123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- /*
- * Copyright (c) 2010-2017 Richard Braun.
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- * Upstream site with license notes :
- * http://git.sceen.net/rbraun/librbraun.git/
- *
- *
- * Hash functions for integers and strings.
- *
- * Integer hashing follows Thomas Wang's paper about his 32/64-bits mix
- * functions :
- * - https://gist.github.com/badboy/6267743
- *
- * String hashing uses a variant of the djb2 algorithm with k=31, as in
- * the implementation of the hashCode() method of the Java String class :
- * - http://www.javamex.com/tutorials/collections/hash_function_technical.shtml
- *
- * Note that this algorithm isn't suitable to obtain usable 64-bits hashes
- * and is expected to only serve as an array index producer.
- *
- * These functions all have a bits parameter that indicates the number of
- * relevant bits the caller is interested in. When returning a hash, its
- * value must be truncated so that it can fit in the requested bit size.
- * It can be used by the implementation to select high or low bits, depending
- * on their relative randomness. To get complete, unmasked hashes, use the
- * HASH_ALLBITS macro.
- */
- #ifndef KERN_HASH_H
- #define KERN_HASH_H
- #include <assert.h>
- #include <stdbool.h>
- #include <stdint.h>
- #ifdef __LP64__
- #define HASH_ALLBITS 64
- #define hash_long(n, bits) hash_int64(n, bits)
- #else /* __LP64__ */
- static_assert(sizeof(long) == 4, "unsupported data model");
- #define HASH_ALLBITS 32
- #define hash_long(n, bits) hash_int32(n, bits)
- #endif
- static inline bool
- hash_bits_valid(unsigned int bits)
- {
- return (bits != 0) && (bits <= HASH_ALLBITS);
- }
- static inline uint32_t
- hash_int32(uint32_t n, unsigned int bits)
- {
- uint32_t hash;
- assert(hash_bits_valid(bits));
- hash = n;
- hash = ~hash + (hash << 15);
- hash ^= (hash >> 12);
- hash += (hash << 2);
- hash ^= (hash >> 4);
- hash += (hash << 3) + (hash << 11);
- hash ^= (hash >> 16);
- return hash >> (32 - bits);
- }
- static inline uint64_t
- hash_int64(uint64_t n, unsigned int bits)
- {
- uint64_t hash;
- assert(hash_bits_valid(bits));
- hash = n;
- hash = ~hash + (hash << 21);
- hash ^= (hash >> 24);
- hash += (hash << 3) + (hash << 8);
- hash ^= (hash >> 14);
- hash += (hash << 2) + (hash << 4);
- hash ^= (hash >> 28);
- hash += (hash << 31);
- return hash >> (64 - bits);
- }
- static inline uintptr_t
- hash_ptr(const void *ptr, unsigned int bits)
- {
- if (sizeof(uintptr_t) == 8) {
- return hash_int64((uintptr_t)ptr, bits);
- } else {
- return hash_int32((uintptr_t)ptr, bits);
- }
- }
- static inline unsigned long
- hash_str(const char *str, unsigned int bits)
- {
- unsigned long hash, mask;
- char c;
- assert(hash_bits_valid(bits));
- for (hash = 0; /* no condition */; str++) {
- c = *str;
- if (c == '\0') {
- break;
- }
- hash = ((hash << 5) - hash) + c;
- }
- /*
- * This mask construction avoids the undefined behavior that would
- * result from directly shifting by the number of bits, if that number
- * is equal to the width of the hash.
- */
- mask = (~0UL >> (HASH_ALLBITS - bits));
- return hash & mask;
- }
- #endif /* KERN_HASH_H */
|