. namespace ZeroTier {
  49. Switch::Switch(const RuntimeEnvironment *renv) :
  50. _r(renv),
  51. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  52. {
  53. }
  54. Switch::~Switch()
  55. {
  56. }
  57. void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  58. {
  59. try {
  60. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  61. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  62. _handleRemotePacketFragment(localPort,fromAddr,data);
  63. else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
  64. _handleRemotePacketHead(localPort,fromAddr,data);
  65. }
  66. } catch (std::exception &ex) {
  67. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  68. } catch ( ... ) {
  69. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  70. }
  71. }
  72. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  73. {
  74. SharedPtr<NetworkConfig> nconf(network->config2());
  75. if (!nconf)
  76. return;
  77. if (to == network->mac()) {
  78. LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tapDeviceName().c_str());
  79. return;
  80. }
  81. if (from != network->mac()) {
  82. LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  83. return;
  84. }
  85. if (!nconf->permitsEtherType(etherType)) {
  86. LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  87. return;
  88. }
  89. if (to.isMulticast()) {
  90. MulticastGroup mg(to,0);
  91. if (to.isBroadcast()) {
  92. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  93. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  94. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  95. }
  96. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  97. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  98. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  99. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
  100. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  101. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  102. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  103. for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
  104. memset(bloom,0,sizeof(bloom));
  105. unsigned char *fifoPtr = fifo;
  106. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
  107. while (fifoPtr != fifoEnd)
  108. *(fifoPtr++) = (unsigned char)0;
  109. Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
  110. if (!firstHop) {
  111. if (supernode)
  112. firstHop = supernode->address();
  113. else continue;
  114. }
  115. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  116. outp.append((uint16_t)0);
  117. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  118. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  119. outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
  120. outp.append(network->id());
  121. outp.append(bloomNonce);
  122. outp.append((unsigned char)nconf->multicastPrefixBits());
  123. outp.append((unsigned char)prefix);
  124. _r->identity.address().appendTo(outp);
  125. outp.append((unsigned char)((mcid >> 16) & 0xff));
  126. outp.append((unsigned char)((mcid >> 8) & 0xff));
  127. outp.append((unsigned char)(mcid & 0xff));
  128. outp.append(from.data,6);
  129. outp.append(mg.mac().data,6);
  130. outp.append(mg.adi());
  131. outp.append((uint16_t)etherType);
  132. outp.append((uint16_t)data.size());
  133. outp.append(data);
  134. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  135. outp.append((uint16_t)sig.size());
  136. outp.append(sig.data,(unsigned int)sig.size());
  137. if (nconf->com())
  138. nconf->com().serialize(outp);
  139. outp.compress();
  140. send(outp,true);
  141. }
  142. } else if (to.isZeroTier()) {
  143. // Simple unicast frame from us to another node
  144. Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
  145. if (network->isAllowed(toZT)) {
  146. network->pushMembershipCertificate(toZT,false,Utils::now());
  147. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  148. outp.append(network->id());
  149. outp.append((uint16_t)etherType);
  150. outp.append(data);
  151. outp.compress();
  152. send(outp,true);
  153. } else {
  154. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  155. }
  156. } else {
  157. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  158. }
  159. }
  160. void Switch::send(const Packet &packet,bool encrypt)
  161. {
  162. if (packet.destination() == _r->identity.address()) {
  163. TRACE("BUG: caught attempt to send() to self, ignored");
  164. return;
  165. }
  166. if (!_trySend(packet,encrypt)) {
  167. Mutex::Lock _l(_txQueue_m);
  168. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  169. }
  170. }
  171. void Switch::sendHELLO(const Address &dest)
  172. {
  173. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  174. outp.append((unsigned char)ZT_PROTO_VERSION);
  175. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  176. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  177. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  178. outp.append(Utils::now());
  179. _r->identity.serialize(outp,false);
  180. send(outp,false);
  181. }
  182. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &remoteAddr)
  183. {
  184. uint64_t now = Utils::now();
  185. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  186. outp.append((unsigned char)ZT_PROTO_VERSION);
  187. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  188. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  189. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  190. outp.append(now);
  191. _r->identity.serialize(outp,false);
  192. outp.armor(dest->key(),false);
  193. return (_r->demarc->send(localPort,remoteAddr,outp.data(),outp.size(),-1) != Demarc::NULL_PORT);
  194. }
  195. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  196. {
  197. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  198. return false;
  199. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  200. if (!p1p)
  201. return false;
  202. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  203. if (!p2p)
  204. return false;
  205. uint64_t now = Utils::now();
  206. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  207. if (!(cg.first))
  208. return false;
  209. // Addresses are sorted in key for last unite attempt map for order
  210. // invariant lookup: (p1,p2) == (p2,p1)
  211. Array<Address,2> uniteKey;
  212. if (p1 >= p2) {
  213. uniteKey[0] = p2;
  214. uniteKey[1] = p1;
  215. } else {
  216. uniteKey[0] = p1;
  217. uniteKey[1] = p2;
  218. }
  219. {
  220. Mutex::Lock _l(_lastUniteAttempt_m);
  221. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  222. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  223. return false;
  224. else _lastUniteAttempt[uniteKey] = now;
  225. }
  226. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  227. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  228. * P2 in randomized order in terms of which gets sent first. This is done
  229. * since in a few cases NAT-t can be sensitive to slight timing differences
  230. * in terms of when the two peers initiate. Normally this is accounted for
  231. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  232. * given that supernodes are hosted on cloud providers this can in some
  233. * cases have a few ms of latency between packet departures. By randomizing
  234. * the order we make each attempted NAT-t favor one or the other going
  235. * first, meaning if it doesn't succeed the first time it might the second
  236. * and so forth. */
  237. unsigned int alt = _r->prng->next32() & 1;
  238. unsigned int completed = alt + 2;
  239. while (alt != completed) {
  240. if ((alt & 1) == 0) {
  241. // Tell p1 where to find p2.
  242. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  243. outp.append((unsigned char)0);
  244. p2.appendTo(outp);
  245. outp.append((uint16_t)cg.first.port());
  246. if (cg.first.isV6()) {
  247. outp.append((unsigned char)16);
  248. outp.append(cg.first.rawIpData(),16);
  249. } else {
  250. outp.append((unsigned char)4);
  251. outp.append(cg.first.rawIpData(),4);
  252. }
  253. outp.armor(p1p->key(),true);
  254. p1p->send(_r,outp.data(),outp.size(),now);
  255. } else {
  256. // Tell p2 where to find p1.
  257. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  258. outp.append((unsigned char)0);
  259. p1.appendTo(outp);
  260. outp.append((uint16_t)cg.second.port());
  261. if (cg.second.isV6()) {
  262. outp.append((unsigned char)16);
  263. outp.append(cg.second.rawIpData(),16);
  264. } else {
  265. outp.append((unsigned char)4);
  266. outp.append(cg.second.rawIpData(),4);
  267. }
  268. outp.armor(p2p->key(),true);
  269. p2p->send(_r,outp.data(),outp.size(),now);
  270. }
  271. ++alt; // counts up and also flips LSB
  272. }
  273. return true;
  274. }
  275. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  276. {
  277. Demarc::Port fromPort = _r->demarc->pick(atAddr);
  278. _r->demarc->send(fromPort,atAddr,"\0",1,ZT_FIREWALL_OPENER_HOPS);
  279. {
  280. Mutex::Lock _l(_contactQueue_m);
  281. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,fromPort,atAddr));
  282. }
  283. // Kick main loop out of wait so that it can pick up this
  284. // change to our scheduled timer tasks.
  285. _r->mainLoopWaitCondition.signal();
  286. }
  287. unsigned long Switch::doTimerTasks()
  288. {
  289. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  290. uint64_t now = Utils::now();
  291. {
  292. Mutex::Lock _l(_contactQueue_m);
  293. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  294. if (now >= qi->fireAtTime) {
  295. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  296. sendHELLO(qi->peer,qi->localPort,qi->inaddr);
  297. _contactQueue.erase(qi++);
  298. } else {
  299. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  300. ++qi;
  301. }
  302. }
  303. }
  304. {
  305. Mutex::Lock _l(_outstandingWhoisRequests_m);
  306. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  307. unsigned long since = (unsigned long)(now - i->second.lastSent);
  308. if (since >= ZT_WHOIS_RETRY_DELAY) {
  309. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  310. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  311. _outstandingWhoisRequests.erase(i++);
  312. continue;
  313. } else {
  314. i->second.lastSent = now;
  315. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  316. ++i->second.retries;
  317. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  318. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  319. }
  320. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  321. ++i;
  322. }
  323. }
  324. {
  325. Mutex::Lock _l(_txQueue_m);
  326. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  327. if (_trySend(i->second.packet,i->second.encrypt))
  328. _txQueue.erase(i++);
  329. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  330. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  331. _txQueue.erase(i++);
  332. } else ++i;
  333. }
  334. }
  335. {
  336. Mutex::Lock _l(_rxQueue_m);
  337. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  338. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  339. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  340. _rxQueue.erase(i++);
  341. } else ++i;
  342. }
  343. }
  344. {
  345. Mutex::Lock _l(_defragQueue_m);
  346. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  347. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  348. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  349. _defragQueue.erase(i++);
  350. } else ++i;
  351. }
  352. }
  353. return std::max(nextDelay,(unsigned long)10); // minimum delay
  354. }
  355. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  356. {
  357. std::vector< SharedPtr<Peer> > directPeers;
  358. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  359. #ifdef ZT_TRACE
  360. unsigned int totalMulticastGroups = 0;
  361. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  362. totalMulticastGroups += (unsigned int)i->second.size();
  363. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  364. #endif
  365. uint64_t now = Utils::now();
  366. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  367. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  368. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  369. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  370. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  371. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  372. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  373. send(outp,true);
  374. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  375. }
  376. // network ID, MAC, ADI
  377. outp.append((uint64_t)nwmgs->first->id());
  378. outp.append(mg->mac().data,6);
  379. outp.append((uint32_t)mg->adi());
  380. }
  381. }
  382. }
  383. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  384. send(outp,true);
  385. }
  386. }
  387. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  388. {
  389. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  390. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  391. uint64_t now = Utils::now();
  392. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  393. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  394. (*n)->pushMembershipCertificate(peer->address(),false,now);
  395. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  396. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  397. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  398. send(outp,true);
  399. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  400. }
  401. // network ID, MAC, ADI
  402. outp.append((uint64_t)(*n)->id());
  403. outp.append(mg->mac().data,6);
  404. outp.append((uint32_t)mg->adi());
  405. }
  406. }
  407. }
  408. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  409. send(outp,true);
  410. }
  411. void Switch::requestWhois(const Address &addr)
  412. {
  413. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  414. bool inserted = false;
  415. {
  416. Mutex::Lock _l(_outstandingWhoisRequests_m);
  417. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  418. if ((inserted = entry.second))
  419. entry.first->second.lastSent = Utils::now();
  420. entry.first->second.retries = 0; // reset retry count if entry already existed
  421. }
  422. if (inserted)
  423. _sendWhoisRequest(addr,(const Address *)0,0);
  424. }
  425. void Switch::cancelWhoisRequest(const Address &addr)
  426. {
  427. Mutex::Lock _l(_outstandingWhoisRequests_m);
  428. _outstandingWhoisRequests.erase(addr);
  429. }
  430. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  431. {
  432. {
  433. Mutex::Lock _l(_outstandingWhoisRequests_m);
  434. _outstandingWhoisRequests.erase(peer->address());
  435. }
  436. {
  437. Mutex::Lock _l(_rxQueue_m);
  438. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  439. if ((*rxi)->tryDecode(_r))
  440. _rxQueue.erase(rxi++);
  441. else ++rxi;
  442. }
  443. }
  444. {
  445. Mutex::Lock _l(_txQueue_m);
  446. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  447. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  448. if (_trySend(txi->second.packet,txi->second.encrypt))
  449. _txQueue.erase(txi++);
  450. else ++txi;
  451. }
  452. }
  453. }
  454. const char *Switch::etherTypeName(const unsigned int etherType)
  455. throw()
  456. {
  457. switch(etherType) {
  458. case ZT_ETHERTYPE_IPV4: return "IPV4";
  459. case ZT_ETHERTYPE_ARP: return "ARP";
  460. case ZT_ETHERTYPE_RARP: return "RARP";
  461. case ZT_ETHERTYPE_ATALK: return "ATALK";
  462. case ZT_ETHERTYPE_AARP: return "AARP";
  463. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  464. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  465. case ZT_ETHERTYPE_IPV6: return "IPV6";
  466. }
  467. return "UNKNOWN";
  468. }
  469. void Switch::_handleRemotePacketFragment(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  470. {
  471. Packet::Fragment fragment(data);
  472. Address destination(fragment.destination());
  473. if (destination != _r->identity.address()) {
  474. // Fragment is not for us, so try to relay it
  475. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  476. fragment.incrementHops();
  477. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  478. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()))) {
  479. relayTo = _r->topology->getBestSupernode();
  480. if (relayTo)
  481. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  482. }
  483. } else {
  484. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  485. }
  486. } else {
  487. // Fragment looks like ours
  488. uint64_t pid = fragment.packetId();
  489. unsigned int fno = fragment.fragmentNumber();
  490. unsigned int tf = fragment.totalFragments();
  491. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  492. // Fragment appears basically sane. Its fragment number must be
  493. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  494. // Total fragments must be more than 1, otherwise why are we
  495. // seeing a Packet::Fragment?
  496. Mutex::Lock _l(_defragQueue_m);
  497. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  498. if (dqe == _defragQueue.end()) {
  499. // We received a Packet::Fragment without its head, so queue it and wait
  500. DefragQueueEntry &dq = _defragQueue[pid];
  501. dq.creationTime = Utils::now();
  502. dq.frags[fno - 1] = fragment;
  503. dq.totalFragments = tf; // total fragment count is known
  504. dq.haveFragments = 1 << fno; // we have only this fragment
  505. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  506. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  507. // We have other fragments and maybe the head, so add this one and check
  508. dqe->second.frags[fno - 1] = fragment;
  509. dqe->second.totalFragments = tf;
  510. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  511. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  512. // We have all fragments -- assemble and process full Packet
  513. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  514. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  515. for(unsigned int f=1;f<tf;++f)
  516. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  517. _defragQueue.erase(dqe);
  518. if (!packet->tryDecode(_r)) {
  519. Mutex::Lock _l(_rxQueue_m);
  520. _rxQueue.push_back(packet);
  521. }
  522. }
  523. } // else this is a duplicate fragment, ignore
  524. }
  525. }
  526. }
  527. void Switch::_handleRemotePacketHead(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  528. {
  529. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,localPort,fromAddr));
  530. Address source(packet->source());
  531. Address destination(packet->destination());
  532. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  533. if (destination != _r->identity.address()) {
  534. // Packet is not for us, so try to relay it
  535. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  536. packet->incrementHops();
  537. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  538. if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),Utils::now()))) {
  539. // If we've relayed, this periodically tries to get them to
  540. // talk directly to save our bandwidth.
  541. unite(source,destination,false);
  542. } else {
  543. // If we've received a packet not for us and we don't have
  544. // a direct path to its recipient, pass it to (another)
  545. // supernode. This can happen due to Internet weather -- the
  546. // most direct supernode may not be reachable, yet another
  547. // further away may be.
  548. relayTo = _r->topology->getBestSupernode(&source,1,true);
  549. if (relayTo)
  550. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  551. }
  552. } else {
  553. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  554. }
  555. } else if (packet->fragmented()) {
  556. // Packet is the head of a fragmented packet series
  557. uint64_t pid = packet->packetId();
  558. Mutex::Lock _l(_defragQueue_m);
  559. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  560. if (dqe == _defragQueue.end()) {
  561. // If we have no other fragments yet, create an entry and save the head
  562. DefragQueueEntry &dq = _defragQueue[pid];
  563. dq.creationTime = Utils::now();
  564. dq.frag0 = packet;
  565. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  566. dq.haveFragments = 1; // head is first bit (left to right)
  567. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  568. } else if (!(dqe->second.haveFragments & 1)) {
  569. // If we have other fragments but no head, see if we are complete with the head
  570. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  571. // We have all fragments -- assemble and process full Packet
  572. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  573. // packet already contains head, so append fragments
  574. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  575. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  576. _defragQueue.erase(dqe);
  577. if (!packet->tryDecode(_r)) {
  578. Mutex::Lock _l(_rxQueue_m);
  579. _rxQueue.push_back(packet);
  580. }
  581. } else {
  582. // Still waiting on more fragments, so queue the head
  583. dqe->second.frag0 = packet;
  584. }
  585. } // else this is a duplicate head, ignore
  586. } else {
  587. // Packet is unfragmented, so just process it
  588. if (!packet->tryDecode(_r)) {
  589. Mutex::Lock _l(_rxQueue_m);
  590. _rxQueue.push_back(packet);
  591. }
  592. }
  593. }
  594. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  595. {
  596. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  597. if (supernode) {
  598. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  599. addr.appendTo(outp);
  600. outp.armor(supernode->key(),true);
  601. uint64_t now = Utils::now();
  602. if (supernode->send(_r,outp.data(),outp.size(),now))
  603. return supernode->address();
  604. }
  605. return Address();
  606. }
  607. bool Switch::_trySend(const Packet &packet,bool encrypt)
  608. {
  609. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  610. if (peer) {
  611. uint64_t now = Utils::now();
  612. SharedPtr<Peer> via;
  613. if (peer->hasActiveDirectPath(now)) {
  614. via = peer;
  615. } else {
  616. via = _r->topology->getBestSupernode();
  617. if (!via)
  618. return false;
  619. }
  620. Packet tmp(packet);
  621. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  622. tmp.setFragmented(chunkSize < tmp.size());
  623. tmp.armor(peer->key(),encrypt);
  624. Demarc::Port localPort;
  625. if ((localPort = via->send(_r,tmp.data(),chunkSize,now))) {
  626. if (chunkSize < tmp.size()) {
  627. // Too big for one bite, fragment the rest
  628. unsigned int fragStart = chunkSize;
  629. unsigned int remaining = tmp.size() - chunkSize;
  630. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  631. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  632. ++fragsRemaining;
  633. unsigned int totalFragments = fragsRemaining + 1;
  634. for(unsigned int f=0;f<fragsRemaining;++f) {
  635. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  636. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  637. if (!via->send(_r,frag.data(),frag.size(),now)) {
  638. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  639. }
  640. fragStart += chunkSize;
  641. remaining -= chunkSize;
  642. }
  643. }
  644. #ifdef ZT_TRACE
  645. if (via != peer) {
  646. TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
  647. } else {
  648. TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
  649. }
  650. #endif
  651. return true;
  652. }
  653. return false;
  654. }
  655. requestWhois(packet.destination());
  656. return false;
  657. }
  658. } // namespace ZeroTier