floatp.cpp 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /* Definitions for the floating point types.
  2. This file is part of khipu.
  3. khipu is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU Lesser General Public License as published by
  5. the Free Software Foundation; either version 3 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU Lesser General Public License for more details.
  11. You should have received a copy of the GNU Lesser General Public License
  12. along with this program. If not, see <https://www.gnu.org/licenses/>. */
  13. #include <cmath>
  14. #include <climits>
  15. #include <cstdio>
  16. #include <limits>
  17. #include <cstdlib>
  18. #include "floatp.hpp"
  19. #include "memory.hpp"
  20. #include "stream.hpp"
  21. #include "integer.hpp"
  22. #include "bvector.hpp"
  23. #include "io.hpp"
  24. KP_DECLS_BEGIN
  25. bool fnan_p (double val)
  26. {
  27. return (std::fpclassify (val) == FP_NAN);
  28. }
  29. int finf_p (double val)
  30. {
  31. return (std::fpclassify (val) != FP_INFINITE ? 0 : (val < 0 ? -1 : 1));
  32. }
  33. static int
  34. fclass_aux (double val, int& sign)
  35. {
  36. int ret = std::fpclassify (val);
  37. switch (ret)
  38. {
  39. case FP_INFINITE:
  40. sign = val < 0 ? -1 : 1;
  41. break;
  42. case FP_NAN:
  43. sign = 0;
  44. break; // We don't consider -NaN
  45. default:
  46. // Assume it's a normalised number.
  47. ret = FP_NORMAL;
  48. sign = std::signbit (val);
  49. }
  50. return (ret);
  51. }
  52. static double
  53. get_dbl (object obj, int& sign, int& cls)
  54. {
  55. double val = as_fltobj(obj)->val;
  56. if (kp_unlikely (obj == FLT_PINF || obj == FLT_NINF))
  57. {
  58. cls = FP_INFINITE;
  59. #ifdef KP_ARCH_WIDE
  60. sign = varobj_sign (obj);
  61. #else
  62. sign = obj == FLT_NINF;
  63. #endif
  64. }
  65. else if (kp_unlikely (obj == FLT_QNAN))
  66. {
  67. cls = FP_NAN;
  68. sign = 0;
  69. }
  70. else
  71. {
  72. sign = std::signbit (val);
  73. #ifdef KP_ARCH_WIDE
  74. if (varobj_sign (obj))
  75. {
  76. sign ^= 1;
  77. val = -val;
  78. }
  79. #endif
  80. cls = FP_NORMAL;
  81. }
  82. return (val);
  83. }
  84. #ifdef KP_ARCH_WIDE
  85. # define make_bigfloat(ptr, sign) \
  86. ptrtype ((ptr), typecode::BIGFLOAT) | (sign ? SIGN_BIT : 0)
  87. # define F_ABS(val) val
  88. #else
  89. double as_float (object obj)
  90. {
  91. int sgn, cls;
  92. return (get_dbl (obj, sgn, cls));
  93. }
  94. static inline object
  95. make_bigfloat (bigfloat *fp, int sign)
  96. {
  97. if (sign)
  98. fp->len = -fp->len;
  99. return (fp->as_obj ());
  100. }
  101. # define F_ABS abs
  102. #endif
  103. object fltobj::make (interpreter *interp, double val)
  104. {
  105. fltobj *retp = alloch<fltobj> (TYPE_SHIFT + 1);
  106. retp->val = val;
  107. retp->vo_full |= FLAGS_CONST;
  108. interp->alval = retp->as_obj ();
  109. gc_register (interp, retp);
  110. return (interp->alval);
  111. }
  112. struct fake_bigfloat : public local_varobj<bigfloat>
  113. {
  114. limb_t data[LNDBL_SIZE];
  115. fake_bigfloat (double x)
  116. {
  117. this->local_init (this->data, KP_NELEM (this->data), 0);
  118. this->expo = dbltoui (fabs (x), this->data, this->len);
  119. }
  120. object get_obj (int sign)
  121. {
  122. #ifdef KP_ARCH_WIDE
  123. return (this->as_obj () | (sign ? SIGN_BIT : 0));
  124. #else
  125. if (sign)
  126. this->len = -this->len;
  127. return (this->as_obj ());
  128. #endif
  129. }
  130. };
  131. template <typename F1, typename F2>
  132. static result<object> ff_op (interpreter *interp, object x, object y,
  133. int y_sign, F1 fn, F2 alt)
  134. {
  135. int s1, s2, c1, c2, rs;
  136. double d1 = get_dbl (x, s1, c1);
  137. double d2 = get_dbl (y, s2, c2);
  138. double ret = KP_TRY (fn (interp, d1, d2));
  139. int rc = fclass_aux (ret, rs);
  140. if (kp_likely (rc == FP_NORMAL))
  141. kp_return (fltobj::make (interp, ret));
  142. else if ((c1 | c2) != FP_NORMAL)
  143. {
  144. if (c1 == FP_NORMAL)
  145. kp_return (y_sign ? neg_f (interp, y) : y);
  146. else if (c2 == FP_NORMAL)
  147. kp_return (x);
  148. kp_return (c1 != c2 || s1 != (s2 ^ y_sign) ? FLT_QNAN : x);
  149. }
  150. fake_bigfloat tx (d1), ty (d2);
  151. return (alt (interp, make_bigfloat (&tx, s1), make_bigfloat (&ty, s2)));
  152. }
  153. object add_ff (interpreter *interp, object x, object y)
  154. {
  155. return (deref (ff_op (interp, x, y, 0,
  156. [](void *, double a, double b)
  157. { return (a + b); }, add_FF)));
  158. }
  159. object sub_ff (interpreter *interp, object x, object y)
  160. {
  161. return (deref (ff_op (interp, x, y, 1,
  162. [](void *, double a, double b)
  163. { return (a - b); }, sub_FF)));
  164. }
  165. object mul_ff (interpreter *interp, object x, object y)
  166. {
  167. return (deref (ff_op (interp, x, y, 0,
  168. [](void *, double a, double b)
  169. { return (a * b); }, mul_FF)));
  170. }
  171. result<object> div_ff (interpreter *interp, object x, object y)
  172. {
  173. return (ff_op (interp, x, y, 0,
  174. [](interpreter *ip, double a, double b) -> result<double>
  175. {
  176. if (b == 0)
  177. return (ip->raise ("arith-error",
  178. "division by zero"));
  179. return (a / b);
  180. }, div_FF));
  181. }
  182. object neg_f (interpreter *interp, object obj)
  183. {
  184. int sign, cls;
  185. double val = get_dbl (obj, sign, cls);
  186. if (cls == FP_NAN || val == 0)
  187. kp_return (obj);
  188. else if (cls == FP_INFINITE)
  189. kp_return (obj == FLT_PINF ? FLT_NINF : FLT_PINF);
  190. #ifdef KP_ARCH_WIDE
  191. kp_return (obj ^ SIGN_BIT);
  192. #else
  193. kp_return (fltobj::make (interp, -val));
  194. #endif
  195. }
  196. object abs_f (interpreter *interp, object obj)
  197. {
  198. if (obj == FLT_QNAN)
  199. kp_return (obj);
  200. int sign, cls;
  201. double val = get_dbl (obj, sign, cls);
  202. if (sign != 0)
  203. #ifdef KP_ARCH_WIDE
  204. kp_return (obj ^ SIGN_BIT);
  205. #else
  206. kp_return (fltobj::make (interp, -val));
  207. #endif
  208. (void)val;
  209. kp_return (obj);
  210. }
  211. result<object> mod_ff (interpreter *interp, object x, object y)
  212. {
  213. int s1, c1, s2, c2;
  214. double v1 = get_dbl (x, s1, c1);
  215. double v2 = get_dbl (y, s2, c2);
  216. if (v2 == 0)
  217. return (interp->raise ("arith-error", "modulo by zero"));
  218. else if (c1 == FP_NAN || c2 == FP_NAN)
  219. kp_return (FLT_QNAN);
  220. kp_return (fltobj::make (interp, fmod (v1, v2)));
  221. }
  222. int cmp_ff (interpreter *interp, object x, object y)
  223. {
  224. int s1, c1, s2, c2;
  225. double v1 = get_dbl (x, s1, c1);
  226. double v2 = get_dbl (y, s2, c2);
  227. if (c1 == FP_NAN || c2 == FP_NAN)
  228. return (1); // Any non-zero value will do.
  229. return (v1 < v2 ? -1 : (v1 > v2 ? +1 : 0));
  230. }
  231. bool eq_ff (interpreter *interp, object x, object y)
  232. {
  233. int s1, c1, s2, c2;
  234. double v1 = get_dbl (x, s1, c1);
  235. double v2 = get_dbl (y, s2, c2);
  236. if ((c1 | c2) != FP_NORMAL)
  237. return (false);
  238. return (v1 == v2);
  239. }
  240. uint32_t hash_f (interpreter *interp, object obj)
  241. {
  242. int sign, cls;
  243. double i, dv = get_dbl (obj, sign, cls);
  244. if (modf (dv, &i) != 0)
  245. {
  246. uint32_t ret = hashbuf (&dv, sizeof (dv));
  247. return (sign ? ~ret : ret);
  248. }
  249. int64_t iv = (int64_t)dv;
  250. if (fitsfixint_p (iv))
  251. return (hash_i (interp, fixint (iv)));
  252. uival uv;
  253. uv.qv = abs (iv);
  254. limb_t data[] = { uv.limbs.lo, uv.limbs.hi };
  255. local_varobj<bigint> bi;
  256. bi.local_init (data, 1 + (data[1] != 0));
  257. #ifdef KP_ARCH_WIDE
  258. return (hash_I (interp, bi.as_obj () | (iv < 0 ? SIGN_BIT : 0)));
  259. #else
  260. if (iv < 0)
  261. bi.len = -bi.len;
  262. return (hash_I (interp, bi.as_obj ()));
  263. #endif
  264. }
  265. static result<int>
  266. pad_writef (interpreter *interp, stream *strm, int ch,
  267. int width, int lv, int flags)
  268. {
  269. if ((flags & (io_info::FLG_LJUST | io_info::FLG_ZERO)) || lv >= width)
  270. return (0);
  271. int rv = 0;
  272. char buf[256];
  273. lv = width - lv;
  274. memset (buf, ch, min (lv, (int)sizeof (buf)));
  275. for (; lv >= (int)sizeof (buf); lv -= sizeof (buf))
  276. { rv += KP_TRY (strm->write (interp, buf, sizeof (buf))); }
  277. rv += KP_TRY (strm->write (interp, buf, lv));
  278. return (rv);
  279. }
  280. static result<int64_t>
  281. write_flt (interpreter *interp, stream *strm, double dbl, int width,
  282. int prec, int flags, int radix)
  283. {
  284. uint32_t space[(DBL_MANT_DIG + 28) / 29 + 1 +
  285. (DBL_MAX_EXP + DBL_MANT_DIG + 28 + 8) / 9];
  286. uint32_t *ap, *dp, *rp, *zp;
  287. int e2, expo = 0, ix, jx, lx, px = 1, rv = 0;
  288. char buf[(DBL_MANT_DIG >> 2) + 9];
  289. char ebuf_st[sizeof (int) * 3];
  290. char *ebuf = ebuf_st + sizeof (ebuf_st), *estr;
  291. const char *prefix = "-0X+0X 0X-0x+0x 0x";
  292. if (dbl < 0)
  293. dbl = -dbl;
  294. else if (flags & io_info::FLG_SIGN)
  295. prefix += 3;
  296. else if (flags & io_info::FLG_SPACE)
  297. prefix += 6;
  298. else
  299. px = 0, ++prefix;
  300. dbl = frexpl (dbl, &e2);
  301. if (abs (radix) == 16)
  302. { // Hex-float.
  303. int convdig = radix < 0 ? 'A' : 'a';
  304. if ((dbl += dbl) != 0)
  305. --e2;
  306. if (prec != 0 && prec < (int)((DBL_DIG + 1) * .831) + 1)
  307. { // Round the mantissa.
  308. double tail = dbl;
  309. int q;
  310. for (q = prec ; ; --q)
  311. {
  312. int digit = (int)tail;
  313. tail -= digit;
  314. if (q == 0)
  315. {
  316. if (digit % 2 != 0 ? tail >= .5 : tail > .5)
  317. tail = 1 - tail;
  318. else
  319. tail = -tail;
  320. break;
  321. }
  322. tail *= 16.l;
  323. }
  324. if (tail != 0)
  325. for (q = prec; q > 0; --q)
  326. tail *= 0.0625;
  327. dbl += tail;
  328. }
  329. ix = 0; // Return value.
  330. if ((flags & io_info::FLG_SIGN) || px != 0)
  331. { ix += KP_TRY (strm->putb (interp, *prefix)); }
  332. int digit = (int)dbl;
  333. dbl -= digit;
  334. {
  335. char tmp[] = { '0', (char)(convdig - 'A' + 'X'), (char)('0' + digit) };
  336. ix += KP_TRY (strm->write (interp, tmp, sizeof (tmp)));
  337. }
  338. if ((flags & io_info::FLG_ALT) || dbl > 0 || prec > 0)
  339. {
  340. ix += KP_TRY (strm->putb (interp, '.')); // XXX: Localization.
  341. /* The following loop must terminate, based on the above
  342. * assertion that FLT_RADIX is a power of 2. */
  343. for (; dbl > 0; --prec)
  344. {
  345. dbl *= 16.;
  346. digit = (int)dbl;
  347. dbl -= digit;
  348. ix += KP_TRY (strm->putb (interp, digit < 0 ?
  349. '0' : convdig - 10 + digit));
  350. }
  351. while (prec-- > 0)
  352. { ix += KP_TRY (strm->putb (interp, '0')); }
  353. }
  354. ix += KP_TRY (strm->putb (interp, convdig - 'A' + 'P'));
  355. ix += KP_TRY (strm->putb (interp, expo < 0 ? '-' : '+'));
  356. estr = uitostr1 (ebuf, e2, 10);
  357. ix += KP_TRY (strm->write (interp, estr, ebuf - estr));
  358. return (ix);
  359. }
  360. if ((dbl += dbl) != 0)
  361. {
  362. dbl *= 0x1p28;
  363. e2 -= 29;
  364. }
  365. if (prec < 0)
  366. prec = 6;
  367. {
  368. uint32_t *p = e2 < 0 ? space : space + KP_NELEM (space) - DBL_MANT_DIG - 1;
  369. ap = rp = zp = p;
  370. }
  371. do
  372. {
  373. *zp = (uint32_t)dbl;
  374. dbl = 1000000000 * (dbl - *zp++);
  375. }
  376. while (dbl != 0);
  377. while (e2 > 0)
  378. {
  379. uint32_t cy = 0;
  380. int sh = min (29, e2);
  381. for (dp = zp - 1; dp >= ap; --dp)
  382. {
  383. uint64_t twx = ((uint64_t)*dp << sh) + cy;
  384. *dp = (uint32_t)(twx % 1000000000);
  385. cy = (uint32_t)(twx / 1000000000);
  386. }
  387. if (cy != 0)
  388. *--ap = cy;
  389. for (; zp > ap && zp[-1] == 0; --zp) ;
  390. e2 -= sh;
  391. }
  392. while (e2 < 0)
  393. {
  394. uint32_t cy = 0;
  395. int sh = min (9, -e2);
  396. int need = 1 + (prec + DBL_MANT_DIG / 3 + 8) / 9;
  397. for (dp = ap; dp < zp; ++dp)
  398. {
  399. uint32_t mask = *dp & ((1u << sh) - 1);
  400. *dp = (*dp >> sh) + cy;
  401. cy = (1000000000 >> sh) * mask;
  402. }
  403. if (*ap == 0)
  404. ++ap;
  405. if (cy != 0)
  406. *zp++ = cy;
  407. uint32_t *bp = (flags & io_info::FLG_FIXED) ? rp : ap;
  408. if ((int)(zp - bp) > need)
  409. zp = bp + need;
  410. e2 += sh;
  411. }
  412. if (ap < zp)
  413. for (ix = 10, expo = 9 * (int)(rp - ap);
  414. *ap >= (uint32_t)ix; ix *= 10, ++expo) ;
  415. jx = prec - expo * !(flags & io_info::FLG_FIXED) -
  416. (prec != 0 && !(flags & (io_info::FLG_FIXED | io_info::FLG_EXPO)));
  417. if (jx < 9 * (int)(zp - rp - 1))
  418. {
  419. dp = rp + 1 + ((jx + 9 * DBL_MAX_EXP) / 9 - DBL_MAX_EXP);
  420. jx = (jx + 9 * DBL_MAX_EXP) % 9;
  421. for (ix = 10, ++jx; jx < 9; ix *= 10, ++jx) ;
  422. uint32_t tmp = *dp % ix;
  423. if (tmp != 0 || dp + 1 != zp)
  424. {
  425. double round = 2 / DBL_EPSILON;
  426. if (*dp % 2 != 0 || (ix == 1000000000 &&
  427. dp > ap && dp[-1] % 2 != 0))
  428. round += 2;
  429. double small = tmp < (uint32_t)(ix >> 1) ? 0x0.8p0 :
  430. tmp == (uint32_t)(ix >> 1) && dp + 1 == zp ? 0x1.0p0 : 0x1.8p0;
  431. if (px != 0 && *prefix == '-')
  432. {
  433. round = -round;
  434. small = -small;
  435. }
  436. *dp -= tmp;
  437. if (round + small != round)
  438. {
  439. *dp += ix;
  440. while (*dp > 1000000000 - 1)
  441. {
  442. *dp-- = 0;
  443. if (dp < ap)
  444. *--ap = 0;
  445. ++*dp;
  446. }
  447. for (ix = 10, expo = 9 * (int)(rp - ap);
  448. *ap >= (uint32_t)ix; ix *= 10, ++expo) ;
  449. }
  450. }
  451. if (zp > dp + 1)
  452. zp = dp + 1;
  453. }
  454. for (; zp > ap && zp[-1] == 0; --zp) ;
  455. if (!(flags & (io_info::FLG_EXPO | io_info::FLG_FIXED)))
  456. {
  457. if (prec == 0)
  458. prec = 1;
  459. if (prec > expo && expo >= -4)
  460. {
  461. flags |= io_info::FLG_FIXED;
  462. prec -= expo + 1;
  463. }
  464. else
  465. {
  466. flags |= io_info::FLG_EXPO;
  467. --prec;
  468. }
  469. if (!(flags & io_info::FLG_ALT))
  470. {
  471. if (zp > ap && zp[-1] != 0)
  472. for (ix = 10, jx = 0; zp[-1] % ix == 0; ix *= 10, ++jx) ;
  473. else
  474. jx = 9;
  475. int uoff = 9 * ((int)(zp - rp) - 1) - jx;
  476. if (flags & io_info::FLG_EXPO)
  477. uoff += expo;
  478. prec = min (prec, max (0, uoff));
  479. }
  480. }
  481. lx = prec || (flags & io_info::FLG_ALT);
  482. if (prec > INT_MAX - 1 - lx)
  483. return (-1);
  484. lx += prec + 1;
  485. if (flags & io_info::FLG_FIXED)
  486. {
  487. if (expo > INT_MAX - lx)
  488. return (-1);
  489. else if (expo > 0)
  490. lx += expo;
  491. }
  492. else
  493. {
  494. estr = uitostr1 (ebuf, abs (expo), 10);
  495. while (ebuf - estr < 2)
  496. *--estr = '0';
  497. *--estr = expo < 0 ? '-' : '+';
  498. *--estr = radix < 0 ? 'E' : 'e';
  499. lx += ebuf - estr;
  500. }
  501. if (lx > INT_MAX - px)
  502. return (-1);
  503. rv += KP_TRY (pad_writef (interp, strm, ' ', width, px + lx, flags));
  504. rv += KP_TRY (strm->write (interp, prefix, px));
  505. rv += KP_TRY (pad_writef (interp, strm, '0', width,
  506. px + lx, flags ^ io_info::FLG_ZERO));
  507. if (flags & io_info::FLG_FIXED)
  508. {
  509. if (ap > rp)
  510. ap = rp;
  511. for (dp = ap; dp <= rp; ++dp)
  512. {
  513. char *s = uitostr1 (buf + 9, *dp, 10);
  514. if (dp != ap)
  515. while (s > buf)
  516. *--s = '0';
  517. else if (s == buf + 9)
  518. *--s = '0';
  519. rv += KP_TRY (strm->write (interp, s, buf + 9 - s));
  520. }
  521. if (prec || (flags & io_info::FLG_ALT))
  522. { rv += KP_TRY (strm->putb (interp, '.')); } // XXX: Localization.
  523. for (; dp < zp && prec > 0; ++dp, prec -= 9)
  524. {
  525. char *s = uitostr1 (buf + 9, *dp, 10);
  526. while (s > buf)
  527. *--s = '0';
  528. rv += KP_TRY (strm->write (interp, s, min (9, prec)));
  529. }
  530. rv += KP_TRY (pad_writef (interp, strm, '0', prec + 9, 9, 0));
  531. }
  532. else
  533. {
  534. if (zp <= ap)
  535. zp = ap + 1;
  536. for (dp = ap; dp < zp && prec >= 0; ++dp)
  537. {
  538. char *s = uitostr1 (buf + 9, *dp, 10);
  539. if (s == buf + 9)
  540. *--s = '0';
  541. if (dp != ap)
  542. while (s > buf)
  543. *--s = '0';
  544. else
  545. {
  546. rv += KP_TRY (strm->putb (interp, *s++));
  547. if (prec > 0 || (flags & io_info::FLG_ALT))
  548. { rv += KP_TRY (strm->putb (interp, '.')); }
  549. }
  550. rv += KP_TRY (strm->write (interp, s,
  551. min ((int)(buf + 9 - s), prec)));
  552. prec -= (int)(buf + 9 - s);
  553. }
  554. rv += KP_TRY (pad_writef (interp, strm, '0', prec + 18, 18, 0));
  555. rv += KP_TRY (strm->write (interp, estr, ebuf - estr));
  556. }
  557. rv += KP_TRY (pad_writef (interp, strm, ' ', width,
  558. px + lx, flags ^ io_info::FLG_LJUST));
  559. return (rv);
  560. }
  561. result<int64_t> write_f (interpreter *interp, stream *strm,
  562. object obj, io_info& info)
  563. {
  564. int sign, cls;
  565. double v = get_dbl (obj, sign, cls);
  566. if (cls == FP_INFINITE)
  567. {
  568. char buf[] = { sign ? '-' : '+', 'I', 'N', 'F' };
  569. return (strm->write (interp, buf, 4));
  570. }
  571. else if (cls != FP_NORMAL)
  572. return (strm->write (interp, "NaN", 3));
  573. return (write_flt (interp, strm, v, info.width, info.prec,
  574. info.flags, info.radix));
  575. }
  576. result<int64_t> pack_f (interpreter *interp, stream *strm,
  577. object obj, pack_info&)
  578. {
  579. int sign, cls;
  580. double v = get_dbl (obj, sign, cls);
  581. return (strm->write (interp, &v));
  582. }
  583. result<object> unpack_f (interpreter *interp, stream *strm,
  584. pack_info& info, bool)
  585. {
  586. double v;
  587. bool rv = KP_TRY (strm->sread (interp, &v));
  588. if (rv)
  589. kp_return (fltobj::make (interp, v));
  590. return (info.error ("failed to read floating point value"));
  591. }
  592. // Big float implementation.
  593. static_assert ((alignof (bigfloat) % alignof (limb_t)) == 0,
  594. "invalid alignment for big floats");
  595. bigfloat* bigfloat::alloc_raw (int len)
  596. {
  597. bigfloat *retp = (bigfloat *)alloch (sizeof (*retp) + sizeof (limb_t) * len,
  598. typecode::BIGFLOAT, TYPE_SHIFT + 1);
  599. retp->len = len;
  600. retp->expo = 0;
  601. retp->data = (limb_t *)&retp[1];
  602. retp->vo_full = FLAGS_CONST;
  603. return (retp);
  604. }
  605. object alloc_bigfloat (interpreter *interp, int len)
  606. {
  607. auto retp = bigfloat::alloc_raw (len);
  608. interp->alval = retp->as_obj ();
  609. gc_register (interp, retp, sizeof (*retp) + len * sizeof (limb_t));
  610. return (interp->alval);
  611. }
  612. static bigfloat*
  613. get_bigfloat (object obj, int& sign)
  614. {
  615. #ifdef KP_ARCH_WIDE
  616. sign = (obj & SIGN_BIT) / SIGN_BIT;
  617. #else
  618. sign = as_bigfloat(obj)->len < 0;
  619. #endif
  620. return (as_bigfloat (obj));
  621. }
  622. static_assert (sizeof (bigfloat) >= sizeof (fltobj),
  623. "big floats must be larger or equal in size to floats");
  624. static object
  625. ret_F (interpreter *interp, bigfloat *src, int sign)
  626. {
  627. if (src->len == 0)
  628. {
  629. xfree (src);
  630. return (FLT_ZERO);
  631. }
  632. int b2exp = (src->expo - src->len) * LIMB_BITS;
  633. if (b2exp >= DBL_MIN_EXP && b2exp <= DBL_MAX_EXP)
  634. { // May fit in a regular double.
  635. double dbl = uitodbl (src->data, src->len, src->expo);
  636. if (finf_p (dbl))
  637. goto do_bigfloat;
  638. /* Fits in a regular double - Transmute the type.
  639. * This wastes some memory, but is preferable to
  640. * allocating a new object. */
  641. fltobj tmp;
  642. tmp.gc_link = src->gc_link;
  643. tmp.vo_full = src->vo_full;
  644. tmp.vo_type = typecode::FLOAT;
  645. tmp.val = sign ? -dbl : dbl;
  646. memcpy (src, &tmp, sizeof (tmp));
  647. interp->retval = src->as_obj ();
  648. }
  649. else
  650. do_bigfloat:
  651. interp->retval = make_bigfloat (src, sign);
  652. gc_register (interp, src, sizeof (*src) + src->len * sizeof (limb_t));
  653. return (interp->retval);
  654. }
  655. static bigfloat*
  656. bfloat_add (interpreter *interp, const bigfloat *x, const bigfloat *y)
  657. {
  658. if (x->expo < y->expo)
  659. swap (x, y);
  660. int ediff = x->expo - y->expo, xl = F_ABS (x->len), yl = F_ABS (y->len);
  661. int prec = max (xl, yl);
  662. if (ediff >= prec)
  663. // Y completely cancelled.
  664. return ((bigfloat *)x);
  665. auto ret = bigfloat::alloc_raw (prec + 1);
  666. ret->expo = x->expo;
  667. int size;
  668. limb_t cy;
  669. if (!(xl > ediff))
  670. {
  671. size = yl + ediff - xl;
  672. memcpy (ret->data, y->data, yl * sizeof (limb_t));
  673. memset (ret->data + yl, 0, (ediff - xl) * sizeof (limb_t));
  674. memcpy (ret->data + size, x->data, xl * sizeof (limb_t));
  675. cy = 0, ret->len = size + xl;
  676. }
  677. else if (yl + ediff <= xl)
  678. {
  679. size = xl - ediff - yl;
  680. memcpy (ret->data, x->data, size * sizeof (limb_t));
  681. cy = uiadd (ret->data + size, x->data + size, xl - size, y->data, yl);
  682. ret->len = yl;
  683. }
  684. else
  685. {
  686. size = yl + ediff - xl;
  687. memcpy (ret->data, y->data, size * sizeof (limb_t));
  688. cy = uiadd (ret->data + size, x->data, xl, y->data + size, xl - ediff);
  689. ret->len = yl + ediff;
  690. }
  691. ret->data[ret->len] = cy;
  692. ret->len += cy, ret->expo += cy;
  693. return (ret);
  694. }
  695. static bigfloat*
  696. bfloat_sub (interpreter *interp, const bigfloat *x,
  697. const bigfloat *y, int *negp)
  698. {
  699. int neg = 0;
  700. if (x->expo < y->expo)
  701. {
  702. swap (x, y);
  703. neg = 1;
  704. }
  705. int expo = x->expo, ediff = x->expo - y->expo;
  706. int xl = F_ABS (x->len), yl = F_ABS (y->len), len = max (xl, yl);
  707. limb_t *xp = x->data, *yp = y->data;
  708. auto ret = bigfloat::alloc_raw (len);
  709. limb_t cy;
  710. if (ediff <= 1)
  711. { /* The numbers are very close. Scan them and
  712. * ignore the limbs that compare equal. */
  713. if (ediff == 0)
  714. {
  715. if (xp[xl - 1] == yp[yl - 1])
  716. do
  717. {
  718. --yl, --expo;
  719. if (--xl == 0)
  720. {
  721. neg ^= 1;
  722. cancel:
  723. for (; yl && !yp[yl - 1]; --yl, --expo) ;
  724. memcpy (ret->data, y->data, yl * sizeof (limb_t));
  725. ret->len = yl;
  726. goto done;
  727. }
  728. if (yl == 0)
  729. {
  730. yp = xp;
  731. yl = xl;
  732. goto cancel;
  733. }
  734. }
  735. while (xp[xl - 1] == yp[yl - 1]);
  736. if (xp[xl - 1] < yp[yl - 1])
  737. {
  738. swap (xp, yp);
  739. swap (xl, yl);
  740. neg ^= 1;
  741. }
  742. if (xp[xl - 1] != yp[yl - 1] + 1)
  743. goto main;
  744. --xl, --yl, --expo;
  745. }
  746. else // (ediff == 1)
  747. {
  748. if (xp[xl - 1] != 1 || yp[yl - 1] != ~(limb_t)0 ||
  749. (xl >= 2 && xp[xl - 2] != 0))
  750. goto main;
  751. --xl, --expo;
  752. }
  753. for (; yl && xl && !xp[xl - 1] &&
  754. yp[yl - 1] == ~(limb_t)0; --xl, --yl, --expo) ;
  755. if (xl == 0)
  756. for (; yl && yp[yl - 1] == ~(limb_t)0; --yl, --expo) ;
  757. if (yl == 0)
  758. {
  759. memcpy (ret->data, xp, (ret->len = xl) * sizeof (limb_t));
  760. cy = 0;
  761. }
  762. else if (xl == 0)
  763. {
  764. for (int i = 0; i < yl; ++i)
  765. ret->data[i] = ~yp[i];
  766. cy = 1 - uiadd1 (ret->data, ret->data, yl, 1);
  767. ret->len = yl;
  768. }
  769. else if (xl >= yl)
  770. {
  771. int size = xl - yl;
  772. memcpy (ret->data, xp, size * sizeof (limb_t));
  773. cy = uisubn (ret->data + size, xp + size, yp, yl);
  774. ret->len = xl;
  775. }
  776. else
  777. {
  778. int size = yl - xl;
  779. for (int i = 0; i < size; ++i)
  780. ret->data[i] = ~yp[i];
  781. cy = uisubn (ret->data + size, xp, yp + size, xl);
  782. cy += uisub1 (ret->data + size, ret->data + size, xl, 1);
  783. cy -= uiadd1 (ret->data, ret->data, yl, 1);
  784. ret->len = yl;
  785. }
  786. if (cy == 0)
  787. {
  788. ret->data[ret->len++] = 1;
  789. ++expo;
  790. goto normalize;
  791. }
  792. }
  793. main:
  794. if (ediff >= len)
  795. {
  796. memcpy (ret->data, xp, xl);
  797. ret->len = xl;
  798. expo = ((const bigfloat *)
  799. ((char *)xp - sizeof (bigfloat)))->expo;
  800. goto done;
  801. }
  802. // Search for the least significant non-zero limbs in X and Y.
  803. while (true)
  804. {
  805. if (yl == 0)
  806. {
  807. memcpy (ret->data, xp, xl * sizeof (limb_t));
  808. ret->len = xl;
  809. goto done;
  810. }
  811. if (*yp != 0)
  812. break;
  813. ++yp, --yl;
  814. }
  815. while (true)
  816. {
  817. if (xl == 0)
  818. {
  819. memcpy (ret->data, yp, yl * sizeof (limb_t));
  820. ret->len = yl;
  821. neg ^= 1;
  822. goto done;
  823. }
  824. if (*xp != 0)
  825. break;
  826. ++xp, --xl;
  827. }
  828. if (xl > ediff)
  829. { // Partial overlapping.
  830. if (!ediff)
  831. { /* Compare leading limbs to determine whether to
  832. * do X - Y or Y - X. */
  833. if (xl >= yl)
  834. {
  835. int size = xl - yl;
  836. memcpy (ret->data, xp, size * sizeof (limb_t));
  837. uisubn (ret->data + size, xp + size, yp, yl);
  838. ret->len = xl;
  839. }
  840. else
  841. {
  842. int size = yl - xl;
  843. *ret->data = -*yp;
  844. for (int i = 1; i < size; ++i)
  845. ret->data[i] = ~yp[i];
  846. uisubn (ret->data + size, xp, yp + size, xl);
  847. uisub1 (ret->data + size, ret->data + size, xl, 1);
  848. ret->len = yl;
  849. }
  850. }
  851. else if (yl + ediff <= xl)
  852. {
  853. int size = xl - ediff - yl;
  854. memcpy (ret->data, xp, size * sizeof (limb_t));
  855. uisub (ret->data + size, xp + size, xl - size, yp, yl);
  856. ret->len = xl;
  857. }
  858. else
  859. {
  860. int size = yl + ediff - xl;
  861. *ret->data = -*yp;
  862. for (int i = 1; i < size; ++i)
  863. ret->data[i] = ~yp[i];
  864. uisub (ret->data + size, xp, xl, yp + size, xl - ediff);
  865. uisub1 (ret->data + size, ret->data + size, xl, 1);
  866. ret->len = yl + ediff;
  867. }
  868. }
  869. else
  870. { // No overlapping - Trivial copy.
  871. int size = yl + ediff - xl;
  872. *ret->data = -*yp;
  873. for (int i = 1; i < yl; ++i)
  874. ret->data[i] = ~yp[i];
  875. memset (&ret->data[yl], 0xff,
  876. (size - yl) * sizeof (limb_t));
  877. uisub1 (ret->data + size, xp, xl, 1);
  878. ret->len = size + xl;
  879. }
  880. normalize:
  881. for (; ret->len && !ret->data[ret->len - 1]; --ret->len, --expo) ;
  882. done:
  883. ret->expo = !ret->len ? 0 : expo;
  884. if (negp != nullptr) *negp = neg;
  885. return (ret);
  886. }
  887. static bigfloat*
  888. bfloat_mul (interpreter *interp, const bigfloat *x, const bigfloat *y)
  889. {
  890. int xl = F_ABS (x->len), yl = F_ABS (y->len), tsize = xl + yl;
  891. auto ret = bigfloat::alloc_raw (tsize);
  892. limb_t cy = x == y ? uisqr (interp, ret->data, x->data, xl) :
  893. uimul (interp, ret->data, x->data, xl, y->data, yl);
  894. cy = !cy;
  895. ret->len -= cy;
  896. ret->expo = x->expo + y->expo - cy;
  897. return (ret);
  898. }
  899. static bigfloat*
  900. bfloat_div (interpreter *interp, const bigfloat *x, const bigfloat *y)
  901. {
  902. int xl = F_ABS (x->len), yl = F_ABS (y->len), rsize = xl - yl;
  903. limb_t *tmp, *xp = x->data;
  904. tmp_allocator ta { interp };
  905. if (rsize <= 0)
  906. { // Copy and extend X.
  907. uint32_t padding = rsize == 0 ? 1 : (rsize = -rsize) * 2;
  908. xp = (limb_t *)ta.alloc ((xl * 2 + padding) * sizeof (*xp));
  909. memset (xp, 0, padding * sizeof (limb_t));
  910. memcpy (xp + padding, x->data, xl * sizeof (limb_t));
  911. xl += padding, tmp = xp + xl;
  912. }
  913. else
  914. tmp = (limb_t *)ta.alloc ((xl + 1) * sizeof (*tmp));
  915. rsize = uidiv (interp, xp, xl, y->data, yl, tmp, false);
  916. auto ret = bigfloat::alloc_raw (rsize);
  917. memcpy (ret->data, tmp + yl, ret->len * sizeof (limb_t));
  918. ret->expo = x->expo - y->expo + 1 -
  919. (xl - yl + 1 != ret->len); // i.e: msd equals zero.
  920. return (ret);
  921. }
  922. object add_FF (interpreter *interp, object x, object y)
  923. {
  924. int s1, s2;
  925. auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  926. bigfloat *ret;
  927. if (!(s1 ^ s2))
  928. {
  929. ret = bfloat_add (interp, v1, v2);
  930. if (ret == v1)
  931. kp_return (x);
  932. else if (ret == v2)
  933. kp_return (y);
  934. }
  935. else
  936. ret = s1 ? bfloat_sub (interp, v2, v1, &s1) :
  937. bfloat_sub (interp, v1, v2, &s1);
  938. return (ret_F (interp, ret, s1));
  939. }
  940. object add_fF (interpreter *interp, object x, object y)
  941. {
  942. int s1, c1, s2;
  943. double v1 = get_dbl (x, s1, c1);
  944. const auto v2 = get_bigfloat (y, s2);
  945. if (c1 != FP_NORMAL)
  946. kp_return (x); // NaN or +/- Inf.
  947. fake_bigfloat tmp (v1);
  948. bigfloat *ret;
  949. if (!(s1 ^ s2))
  950. {
  951. ret = bfloat_add (interp, &tmp, v2);
  952. if (ret == (bigfloat *)&tmp)
  953. kp_return (x);
  954. else if (ret == v2)
  955. kp_return (y);
  956. }
  957. else
  958. ret = s1 ? bfloat_sub (interp, v2, &tmp, &s1) :
  959. bfloat_sub (interp, &tmp, v2, &s1);
  960. return (ret_F (interp, ret, s1));
  961. }
  962. object sub_FF (interpreter *interp, object x, object y)
  963. {
  964. #ifdef KP_ARCH_WIDE
  965. return (add_FF (interp, x, y ^ SIGN_BIT));
  966. #else
  967. local_varobj<bigfloat> tmp;
  968. bigfloat *yp = as_bigfloat (y);
  969. tmp.local_init (yp->data, -yp->len, yp->expo);
  970. return (add_FF (interp, x, tmp.as_obj ()));
  971. #endif
  972. }
  973. object sub_fF (interpreter *interp, object x, object y)
  974. {
  975. #ifdef KP_ARCH_WIDE
  976. return (add_fF (interp, x, y ^ SIGN_BIT));
  977. #else
  978. local_varobj<bigfloat> tmp;
  979. bigfloat *yp = as_bigfloat (y);
  980. tmp.local_init (yp->data, -yp->len, yp->expo);
  981. return (add_fF (interp, x, tmp.as_obj ()));
  982. #endif
  983. }
  984. object neg_F (interpreter *interp, object obj)
  985. {
  986. #ifdef KP_ARCH_WIDE
  987. kp_return (obj ^ SIGN_BIT);
  988. #else
  989. const bigfloat *srcp = as_bigfloat (obj);
  990. int sl = F_ABS (srcp->len);
  991. bigfloat *retp = as_bigfloat (alloc_bigfloat (interp, sl));
  992. memcpy (retp->data, srcp->data, sl * sizeof (limb_t));
  993. retp->expo = srcp->expo;
  994. retp->len = -sl;
  995. kp_return (retp->as_obj ());
  996. #endif
  997. }
  998. object mul_FF (interpreter *interp, object x, object y)
  999. {
  1000. int s1, s2;
  1001. const auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  1002. return (ret_F (interp, bfloat_mul (interp, v1, v2), s1 ^ s2));
  1003. }
  1004. object mul_fF (interpreter *interp, object x, object y)
  1005. {
  1006. int s1, c1, s2;
  1007. double v1 = get_dbl (x, s1, c1);
  1008. if (c1 != FP_NORMAL)
  1009. kp_return (x); // NaN or +/- Inf.
  1010. fake_bigfloat tmp (v1);
  1011. const auto v2 = get_bigfloat (y, s2);
  1012. return (ret_F (interp, bfloat_mul (interp, &tmp, v2), s1 ^ s2));
  1013. }
  1014. object div_FF (interpreter *interp, object x, object y)
  1015. {
  1016. int s1, s2;
  1017. const auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  1018. return (ret_F (interp, bfloat_div (interp, v1, v2), s1 ^ s2));
  1019. }
  1020. #define DIV_BODY(left, right, op, alt, zero_x) \
  1021. int s1, s2, cl; \
  1022. double v1 = get_dbl (left, s1, cl); \
  1023. const auto v2 = get_bigfloat (right, s2); \
  1024. \
  1025. if (cl != FP_NORMAL) \
  1026. kp_return (alt); \
  1027. else if (v1 == 0) \
  1028. kp_return (zero_x); \
  1029. \
  1030. fake_bigfloat tmp (v1); \
  1031. return (ret_F (interp, op, s1 ^ s2))
  1032. object div_fF (interpreter *interp, object x, object y)
  1033. {
  1034. DIV_BODY (x, y, bfloat_div (interp, &tmp, v2), x, FLT_ZERO);
  1035. }
  1036. object div_Ff (interpreter *interp, object x, object y)
  1037. {
  1038. DIV_BODY (y, x, bfloat_div (interp, v2, &tmp),
  1039. cl == FP_INFINITE ? FLT_ZERO : x, FLT_PINF);
  1040. }
  1041. #undef DIV_BODY
  1042. static bigfloat*
  1043. bfloat_mod (interpreter *interp, const bigfloat *x, const bigfloat *y)
  1044. {
  1045. bigfloat *p, *q, *r;
  1046. p = bfloat_div (interp, x, y); // p := x / y
  1047. // Truncate P in place.
  1048. if (p->expo <= 0)
  1049. p->expo = p->len = 0;
  1050. else
  1051. {
  1052. int len = min (p->len, p->expo);
  1053. limb_t *lp = p->data + p->len - len;
  1054. if (lp != p->data)
  1055. memmove (p->data, lp, (p->len - len) * sizeof (*lp));
  1056. p->len = len;
  1057. }
  1058. q = bfloat_mul (interp, p, y); // q := trunc (p) * y
  1059. r = bfloat_sub (interp, x, q, nullptr); // r := x - q
  1060. xfree (p);
  1061. xfree (q);
  1062. return (r);
  1063. }
  1064. object mod_FF (interpreter *interp, object x, object y)
  1065. {
  1066. int s1, s2;
  1067. const auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  1068. return (ret_F (interp, bfloat_mod (interp, v1, v2), s1));
  1069. }
  1070. object mod_fF (interpreter *interp, object x, object y)
  1071. {
  1072. int s1, c1, s2;
  1073. double v1 = get_dbl (x, s1, c1);
  1074. if (c1 != FP_NORMAL)
  1075. kp_return (FLT_QNAN);
  1076. fake_bigfloat tmp (v1);
  1077. const auto v2 = get_bigfloat (y, s2);
  1078. return (ret_F (interp, bfloat_mod (interp, &tmp, v2), s1));
  1079. }
  1080. object mod_Ff (interpreter *interp, object x, object y)
  1081. {
  1082. int s1, c2, s2;
  1083. double v2 = get_dbl (y, s2, c2);
  1084. if (c2 != FP_NORMAL)
  1085. kp_return (FLT_QNAN);
  1086. const auto v1 = get_bigfloat (x, s1);
  1087. fake_bigfloat tmp (v2);
  1088. return (ret_F (interp, bfloat_mod (interp, v1, &tmp), s1));
  1089. }
  1090. static int
  1091. bfloat_cmp (const bigfloat *x, int s1, const bigfloat *y, int s2)
  1092. {
  1093. int ret = 0;
  1094. if (s1 != s2)
  1095. ret = 1;
  1096. else if (!(ret = x->expo - y->expo))
  1097. {
  1098. limb_t *xp = x->data, *yp = y->data;
  1099. int xl, yl;
  1100. for (; *xp == 0; ++xp) ;
  1101. for (; *yp == 0; ++yp) ;
  1102. xl = (int)((x->data + x->len) - xp);
  1103. yl = (int)((y->data + y->len) - yp);
  1104. if (xl > yl)
  1105. ret = uicmpn (xp + xl - yl, yp, yl);
  1106. else if (yl > xl)
  1107. ret = -uicmpn (xp, yp + yl - xl, xl);
  1108. else
  1109. ret = uicmpn (xp, yp, yl);
  1110. }
  1111. return (s1 ? -ret : ret);
  1112. }
  1113. int cmp_FF (interpreter *interp, object x, object y)
  1114. {
  1115. int s1, s2;
  1116. const auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  1117. return (bfloat_cmp (v1, s1, v2, s2));
  1118. }
  1119. int cmp_fF (interpreter *interp, object x, object y)
  1120. {
  1121. int s1, c1, s2;
  1122. double v1 = get_dbl (x, s1, c1);
  1123. if (c1 != FP_NORMAL)
  1124. return (s1); // i.e: +/-1 for Inf, +1 for NaN.
  1125. const bigfloat *v2 = get_bigfloat (y, s2);
  1126. fake_bigfloat tmp (v1);
  1127. return (bfloat_cmp (&tmp, s1, v2, s2));
  1128. }
  1129. bool eq_FF (interpreter *interp, object x, object y)
  1130. {
  1131. int s1, s2;
  1132. const auto v1 = get_bigfloat (x, s1), v2 = get_bigfloat (y, s2);
  1133. // Exponents and signs must match.
  1134. if (s1 != s2 || v1->expo != v2->expo)
  1135. return (false);
  1136. else if (v1->data == v2->data)
  1137. return (true);
  1138. int minlen, maxlen, i, len, diff;
  1139. int xl = F_ABS (v1->len), yl = F_ABS (v2->len);
  1140. const limb_t *xp = v1->data + xl, *yp = v2->data + yl;
  1141. // Test for most significant limb position.
  1142. if ((*(yp - 1) >> (LIMB_BITS - uiclz (*(xp - 1) - 1))) != 1)
  1143. return (0);
  1144. if (xl < yl)
  1145. minlen = xl, maxlen = yl;
  1146. else
  1147. minlen = yl, maxlen = xl;
  1148. // Compare the most significant limbs.
  1149. xp += minlen, yp += minlen;
  1150. for (i = minlen - 1; i > 0; --i)
  1151. if (xp[i] != yp[i])
  1152. return (0);
  1153. if (0 != (len = maxlen - minlen))
  1154. { /* Either X or Y has been completely examined.
  1155. * Test that the other is made of nil limbs. */
  1156. if (*xp != *yp)
  1157. return (0);
  1158. const limb_t *p = (xl > yl ? xp : yp) - len;
  1159. for (i = len -1 ; i > 0; --i)
  1160. if (p[i] != 0)
  1161. return (0);
  1162. diff = *p;
  1163. }
  1164. else
  1165. diff = *xp ^ *yp;
  1166. return (diff == 0);
  1167. }
  1168. static object
  1169. bfloat_ceilfloor (interpreter *interp, object obj, int dir)
  1170. {
  1171. int osign;
  1172. const auto x = get_bigfloat (obj, osign);
  1173. int sign = osign ? -1 : 1;
  1174. if (x->expo <= 0)
  1175. kp_return ((sign ^ dir) < 0 ? FLT_ZERO : fltobj::make (interp, dir));
  1176. int len = min (F_ABS (x->len), x->expo);
  1177. auto ret = bigfloat::alloc_raw (len);
  1178. limb_t *xp = x->data + x->len - len;
  1179. ret->expo = x->expo;
  1180. if ((sign ^ dir) >= 0)
  1181. {
  1182. const limb_t *tp;
  1183. for (tp = x->data; tp != xp; ++tp)
  1184. if (*tp != 0)
  1185. {
  1186. if (uiadd1 (ret->data, xp, len, 1))
  1187. {
  1188. ret->len = *ret->data = 1;
  1189. ++ret->expo;
  1190. }
  1191. return (ret_F (interp, ret, osign));
  1192. }
  1193. }
  1194. memcpy (ret->data, xp, len * sizeof (limb_t));
  1195. return (ret_F (interp, ret, osign));
  1196. }
  1197. object floor_F (interpreter *interp, object obj)
  1198. {
  1199. return (bfloat_ceilfloor (interp, obj, -1));
  1200. }
  1201. object ceil_F (interpreter *interp, object obj)
  1202. {
  1203. return (bfloat_ceilfloor (interp, obj, +1));
  1204. }
  1205. object trunc_F (interpreter *interp, object obj)
  1206. {
  1207. int sign;
  1208. const auto x = get_bigfloat (obj, sign);
  1209. if (x->expo <= 0)
  1210. kp_return (FLT_ZERO);
  1211. int xl = F_ABS (x->len), len = min (xl, x->expo);
  1212. auto ret = bigfloat::alloc_raw (len);
  1213. memcpy (ret->data, x->data + xl - len, len * sizeof (limb_t));
  1214. ret->expo = x->expo;
  1215. return (ret_F (interp, ret, sign));
  1216. }
  1217. uint32_t hash_F (interpreter *interp, object obj)
  1218. {
  1219. int sign;
  1220. const auto lp = get_bigfloat (obj, sign);
  1221. int fl = F_ABS (lp->len);
  1222. if (fl == lp->expo)
  1223. {
  1224. local_varobj<bigint> bi;
  1225. bi.local_init (lp->data, lp->len);
  1226. #ifdef KP_ARCH_WIDE
  1227. return (hash_I (interp, bi.as_obj () | (obj & SIGN_BIT)));
  1228. #else
  1229. return (hash_I (interp, bi.as_obj ()));
  1230. #endif
  1231. }
  1232. uint32_t ret = mix_hash (2 * fl, lp->expo);
  1233. for (int i = 0; i < fl; ++i)
  1234. ret = mix_hash (ret, lp->data[i]);
  1235. return (sign ? ~ret :ret);
  1236. }
  1237. result<int64_t> write_F (interpreter *interp, stream *strm,
  1238. object obj, io_info& info)
  1239. {
  1240. const auto lp = as_bigfloat (obj);
  1241. int expo = lp->expo, xl = F_ABS (lp->len), ret = 0;
  1242. int size = uibsize (info.radix, lp->data[xl - 1], xl);
  1243. tmp_allocator ta { interp };
  1244. char *ptr = (char *)ta.alloc (size);
  1245. size = lftostr (interp, ptr, &expo, lp->data, xl, size, info.radix);
  1246. #ifdef KP_ARCH_WIDE
  1247. if (obj & SIGN_BIT)
  1248. #else
  1249. if (lp->len < 0)
  1250. #endif
  1251. { ret += KP_TRY (strm->putb (interp, '-')); }
  1252. // Write the decimal separator, followed by the mantissa.
  1253. ret += KP_TRY (strm->write (interp, "0.", 2));
  1254. ret += KP_TRY (strm->write (interp, ptr, size));
  1255. // Write the exponent.
  1256. size = sprintf (ptr, "%c%d", info.radix <= 10 ? 'e' : '@', expo);
  1257. ret += KP_TRY (strm->write (interp, ptr, size));
  1258. return (ret);
  1259. }
  1260. result<int64_t> pack_F (interpreter *interp, stream *strm,
  1261. object obj, pack_info&)
  1262. {
  1263. const bigfloat *lp = as_bigfloat (obj);
  1264. int expo = lp->expo, xl = lp->len;
  1265. int64_t ret = 0;
  1266. #ifdef KP_ARCH_WIDE
  1267. if (obj & SIGN_BIT)
  1268. xl = -xl;
  1269. #endif
  1270. ret += KP_TRY (strm->write (interp, &expo));
  1271. ret += KP_TRY (strm->write (interp, &xl));
  1272. ret += KP_TRY (strm->write (interp, lp->data,
  1273. F_ABS (lp->len) * sizeof (*lp->data)));
  1274. return (ret);
  1275. }
  1276. result<object> unpack_F (interpreter *interp, stream *strm,
  1277. pack_info& info, bool save)
  1278. {
  1279. int vals[2];
  1280. {
  1281. auto tmp = KP_TRY (strm->read (interp, vals, sizeof (vals)));
  1282. if ((size_t)tmp != sizeof (vals))
  1283. return (info.error ("failed to read floating point value"));
  1284. }
  1285. int len = abs (vals[1]);
  1286. bigfloat *lp = as_bigfloat (alloc_bigfloat (interp, len));
  1287. auto tmp = KP_TRY (strm->read (interp, lp->data, len * sizeof (*lp->data)));
  1288. if ((size_t)tmp != (size_t)(len * sizeof (*lp->data)))
  1289. return (info.error ("invalid number of limbs read"));
  1290. else if (save)
  1291. KP_VTRY (info.add_mapping (interp, *info.offset, lp->as_obj ()));
  1292. lp->expo = vals[0];
  1293. kp_return (make_bigfloat (lp, vals[1] < 0));
  1294. }
  1295. // Mixed operations.
  1296. static inline object
  1297. int2flt (object i, local_varobj<fltobj>& out)
  1298. {
  1299. out.vo_full = 0;
  1300. out.vo_type = typecode::FLOAT;
  1301. out.val = as_int (i);
  1302. return (out.as_obj ());
  1303. }
  1304. static inline object
  1305. bigint2flt (object i, local_varobj<bigfloat>& out)
  1306. {
  1307. const auto lp = as_bigint (i);
  1308. out.local_init (lp->data, lp->len, F_ABS (lp->len));
  1309. #ifdef KP_ARCH_WIDE
  1310. return (out.as_obj () | (i & SIGN_BIT));
  1311. #else
  1312. return (out.as_obj ());
  1313. #endif
  1314. }
  1315. static object
  1316. downgrade_float (interpreter *interp, object obj)
  1317. {
  1318. if (float_p (obj))
  1319. {
  1320. double i, val = as_float (obj);
  1321. if (modf (val, &i) == 0)
  1322. {
  1323. int64_t uv = (int64_t)val;
  1324. return (intobj (interp, uv));
  1325. }
  1326. }
  1327. else
  1328. {
  1329. const auto fp = as_bigfloat (obj);
  1330. int fl = F_ABS (fp->len);
  1331. if (fl == fp->expo)
  1332. {
  1333. auto lp = as_bigint (alloc_bigint (interp, fl));
  1334. memcpy (lp->data, fp->data, fl * sizeof (*fp->data));
  1335. lp->len = fp->len;
  1336. #ifdef KP_ARCH_WIDE
  1337. interp->alval |= obj & SIGN_BIT;
  1338. #endif
  1339. return (interp->alval);
  1340. }
  1341. }
  1342. return (obj);
  1343. }
  1344. #define MIXED_FN_NOCHECK() ((void)0)
  1345. #define MIXED_FN_CHECK() \
  1346. if (ret.error_p ()) \
  1347. return (exception ()); \
  1348. else (void)0
  1349. #define MIXED_FN(name, ret_ty, check) \
  1350. ret_ty name##_if (interpreter *interp, object x, object y) \
  1351. { \
  1352. local_varobj<fltobj> tmp; \
  1353. ret_ty ret = name##_ff (interp, int2flt (x, tmp), y); \
  1354. check (); \
  1355. kp_return (downgrade_float (interp, deref (ret))); \
  1356. } \
  1357. \
  1358. object name##_iF (interpreter *interp, object x, object y) \
  1359. { \
  1360. local_varobj<fltobj> tmp; \
  1361. kp_return (downgrade_float (interp, \
  1362. name##_fF (interp, int2flt (x, tmp), y))); \
  1363. }
  1364. MIXED_FN (add, object, MIXED_FN_NOCHECK)
  1365. MIXED_FN (sub, object, MIXED_FN_NOCHECK)
  1366. MIXED_FN (mul, object, MIXED_FN_NOCHECK)
  1367. #define MIXED_FN2(name) \
  1368. MIXED_FN (name, result<object>, MIXED_FN_CHECK) \
  1369. \
  1370. result<object> name##_fi (interpreter *interp, object x, object y) \
  1371. { \
  1372. local_varobj<fltobj> tmp; \
  1373. object ret = KP_TRY (name##_ff (interp, x, int2flt (y, tmp))); \
  1374. kp_return (downgrade_float (interp, ret)); \
  1375. } \
  1376. \
  1377. result<object> name##_Fi (interpreter *interp, object x, object y) \
  1378. { \
  1379. local_varobj<fltobj> tmp; \
  1380. object ret = KP_TRY (name##_Ff (interp, x, int2flt (y, tmp))); \
  1381. kp_return (downgrade_float (interp, ret)); \
  1382. }
  1383. MIXED_FN2 (div)
  1384. MIXED_FN2 (mod)
  1385. #undef MIXED_FN
  1386. #undef MIXED_FN2
  1387. #define MIXED_FN(name, ret_ty, check) \
  1388. ret_ty name##_If (interpreter *interp, object x, object y) \
  1389. { \
  1390. int s2, c2; \
  1391. double v2 = get_dbl (y, s2, c2); \
  1392. if (c2 != FP_NORMAL) \
  1393. kp_return (y); \
  1394. \
  1395. check (v2); \
  1396. local_varobj<bigfloat> tmp; \
  1397. fake_bigfloat ry (v2); \
  1398. \
  1399. kp_return (downgrade_float (interp, \
  1400. name##_FF (interp, bigint2flt (x, tmp), \
  1401. ry.get_obj (s2)))); \
  1402. } \
  1403. \
  1404. object name##_IF (interpreter *interp, object x, object y) \
  1405. { \
  1406. local_varobj<bigfloat> tmp; \
  1407. kp_return (downgrade_float (interp, \
  1408. name##_FF (interp, bigint2flt (x, tmp), y))); \
  1409. } \
  1410. #undef MIXED_FN_NOCHECK
  1411. #define MIXED_FN_NOCHECK(x) ((void)0)
  1412. MIXED_FN (add, object, MIXED_FN_NOCHECK)
  1413. MIXED_FN (sub, object, MIXED_FN_NOCHECK)
  1414. MIXED_FN (mul, object, MIXED_FN_NOCHECK)
  1415. #define MIXED_FN2(name) \
  1416. MIXED_FN (name, result<object>, MIXED_FN_CHECK) \
  1417. \
  1418. object name##_fI (interpreter *interp, object x, object y) \
  1419. { \
  1420. int s1, c1; \
  1421. double v1 = get_dbl (x, s1, c1); \
  1422. if (c1 != FP_NORMAL) \
  1423. kp_return (x); \
  1424. \
  1425. local_varobj<bigfloat> tmp; \
  1426. fake_bigfloat rx (v1); \
  1427. \
  1428. kp_return (downgrade_float (interp, \
  1429. name##_FF (interp, rx.get_obj (s1), \
  1430. bigint2flt (y, tmp)))); \
  1431. } \
  1432. \
  1433. object name##_FI (interpreter *interp, object x, object y) \
  1434. { \
  1435. local_varobj<bigfloat> tmp; \
  1436. kp_return (downgrade_float (interp, \
  1437. name##_FF (interp, x, bigint2flt (y, tmp)))); \
  1438. }
  1439. #undef MIXED_FN_CHECK
  1440. #define MIXED_FN_CHECK(x) \
  1441. if ((x) == 0) \
  1442. return (interp->raise ("arith-error", "division by zero")); \
  1443. else (void)0
  1444. MIXED_FN2 (div)
  1445. MIXED_FN2 (mod)
  1446. // Division of integers that may produce floating point values.
  1447. result<object> div_ii (interpreter *interp, object x, object y)
  1448. {
  1449. int v1 = as_int (x), v2 = as_int (y);
  1450. if (v2 == 0)
  1451. return (interp->raise ("arith-error", "division by zero"));
  1452. kp_return (v1 % v2 == 0 ? fixint (v1 / v2) :
  1453. fltobj::make (interp, (double)v1 / v2));
  1454. }
  1455. object div_iI (interpreter *interp, object x, object y)
  1456. {
  1457. local_varobj<fltobj> flt;
  1458. local_varobj<bigfloat> bigf;
  1459. return (div_fF (interp, int2flt (x, flt), bigint2flt (y, bigf)));
  1460. }
  1461. result<object> div_Ii (interpreter *interp, object x, object y)
  1462. {
  1463. if (as_int (y) == 0)
  1464. return (interp->raise ("arith-error", "division by zero"));
  1465. local_varobj<fltobj> flt;
  1466. local_varobj<bigfloat> bigf;
  1467. return (downgrade_float (interp,
  1468. div_Ff (interp, bigint2flt (x, bigf),
  1469. int2flt (y, flt))));
  1470. }
  1471. object div_II (interpreter *interp, object x, object y)
  1472. {
  1473. local_varobj<bigfloat> lf1, lf2;
  1474. return (downgrade_float (interp,
  1475. div_FF (interp, bigint2flt (x, lf1),
  1476. bigint2flt (y, lf2))));
  1477. }
  1478. #undef MIXED_FN
  1479. #undef MIXED_FN2
  1480. int cmp_if (interpreter *interp, object x, object y)
  1481. {
  1482. local_varobj<fltobj> fv;
  1483. return (cmp_ff (interp, int2flt (x, fv), y));
  1484. }
  1485. int cmp_iF (interpreter *interp, object x, object y)
  1486. {
  1487. local_varobj<fltobj> fv;
  1488. return (cmp_fF (interp, int2flt (x, fv), y));
  1489. }
  1490. int cmp_If (interpreter *interp, object x, object y)
  1491. {
  1492. local_varobj<bigfloat> fv;
  1493. return (-cmp_fF (interp, y, bigint2flt (x, fv)));
  1494. }
  1495. int cmp_IF (interpreter *interp, object x, object y)
  1496. {
  1497. local_varobj<bigfloat> fv;
  1498. return (cmp_FF (interp, bigint2flt (x, fv), y));
  1499. }
  1500. bool eq_if (interpreter *, object x, object y)
  1501. {
  1502. return ((double)as_int (x) == as_float (y));
  1503. }
  1504. bool eq_If (interpreter *, object x, object y)
  1505. {
  1506. const auto lp = as_bigint (x);
  1507. int xl = F_ABS (lp->len);
  1508. if (xl > LNDBL_SIZE)
  1509. return (false);
  1510. double dbl = uitodbl (lp->data, xl, xl);
  1511. #ifdef KP_ARCH_WIDE
  1512. if (x & SIGN_BIT)
  1513. #else
  1514. if (lp->len < 0)
  1515. #endif
  1516. dbl = -dbl;
  1517. return (as_float (y) == dbl);
  1518. }
  1519. bool eq_IF (interpreter *, object x, object y)
  1520. {
  1521. const auto lp = as_bigint (x);
  1522. const auto fp = as_bigfloat (y);
  1523. #ifdef KP_ARCH_WIDE
  1524. if ((x & SIGN_BIT) != (y & SIGN_BIT))
  1525. #else
  1526. if ((lp->len ^ fp->len) < 0)
  1527. #endif
  1528. return (false);
  1529. return (F_ABS (fp->len) == fp->expo && fp->len == lp->len &&
  1530. memcmp (fp->data, lp->data, F_ABS (lp->len) * sizeof (limb_t)) == 0);
  1531. }
  1532. object lsh_fi (interpreter *interp, object x, object y)
  1533. {
  1534. int s1, c1, ival = as_int (y);
  1535. double d1 = get_dbl (x, s1, c1);
  1536. if (kp_unlikely (c1 != FP_NORMAL))
  1537. kp_return (x); // +/- Inf or NaN
  1538. double ret = ldexp (d1, ival);
  1539. if (kp_likely (!finf_p (ret)))
  1540. kp_return (fltobj::make (interp, ret));
  1541. fake_bigfloat tx (d1);
  1542. return (lsh_Fi (interp, tx.as_obj (), y));
  1543. }
  1544. object lsh_Fi (interpreter *interp, object x, object y)
  1545. {
  1546. int sign, ival = as_int (y);
  1547. if (ival < 0)
  1548. return (rsh_Fi (interp, x, -ival));
  1549. const auto flt = get_bigfloat (x, sign);
  1550. int len = F_ABS (flt->len);
  1551. bigfloat *ret;
  1552. if (ival % LIMB_BITS == 0)
  1553. {
  1554. ret = bigfloat::alloc_raw (len);
  1555. memcpy (ret->data, flt->data, len * sizeof (limb_t));
  1556. ret->expo = flt->expo + flt->expo / LIMB_BITS;
  1557. ret->len = len;
  1558. }
  1559. else
  1560. {
  1561. ret = bigfloat::alloc_raw (len + 1);
  1562. limb_t cy = uimul2exp (ret->data, flt->data,
  1563. len, ival % LIMB_BITS);
  1564. ret->data[len] = cy;
  1565. ret->len = len + (cy != 0);
  1566. ret->expo = flt->expo + ival / LIMB_BITS + (cy != 0);
  1567. }
  1568. return (ret_F (interp, ret, sign));
  1569. }
  1570. object rsh_fi (interpreter *interp, object x, object y)
  1571. {
  1572. int s1, c1, ival = as_int (y);
  1573. double d1 = get_dbl (x, s1, c1);
  1574. if (kp_unlikely (c1 != FP_NORMAL))
  1575. kp_return (x); // +/- Inf or NaN
  1576. double ret = ldexp (d1, -ival);
  1577. if (kp_likely (!finf_p (ret)))
  1578. kp_return (fltobj::make (interp, ret));
  1579. fake_bigfloat tx (d1);
  1580. return (rsh_Fi (interp, tx.as_obj (), y));
  1581. }
  1582. object rsh_Fi (interpreter *interp, object x, object y)
  1583. {
  1584. int sign, ival = as_int (y);
  1585. if (ival < 0)
  1586. return (rsh_Fi (interp, x, -ival));
  1587. const auto flt = get_bigfloat (x, sign);
  1588. int len = F_ABS (flt->len);
  1589. bigfloat *ret;
  1590. if (ival % LIMB_BITS == 0)
  1591. {
  1592. ret = bigfloat::alloc_raw (len);
  1593. memcpy (ret->data, flt->data, len * sizeof (limb_t));
  1594. ret->expo = flt->expo - flt->expo / LIMB_BITS;
  1595. ret->len = len;
  1596. }
  1597. else
  1598. {
  1599. ret = bigfloat::alloc_raw (len + 1);
  1600. limb_t cy = uidiv2exp (ret->data, flt->data,
  1601. len, LIMB_BITS - ival % LIMB_BITS);
  1602. ret->data[len] = cy;
  1603. ret->len = len + (cy != 0);
  1604. ret->expo = flt->expo - ival / LIMB_BITS + (cy != 0) - 1;
  1605. }
  1606. return (ret_F (interp, ret, sign));
  1607. }
  1608. // External definitions.
  1609. object FLT_PINF;
  1610. object FLT_NINF;
  1611. object FLT_QNAN;
  1612. object FLT_ZERO;
  1613. static int
  1614. do_init_float (interpreter *)
  1615. {
  1616. static fltobj SF_PINF;
  1617. static fltobj SF_QNAN;
  1618. static fltobj SF_ZERO;
  1619. #ifndef KP_ARCH_WIDE
  1620. static fltobj SF_NINF;
  1621. SF_NINF.vo_type = typecode::FLOAT;
  1622. #endif
  1623. SF_PINF.vo_type = SF_QNAN.vo_type = SF_ZERO.vo_type = typecode::FLOAT;
  1624. SF_PINF.val = std::numeric_limits<double>::infinity ();
  1625. SF_QNAN.val = std::numeric_limits<double>::quiet_NaN ();
  1626. SF_ZERO.val = 0.;
  1627. // Now export the global objects.
  1628. #ifdef KP_ARCH_WIDE
  1629. /* On 64-bit platforms, we use an additional bit to store the sign.
  1630. * This helps us to avoid allocating a full value when negating it. */
  1631. #define DEF_FLOAT(ptr) \
  1632. ptrtype (ensure_mask ((ptr), TYPE_SHIFT - 1), typecode::FLOAT)
  1633. FLT_PINF = DEF_FLOAT (&SF_PINF);
  1634. FLT_NINF = FLT_PINF | SIGN_BIT;
  1635. FLT_QNAN = DEF_FLOAT (&SF_QNAN);
  1636. FLT_ZERO = DEF_FLOAT (&SF_ZERO);
  1637. # undef DEF_FLOAT
  1638. #else
  1639. SF_NINF.val = -SF_PINF.val;
  1640. FLT_PINF = SF_PINF.as_obj ();
  1641. FLT_NINF = SF_NINF.as_obj ();
  1642. FLT_QNAN = SF_QNAN.as_obj ();
  1643. FLT_ZERO = SF_ZERO.as_obj ();
  1644. #endif
  1645. return (init_op::result_ok);
  1646. }
  1647. init_op init_float (do_init_float, "float");
  1648. KP_DECLS_END