12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298 |
- /* Copyright 1995-2016,2018-2022
- Free Software Foundation, Inc.
- Portions Copyright 1990-1993 by AT&T Bell Laboratories and Bellcore.
- See scm_divide.
- This file is part of Guile.
- Guile is free software: you can redistribute it and/or modify it
- under the terms of the GNU Lesser General Public License as published
- by the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Guile is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with Guile. If not, see
- <https://www.gnu.org/licenses/>. */
- /* General assumptions:
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * XXX What about infinities? They are equal to their own floor! -mhw
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <assert.h>
- #include <math.h>
- #include <stdarg.h>
- #include <string.h>
- #include <unicase.h>
- #include <unictype.h>
- #include <verify.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include "bdw-gc.h"
- #include "boolean.h"
- #include "deprecation.h"
- #include "dynwind.h"
- #include "eq.h"
- #include "feature.h"
- #include "finalizers.h"
- #include "goops.h"
- #include "gsubr.h"
- #include "integers.h"
- #include "modules.h"
- #include "pairs.h"
- #include "ports.h"
- #include "simpos.h"
- #include "smob.h"
- #include "strings.h"
- #include "values.h"
- #include "numbers.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /* FIXME: We assume that FLT_RADIX is 2 */
- verify (FLT_RADIX == 2);
- /* Make sure that scm_t_inum fits within a SCM value. */
- verify (sizeof (scm_t_inum) <= sizeof (scm_t_bits));
- /* Several functions below assume that fixnums fit within a long, and
- furthermore that there is some headroom to spare for other operations
- without overflowing. */
- verify (SCM_I_FIXNUM_BIT <= SCM_LONG_BIT - 2);
- /* Some functions that use GMP's mpn functions assume that a
- non-negative fixnum will always fit in a 'mp_limb_t'. */
- verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
- #define scm_from_inum(x) (scm_from_signed_integer (x))
- /* Test an inum to see if it can be converted to a double without loss
- of precision. Note that this will sometimes return 0 even when 1
- could have been returned, e.g. for large powers of 2. It is designed
- to be a fast check to optimize common cases. */
- #define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
- (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
- || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
- #if (! HAVE_DECL_MPZ_INITS) || SCM_ENABLE_MINI_GMP
- /* GMP < 5.0.0 and mini-gmp lack `mpz_inits' and `mpz_clears'. Provide
- them. */
- #define VARARG_MPZ_ITERATOR(func) \
- static void \
- func ## s (mpz_t x, ...) \
- { \
- va_list ap; \
- \
- va_start (ap, x); \
- while (x != NULL) \
- { \
- func (x); \
- x = va_arg (ap, mpz_ptr); \
- } \
- va_end (ap); \
- }
- VARARG_MPZ_ITERATOR (mpz_init)
- VARARG_MPZ_ITERATOR (mpz_clear)
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- static SCM flo0;
- static SCM exactly_one_half;
- static SCM flo_log10e;
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters necessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if !defined (HAVE_ASINH)
- static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
- #endif
- #if !defined (HAVE_ACOSH)
- static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
- #endif
- #if !defined (HAVE_ATANH)
- static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
- #endif
- /* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
- xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
- in March 2006), mpz_cmp_d now handles infinities properly. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- #if defined (GUILE_I)
- #if defined HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- /* Make the ratio NUMERATOR/DENOMINATOR, where:
- 1. NUMERATOR and DENOMINATOR are exact integers
- 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
- static SCM
- scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
- {
- /* Flip signs so that the denominator is positive. */
- if (scm_is_false (scm_positive_p (denominator)))
- {
- if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
- scm_num_overflow ("make-ratio");
- else
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- }
- /* Check for the integer case */
- if (scm_is_eq (denominator, SCM_INUM1))
- return numerator;
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- static SCM scm_exact_integer_quotient (SCM x, SCM y);
- /* Make the ratio NUMERATOR/DENOMINATOR */
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- if (!scm_is_exact_integer (numerator))
- abort();
- if (!scm_is_exact_integer (denominator))
- abort();
- SCM the_gcd = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (the_gcd, SCM_INUM1)))
- {
- /* Reduce to lowest terms */
- numerator = scm_exact_integer_quotient (numerator, the_gcd);
- denominator = scm_exact_integer_quotient (denominator, the_gcd);
- }
- return scm_i_make_ratio_already_reduced (numerator, denominator);
- }
- #undef FUNC_NAME
- static mpz_t scm_i_divide2double_lo2b;
- /* Return the double that is closest to the exact rational N/D, with
- ties rounded toward even mantissas. N and D must be exact
- integers. */
- static double
- scm_i_divide2double (SCM n, SCM d)
- {
- int neg;
- mpz_t nn, dd, lo, hi, x;
- ssize_t e;
- if (SCM_I_INUMP (d))
- {
- if (SCM_I_INUMP (n)
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d)))
- /* If both N and D can be losslessly converted to doubles, then
- we can rely on IEEE floating point to do proper rounding much
- faster than we can. */
- return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
- if (scm_is_eq (d, SCM_INUM0))
- {
- if (scm_is_true (scm_positive_p (n)))
- return 1.0 / 0.0;
- else if (scm_is_true (scm_negative_p (n)))
- return -1.0 / 0.0;
- else
- return 0.0 / 0.0;
- }
- mpz_init_set_si (dd, SCM_I_INUM (d));
- }
- else
- scm_integer_init_set_mpz_z (scm_bignum (d), dd);
- if (SCM_I_INUMP (n))
- mpz_init_set_si (nn, SCM_I_INUM (n));
- else
- scm_integer_init_set_mpz_z (scm_bignum (n), nn);
- neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
- mpz_abs (nn, nn);
- mpz_abs (dd, dd);
- /* Now we need to find the value of e such that:
-
- For e <= 0:
- b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
- (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
- (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
- For e >= 0:
- b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
- (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
- (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
- where: p = DBL_MANT_DIG
- b = FLT_RADIX (here assumed to be 2)
- After rounding, the mantissa must be an integer between b^{p-1} and
- (b^p - 1), except for subnormal numbers. In the inequations [1A]
- and [1B], the middle expression represents the mantissa *before*
- rounding, and therefore is bounded by the range of values that will
- round to a floating-point number with the exponent e. The upper
- bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
- ties will round up to the next power of b. The lower bound is
- (b^{p-1} - 1/2b), and is inclusive because ties will round toward
- this power of b. Here we subtract 1/2b instead of 1/2 because it
- is in the range of the next smaller exponent, where the
- representable numbers are closer together by a factor of b.
- Inequations [2A] and [2B] are derived from [1A] and [1B] by
- multiplying by 2b, and in [3A] and [3B] we multiply by the
- denominator of the middle value to obtain integer expressions.
- In the code below, we refer to the three expressions in [3A] or
- [3B] as lo, x, and hi. If the number is normalizable, we will
- achieve the goal: lo <= x < hi */
- /* Make an initial guess for e */
- e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
- if (e < DBL_MIN_EXP - DBL_MANT_DIG)
- e = DBL_MIN_EXP - DBL_MANT_DIG;
- /* Compute the initial values of lo, x, and hi
- based on the initial guess of e */
- mpz_inits (lo, hi, x, NULL);
- mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
- mpz_mul (lo, dd, scm_i_divide2double_lo2b);
- if (e > 0)
- mpz_mul_2exp (lo, lo, e);
- mpz_mul_2exp (hi, lo, 1);
- /* Adjust e as needed to satisfy the inequality lo <= x < hi,
- (but without making e less than the minimum exponent) */
- while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_mul_2exp (x, x, 1);
- e--;
- }
- while (mpz_cmp (x, hi) >= 0)
- {
- /* If we ever used lo's value again,
- we would need to double lo here. */
- mpz_mul_2exp (hi, hi, 1);
- e++;
- }
- /* Now compute the rounded mantissa:
- n / b^e d (if e >= 0)
- n b^-e / d (if e <= 0) */
- {
- int cmp;
- double result;
- if (e < 0)
- mpz_mul_2exp (nn, nn, -e);
- else
- mpz_mul_2exp (dd, dd, e);
- /* mpz does not directly support rounded right
- shifts, so we have to do it the hard way.
- For efficiency, we reuse lo and hi.
- hi == quotient, lo == remainder */
- mpz_fdiv_qr (hi, lo, nn, dd);
- /* The fractional part of the unrounded mantissa would be
- remainder/dividend, i.e. lo/dd. So we have a tie if
- lo/dd = 1/2. Multiplying both sides by 2*dd yields the
- integer expression 2*lo = dd. Here we do that comparison
- to decide whether to round up or down. */
- mpz_mul_2exp (lo, lo, 1);
- cmp = mpz_cmp (lo, dd);
- if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
- mpz_add_ui (hi, hi, 1);
- result = ldexp (mpz_get_d (hi), e);
- if (neg)
- result = -result;
- mpz_clears (nn, dd, lo, hi, x, NULL);
- return result;
- }
- }
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- }
- static SCM
- scm_i_from_double (double val)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
- SCM_SET_CELL_TYPE (z, scm_tc16_real);
- SCM_REAL_VALUE (z) = val;
- return z;
- }
- SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_F;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_exact (SCM val)
- {
- return scm_is_true (scm_exact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_inexact (SCM val)
- {
- return scm_is_true (scm_inexact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- return scm_from_bool (scm_is_integer_odd_i (SCM_I_INUM (n)));
- else if (SCM_BIGP (n))
- return scm_from_bool (scm_is_integer_odd_z (scm_bignum (n)));
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- }
- }
- return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- return scm_from_bool (!scm_is_integer_odd_i (SCM_I_INUM (n)));
- else if (SCM_BIGP (n))
- return scm_from_bool (!scm_is_integer_odd_z (scm_bignum (n)));
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- }
- }
- return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is neither\n"
- "infinite nor a NaN, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_finite_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
- "@samp{-inf.0}. Otherwise return @code{#f}.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is a NaN,\n"
- "or @code{#f} otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif defined HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- guile_Inf = (*((double *) (DINFINITY)));
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif defined HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- guile_NaN = (*((double *)(DQNAN)));
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME s_scm_abs
- {
- if (SCM_I_INUMP (x))
- return scm_integer_abs_i (SCM_I_INUM (x));
- else if (SCM_LIKELY (SCM_REALP (x)))
- return scm_i_from_double (copysign (SCM_REAL_VALUE (x), 1.0));
- else if (SCM_BIGP (x))
- return scm_integer_abs_z (scm_bignum (x));
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the quotient of the numbers @var{x} and @var{y}.")
- #define FUNC_NAME s_scm_quotient
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the remainder of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(remainder 13 4) @result{} 1\n"
- "(remainder -13 4) @result{} -1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_remainder
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
- (SCM x, SCM y),
- "Return the modulo of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(modulo 13 4) @result{} 1\n"
- "(modulo -13 4) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
- }
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
- }
- #undef FUNC_NAME
- /* Return the exact integer q such that n = q*d, for exact integers n
- and d, where d is known in advance to divide n evenly (with zero
- remainder). For large integers, this can be computed more
- efficiently than when the remainder is unknown. */
- static SCM
- scm_exact_integer_quotient (SCM n, SCM d)
- #define FUNC_NAME "exact-integer-quotient"
- {
- if (SCM_I_INUMP (n))
- {
- if (scm_is_eq (n, d))
- return SCM_INUM1;
- if (SCM_I_INUMP (d))
- return scm_integer_exact_quotient_ii (SCM_I_INUM (n), SCM_I_INUM (d));
- else if (SCM_BIGP (d))
- return scm_integer_exact_quotient_iz (SCM_I_INUM (n), scm_bignum (d));
- else
- abort (); // Unreachable.
- }
- else if (SCM_BIGP (n))
- {
- if (scm_is_eq (n, d))
- return SCM_INUM1;
- if (SCM_I_INUMP (d))
- return scm_integer_exact_quotient_zi (scm_bignum (n), SCM_I_INUM (d));
- else if (SCM_BIGP (d))
- return scm_integer_exact_quotient_zz (scm_bignum (n), scm_bignum (d));
- else
- abort (); // Unreachable.
- }
- else
- abort (); // Unreachable.
- }
- #undef FUNC_NAME
- /* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
- two-valued functions. It is called from primitive generics that take
- two arguments and return two values, when the core procedure is
- unable to handle the given argument types. If there are GOOPS
- methods for this primitive generic, it dispatches to GOOPS and, if
- successful, expects two values to be returned, which are placed in
- *rp1 and *rp2. If there are no GOOPS methods, it throws a
- wrong-type-arg exception.
- FIXME: This obviously belongs somewhere else, but until we decide on
- the right API, it is here as a static function, because it is needed
- by the *_divide functions below.
- */
- static void
- two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
- const char *subr, SCM *rp1, SCM *rp2)
- {
- SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
-
- scm_i_extract_values_2 (vals, rp1, rp2);
- }
- SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean-quotient 123 10) @result{} 12\n"
- "(euclidean-quotient 123 -10) @result{} -12\n"
- "(euclidean-quotient -123 10) @result{} -13\n"
- "(euclidean-quotient -123 -10) @result{} 13\n"
- "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
- "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_quotient
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_quotient (x, y);
- else
- return scm_ceiling_quotient (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{0 <= @var{r} < abs(@var{y})} and\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(euclidean-remainder 123 10) @result{} 3\n"
- "(euclidean-remainder 123 -10) @result{} 3\n"
- "(euclidean-remainder -123 10) @result{} 7\n"
- "(euclidean-remainder -123 -10) @result{} 7\n"
- "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
- "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_remainder
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_ceiling_remainder (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean/ 123 10) @result{} 12 and 3\n"
- "(euclidean/ 123 -10) @result{} -12 and 3\n"
- "(euclidean/ -123 10) @result{} -13 and 7\n"
- "(euclidean/ -123 -10) @result{} 13 and 7\n"
- "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_euclidean_divide
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_i_floor_divide (x, y);
- else
- return scm_i_ceiling_divide (x, y);
- }
- #undef FUNC_NAME
- void
- scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (scm_is_false (scm_negative_p (y)))
- scm_floor_divide (x, y, qp, rp);
- else
- scm_ceiling_divide (x, y, qp, rp);
- }
- static SCM scm_i_inexact_floor_quotient (double x, double y);
- static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the floor of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(floor-quotient 123 10) @result{} 12\n"
- "(floor-quotient 123 -10) @result{} -13\n"
- "(floor-quotient -123 10) @result{} -13\n"
- "(floor-quotient -123 -10) @result{} 12\n"
- "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
- "(floor-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient (SCM_I_INUM (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
- s_scm_floor_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_quotient (SCM x, SCM y)
- {
- return scm_floor_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_floor_remainder (double x, double y);
- static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor-remainder 123 10) @result{} 3\n"
- "(floor-remainder 123 -10) @result{} -7\n"
- "(floor-remainder -123 10) @result{} 7\n"
- "(floor-remainder -123 -10) @result{} -3\n"
- "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
- "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_remainder_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
- s_scm_floor_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_floor_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = y then q must be x/y-1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_floor_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor/ 123 10) @result{} 12 and 3\n"
- "(floor/ 123 -10) @result{} -13 and -7\n"
- "(floor/ -123 10) @result{} -13 and 7\n"
- "(floor/ -123 -10) @result{} 12 and -3\n"
- "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_floor_divide
- {
- SCM q, r;
- scm_floor_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_floor_divide s_scm_i_floor_divide
- #define g_scm_floor_divide g_scm_i_floor_divide
- void
- scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_floor_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_floor_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_floor_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_floor_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_floor_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_floor_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
- s_scm_floor_divide, qp, rp);
- }
- static void
- scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
- else
- {
- double q = floor (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_floor_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_ceiling_quotient (double x, double y);
- static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the ceiling of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(ceiling-quotient 123 10) @result{} 13\n"
- "(ceiling-quotient 123 -10) @result{} -12\n"
- "(ceiling-quotient -123 10) @result{} -12\n"
- "(ceiling-quotient -123 -10) @result{} 13\n"
- "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
- "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
- s_scm_ceiling_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
- {
- return scm_ceiling_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_ceiling_remainder (double x, double y);
- static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling-remainder 123 10) @result{} -7\n"
- "(ceiling-remainder 123 -10) @result{} 3\n"
- "(ceiling-remainder -123 10) @result{} -3\n"
- "(ceiling-remainder -123 -10) @result{} 7\n"
- "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
- "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
- s_scm_ceiling_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or -y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = -y then q must be x/y+1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_ceiling_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling/ 123 10) @result{} 13 and -7\n"
- "(ceiling/ 123 -10) @result{} -12 and 3\n"
- "(ceiling/ -123 10) @result{} -12 and -3\n"
- "(ceiling/ -123 -10) @result{} 13 and 7\n"
- "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_ceiling_divide
- {
- SCM q, r;
- scm_ceiling_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_ceiling_divide s_scm_i_ceiling_divide
- #define g_scm_ceiling_divide g_scm_i_ceiling_divide
- void
- scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_ceiling_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_ceiling_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_ceiling_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_ceiling_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_ceiling_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
- s_scm_ceiling_divide, qp, rp);
- }
- static void
- scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
- else
- {
- double q = ceil (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_ceiling_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_truncate_quotient (double x, double y);
- static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
- "@lisp\n"
- "(truncate-quotient 123 10) @result{} 12\n"
- "(truncate-quotient 123 -10) @result{} -12\n"
- "(truncate-quotient -123 10) @result{} -12\n"
- "(truncate-quotient -123 -10) @result{} 12\n"
- "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
- "(truncate-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_quotient_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_quotient_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_quotient_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_quotient_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
- s_scm_truncate_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
- {
- return scm_truncate_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_truncate_remainder (double x, double y);
- static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate-remainder 123 10) @result{} 3\n"
- "(truncate-remainder 123 -10) @result{} 3\n"
- "(truncate-remainder -123 10) @result{} -3\n"
- "(truncate-remainder -123 -10) @result{} -3\n"
- "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
- "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
- s_scm_truncate_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or sgn(x)*|y|, but those two cases must
- correspond to different choices of q. If quotient chooses one and
- remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_truncate_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate/ 123 10) @result{} 12 and 3\n"
- "(truncate/ 123 -10) @result{} -12 and 3\n"
- "(truncate/ -123 10) @result{} -12 and -3\n"
- "(truncate/ -123 -10) @result{} 12 and -3\n"
- "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_truncate_divide
- {
- SCM q, r;
- scm_truncate_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_truncate_divide s_scm_i_truncate_divide
- #define g_scm_truncate_divide g_scm_i_truncate_divide
- void
- scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_truncate_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y),
- qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_truncate_divide_iz (SCM_I_INUM (x), scm_bignum (y),
- qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_truncate_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_truncate_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_truncate_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_truncate_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
- s_scm_truncate_divide, qp, rp);
- }
- static void
- scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
- else
- {
- double q = trunc (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_truncate_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_centered_quotient (double x, double y);
- static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered-quotient 123 10) @result{} 12\n"
- "(centered-quotient 123 -10) @result{} -12\n"
- "(centered-quotient -123 10) @result{} -12\n"
- "(centered-quotient -123 -10) @result{} 12\n"
- "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
- "(centered-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_quotient_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_quotient_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_quotient_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
- s_scm_centered_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_quotient (double x, double y)
- {
- if (SCM_LIKELY (y > 0))
- return scm_i_from_double (floor (x/y + 0.5));
- else if (SCM_LIKELY (y < 0))
- return scm_i_from_double (ceil (x/y - 0.5));
- else if (y == 0)
- scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
- else
- return scm_nan ();
- }
- static SCM
- scm_i_exact_rational_centered_quotient (SCM x, SCM y)
- {
- return scm_centered_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_centered_remainder (double x, double y);
- static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
- "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(centered-remainder 123 10) @result{} 3\n"
- "(centered-remainder 123 -10) @result{} 3\n"
- "(centered-remainder -123 10) @result{} -3\n"
- "(centered-remainder -123 -10) @result{} -3\n"
- "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
- "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
- s_scm_centered_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_remainder (double x, double y)
- {
- double q;
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_centered_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
- two cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
- else
- return scm_nan ();
- return scm_i_from_double (x - q * y);
- }
- static SCM
- scm_i_exact_rational_centered_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_centered_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered/ 123 10) @result{} 12 and 3\n"
- "(centered/ 123 -10) @result{} -12 and 3\n"
- "(centered/ -123 10) @result{} -12 and -3\n"
- "(centered/ -123 -10) @result{} 12 and -3\n"
- "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_centered_divide
- {
- SCM q, r;
- scm_centered_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_centered_divide s_scm_i_centered_divide
- #define g_scm_centered_divide g_scm_i_centered_divide
- void
- scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_centered_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_centered_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_centered_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_centered_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_centered_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_centered_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
- s_scm_centered_divide, qp, rp);
- }
- static void
- scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
- {
- double q, r;
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
- else
- q = guile_NaN;
- r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- static void
- scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_centered_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_round_quotient (double x, double y);
- static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
- "with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round-quotient 123 10) @result{} 12\n"
- "(round-quotient 123 -10) @result{} -12\n"
- "(round-quotient -123 10) @result{} -12\n"
- "(round-quotient -123 -10) @result{} 12\n"
- "(round-quotient 125 10) @result{} 12\n"
- "(round-quotient 127 10) @result{} 13\n"
- "(round-quotient 135 10) @result{} 14\n"
- "(round-quotient -123.2 -63.5) @result{} 2.0\n"
- "(round-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
- s_scm_round_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (scm_c_round (x / y));
- }
- static SCM
- scm_i_exact_rational_round_quotient (SCM x, SCM y)
- {
- return scm_round_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_round_remainder (double x, double y);
- static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
- "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest\n"
- "even integer.\n"
- "@lisp\n"
- "(round-remainder 123 10) @result{} 3\n"
- "(round-remainder 123 -10) @result{} 3\n"
- "(round-remainder -123 10) @result{} -3\n"
- "(round-remainder -123 -10) @result{} -3\n"
- "(round-remainder 125 10) @result{} 5\n"
- "(round-remainder 127 10) @result{} -3\n"
- "(round-remainder 135 10) @result{} -5\n"
- "(round-remainder -123.2 -63.5) @result{} 3.8\n"
- "(round-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_remainder_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
- s_scm_round_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_round_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2), but those two
- cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- return scm_i_from_double (x - q * y);
- }
- }
- static SCM
- scm_i_exact_rational_round_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round/ 123 10) @result{} 12 and 3\n"
- "(round/ 123 -10) @result{} -12 and 3\n"
- "(round/ -123 10) @result{} -12 and -3\n"
- "(round/ -123 -10) @result{} 12 and -3\n"
- "(round/ 125 10) @result{} 12 and 5\n"
- "(round/ 127 10) @result{} 13 and -3\n"
- "(round/ 135 10) @result{} 14 and -5\n"
- "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_round_divide
- {
- SCM q, r;
- scm_round_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_round_divide s_scm_i_round_divide
- #define g_scm_round_divide g_scm_i_round_divide
- void
- scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_round_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_round_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_round_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_round_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_round_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_round_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
- s_scm_round_divide, qp, rp);
- }
- static void
- scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_round_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the greatest common divisor of all parameter values.\n"
- "If called without arguments, 0 is returned.")
- #define FUNC_NAME s_scm_i_gcd
- {
- while (!scm_is_null (rest))
- { x = scm_gcd (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gcd (x, y);
- }
- #undef FUNC_NAME
-
- #define s_gcd s_scm_i_gcd
- #define g_gcd g_scm_i_gcd
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_gcd_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_gcd_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_gcd_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_gcd_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_REALP (x) && scm_is_integer (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y)
- || (SCM_REALP (y) && scm_is_integer (y)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
- scm_inexact_to_exact (y)));
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the least common multiple of the arguments.\n"
- "If called without arguments, 1 is returned.")
- #define FUNC_NAME s_scm_i_lcm
- {
- while (!scm_is_null (rest))
- { x = scm_lcm (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_lcm (x, y);
- }
- #undef FUNC_NAME
-
- #define s_lcm s_scm_i_lcm
- #define g_lcm g_scm_i_lcm
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNBNDP (n2))
- return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_lcm_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_lcm_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_LIKELY (SCM_BIGP (n1)))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_lcm_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_lcm_zz (scm_bignum (n1), scm_bignum (n2));
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_REALP (n1) && scm_is_integer (n1))
- {
- if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
- || (SCM_REALP (n2) && scm_is_integer (n2)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
- scm_inexact_to_exact (n2)));
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logand
- {
- while (!scm_is_null (rest))
- { x = scm_logand (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logand (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logand s_scm_i_logand
- SCM scm_logand (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logand
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logand_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logand_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logand_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logand_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logior
- {
- while (!scm_is_null (rest))
- { x = scm_logior (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logior (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logior s_scm_i_logior
- SCM scm_logior (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logior
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logior_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logior_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logior_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logior_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logxor
- {
- while (!scm_is_null (rest))
- { x = scm_logxor (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logxor (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logxor s_scm_i_logxor
- SCM scm_logxor (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logxor
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logxor_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logxor_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logxor_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logxor_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- if (SCM_I_INUMP (j))
- {
- if (SCM_I_INUMP (k))
- return scm_from_bool (scm_integer_logtest_ii (SCM_I_INUM (j),
- SCM_I_INUM (k)));
- else if (SCM_BIGP (k))
- return scm_from_bool (scm_integer_logtest_zi (scm_bignum (k),
- SCM_I_INUM (j)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- return scm_from_bool (scm_integer_logtest_zi (scm_bignum (j),
- SCM_I_INUM (k)));
- else if (SCM_BIGP (k))
- return scm_from_bool (scm_integer_logtest_zz (scm_bignum (j),
- scm_bignum (k)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- return scm_from_bool (scm_integer_logbit_ui (iindex, SCM_I_INUM (j)));
- else if (SCM_BIGP (j))
- return scm_from_bool (scm_integer_logbit_uz (iindex, scm_bignum (j)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n))
- return scm_integer_lognot_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_lognot_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (k))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- if (!scm_is_exact_integer (m))
- SCM_WRONG_TYPE_ARG (SCM_ARG3, m);
- return scm_integer_modulo_expt_nnn (n, k, m);
- }
- #undef FUNC_NAME
- static void
- mpz_clear_on_unwind (void *mpz)
- {
- mpz_clear (mpz);
- }
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in\n"
- "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
- "@math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- // Fast cases first.
- if (SCM_I_INUMP (k))
- {
- if (SCM_I_INUM (k) < 0)
- {
- if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- return scm_nan ();
- k = scm_integer_negate_i (SCM_I_INUM (k));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- if (SCM_I_INUMP (n))
- return scm_integer_expt_ii (SCM_I_INUM (n), SCM_I_INUM (k));
- else if (SCM_BIGP (n))
- return scm_integer_expt_zi (scm_bignum (n), SCM_I_INUM (k));
- }
- else if (SCM_BIGP (k))
- {
- if (scm_is_integer_negative_z (scm_bignum (k)))
- {
- if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- return scm_nan ();
- k = scm_integer_negate_z (scm_bignum (k));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, SCM_INUM1))
- return n;
- else if (scm_is_eq (n, SCM_I_MAKINUM (-1)))
- return scm_is_integer_odd_z (scm_bignum (k)) ? n : SCM_INUM1;
- else if (scm_is_exact_integer (n))
- scm_num_overflow ("integer-expt");
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
- // The general case.
- if (scm_is_eq (k, SCM_INUM0))
- return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
- if (SCM_FRACTIONP (n))
- {
- /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
- needless reduction of intermediate products to lowest terms.
- If a and b have no common factors, then a^k and b^k have no
- common factors. Use 'scm_i_make_ratio_already_reduced' to
- construct the final result, so that no gcd computations are
- needed to exponentiate a fraction. */
- if (scm_is_true (scm_positive_p (k)))
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
- scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
- else
- {
- k = scm_difference (k, SCM_UNDEFINED);
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
- scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
- }
- }
- mpz_t zk;
- mpz_init (zk);
- scm_to_mpz (k, zk);
- scm_dynwind_begin (0);
- scm_dynwind_unwind_handler (mpz_clear_on_unwind, zk, SCM_F_WIND_EXPLICITLY);
- if (mpz_sgn (zk) == -1)
- {
- mpz_neg (zk, zk);
- n = scm_divide (n, SCM_UNDEFINED);
- }
- SCM acc = SCM_INUM1;
- while (1)
- {
- if (mpz_sgn (zk) == 0)
- break;
- if (mpz_cmp_ui(zk, 1) == 0)
- {
- acc = scm_product (acc, n);
- break;
- }
- if (mpz_tstbit(zk, 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (zk, zk, 1);
- }
- scm_dynwind_end ();
- return acc;
- }
- #undef FUNC_NAME
- static SCM
- lsh (SCM n, SCM count, const char *fn)
- {
- if (scm_is_eq (n, SCM_INUM0))
- return n;
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- scm_num_overflow (fn);
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (ucount / (sizeof (int) * 8) >= (unsigned long) INT_MAX)
- scm_num_overflow (fn);
- if (SCM_I_INUMP (n))
- return scm_integer_lsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_lsh_zu (scm_bignum (n), ucount);
- }
- static SCM
- floor_rsh (SCM n, SCM count)
- {
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- return scm_is_false (scm_negative_p (n)) ? SCM_INUM0 : SCM_I_MAKINUM (-1);
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (SCM_I_INUMP (n))
- return scm_integer_floor_rsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_floor_rsh_zu (scm_bignum (n), ucount);
- }
- static SCM
- round_rsh (SCM n, SCM count)
- {
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- return SCM_INUM0;
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (SCM_I_INUMP (n))
- return scm_integer_round_rsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_round_rsh_zu (scm_bignum (n), ucount);
- }
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{floor(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{ash} means a left shift introducing zero bits\n"
- "when @var{count} is positive, or a right shift dropping bits\n"
- "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (count))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
-
- if (scm_is_false (scm_negative_p (count)))
- return lsh (n, count, "ash");
- return floor_rsh (n, scm_difference (count, SCM_UNDEFINED));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{round(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{round-ash} means a left shift introducing zero\n"
- "bits when @var{count} is positive, or a right shift rounding\n"
- "to the nearest integer (with ties going to the nearest even\n"
- "integer) when @var{count} is negative. This is a rounded\n"
- "``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
- "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
- "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_ash
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (count))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
-
- if (scm_is_false (scm_negative_p (count)))
- return lsh (n, count, "round-ash");
- return round_rsh (n, scm_difference (count, SCM_UNDEFINED));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- unsigned long istart = scm_to_ulong (start);
- unsigned long iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- unsigned long bits = iend - istart;
- if (SCM_I_INUMP (n))
- return scm_integer_bit_extract_i (SCM_I_INUM (n), istart, bits);
- else
- return scm_integer_bit_extract_z (scm_bignum (n), istart, bits);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- return scm_integer_logcount_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_logcount_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- return scm_integer_length_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_length_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_RADIX 36
- /* use this array as a way to generate a single digit */
- static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
- static mpz_t dbl_minimum_normal_mantissa;
- static size_t
- idbl2str (double dbl, char *a, int radix)
- {
- int ch = 0;
- if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
- /* revert to existing behavior */
- radix = 10;
- if (isinf (dbl))
- {
- strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
- return 6;
- }
- else if (dbl > 0.0)
- ;
- else if (dbl < 0.0)
- {
- dbl = -dbl;
- a[ch++] = '-';
- }
- else if (dbl == 0.0)
- {
- if (copysign (1.0, dbl) < 0.0)
- a[ch++] = '-';
- strcpy (a + ch, "0.0");
- return ch + 3;
- }
- else if (isnan (dbl))
- {
- strcpy (a, "+nan.0");
- return 6;
- }
- /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
- Accurately" by Robert G. Burger and R. Kent Dybvig */
- {
- int e, k;
- mpz_t f, r, s, mplus, mminus, hi, digit;
- int f_is_even, f_is_odd;
- int expon;
- int show_exp = 0;
- mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
- mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
- if (e < DBL_MIN_EXP)
- {
- mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
- e = DBL_MIN_EXP;
- }
- e -= DBL_MANT_DIG;
- f_is_even = !mpz_odd_p (f);
- f_is_odd = !f_is_even;
- /* Initialize r, s, mplus, and mminus according
- to Table 1 from the paper. */
- if (e < 0)
- {
- mpz_set_ui (mminus, 1);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
- || e == DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_set_ui (mplus, 1);
- mpz_mul_2exp (r, f, 1);
- mpz_mul_2exp (s, mminus, 1 - e);
- }
- else
- {
- mpz_set_ui (mplus, 2);
- mpz_mul_2exp (r, f, 2);
- mpz_mul_2exp (s, mminus, 2 - e);
- }
- }
- else
- {
- mpz_set_ui (mminus, 1);
- mpz_mul_2exp (mminus, mminus, e);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
- {
- mpz_set (mplus, mminus);
- mpz_mul_2exp (r, f, 1 + e);
- mpz_set_ui (s, 2);
- }
- else
- {
- mpz_mul_2exp (mplus, mminus, 1);
- mpz_mul_2exp (r, f, 2 + e);
- mpz_set_ui (s, 4);
- }
- }
- /* Find the smallest k such that:
- (r + mplus) / s < radix^k (if f is even)
- (r + mplus) / s <= radix^k (if f is odd) */
- {
- /* IMPROVE-ME: Make an initial guess to speed this up */
- mpz_add (hi, r, mplus);
- k = 0;
- while (mpz_cmp (hi, s) >= f_is_odd)
- {
- mpz_mul_ui (s, s, radix);
- k++;
- }
- if (k == 0)
- {
- mpz_mul_ui (hi, hi, radix);
- while (mpz_cmp (hi, s) < f_is_odd)
- {
- mpz_mul_ui (r, r, radix);
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (hi, hi, radix);
- k--;
- }
- }
- }
- expon = k - 1;
- if (k <= 0)
- {
- if (k <= -3)
- {
- /* Use scientific notation */
- show_exp = 1;
- k = 1;
- }
- else
- {
- int i;
- /* Print leading zeroes */
- a[ch++] = '0';
- a[ch++] = '.';
- for (i = 0; i > k; i--)
- a[ch++] = '0';
- }
- }
- for (;;)
- {
- int end_1_p, end_2_p;
- int d;
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (r, r, radix);
- mpz_fdiv_qr (digit, r, r, s);
- d = mpz_get_ui (digit);
- mpz_add (hi, r, mplus);
- end_1_p = (mpz_cmp (r, mminus) < f_is_even);
- end_2_p = (mpz_cmp (s, hi) < f_is_even);
- if (end_1_p || end_2_p)
- {
- mpz_mul_2exp (r, r, 1);
- if (!end_2_p)
- ;
- else if (!end_1_p)
- d++;
- else if (mpz_cmp (r, s) >= !(d & 1))
- d++;
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- break;
- }
- else
- {
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- }
- }
- if (k > 0)
- {
- if (expon >= 7 && k >= 4 && expon >= k)
- {
- /* Here we would have to print more than three zeroes
- followed by a decimal point and another zero. It
- makes more sense to use scientific notation. */
- /* Adjust k to what it would have been if we had chosen
- scientific notation from the beginning. */
- k -= expon;
- /* k will now be <= 0, with magnitude equal to the number of
- digits that we printed which should now be put after the
- decimal point. */
- /* Insert a decimal point */
- memmove (a + ch + k + 1, a + ch + k, -k);
- a[ch + k] = '.';
- ch++;
- show_exp = 1;
- }
- else
- {
- for (; k > 0; k--)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (k == 0)
- a[ch++] = '0';
- if (show_exp)
- {
- a[ch++] = 'e';
- ch += scm_iint2str (expon, radix, a + ch);
- }
- mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
- double sgn;
-
- i = idbl2str (real, str, radix);
- sgn = copysign (1.0, imag);
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (sgn >= 0 && isfinite (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (intmax_t num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (uintmax_t num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- uintmax_t n = num;
- if (rad < 2 || rad > 36)
- scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = number_chars[d];
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- return scm_integer_to_string_i (SCM_I_INUM (n), base);
- else if (SCM_BIGP (n))
- return scm_integer_to_string_z (scm_bignum (n), base);
- else if (SCM_FRACTIONP (n))
- return scm_string_append
- (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_latin1_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_latin1_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_display (str, port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str = scm_integer_to_string_z (scm_bignum (exp), 10);
- scm_c_put_string (port, str, 0, scm_c_string_length (str));
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- *
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- *
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x').
- *
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- *
- * Notes on the handling of exactness specifiers:
- *
- * When parsing non-real complex numbers, we apply exactness specifiers on
- * per-component basis, as is done in PLT Scheme. For complex numbers
- * written in rectangular form, exactness specifiers are applied to the
- * real and imaginary parts before calling scm_make_rectangular. For
- * complex numbers written in polar form, exactness specifiers are applied
- * to the magnitude and angle before calling scm_make_polar.
- *
- * There are two kinds of exactness specifiers: forced and implicit. A
- * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
- * the entire number, and applies to both components of a complex number.
- * "#e" causes each component to be made exact, and "#i" causes each
- * component to be made inexact. If no forced exactness specifier is
- * present, then the exactness of each component is determined
- * independently by the presence or absence of a decimal point or hash mark
- * within that component. If a decimal point or hash mark is present, the
- * component is made inexact, otherwise it is made exact.
- *
- * After the exactness specifiers have been applied to each component, they
- * are passed to either scm_make_rectangular or scm_make_polar to produce
- * the final result. Note that this will result in a real number if the
- * imaginary part, magnitude, or angle is an exact 0.
- *
- * For example, (string->number "#i5.0+0i") does the equivalent of:
- *
- * (make-rectangular (exact->inexact 5) (exact->inexact 0))
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* Caller is responsible for checking that the return value is in range
- for the given radix, which should be <= 36. */
- static unsigned int
- char_decimal_value (uint32_t c)
- {
- if (c >= (uint32_t) '0' && c <= (uint32_t) '9')
- return c - (uint32_t) '0';
- else
- {
- /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
- that's certainly above any valid decimal, so we take advantage of
- that to elide some tests. */
- unsigned int d = (unsigned int) uc_decimal_value (c);
- /* If that failed, try extended hexadecimals, then. Only accept ascii
- hexadecimals. */
- if (d >= 10U)
- {
- c = uc_tolower (c);
- if (c >= (uint32_t) 'a')
- d = c - (uint32_t)'a' + 10U;
- }
- return d;
- }
- }
- /* Parse the substring of MEM starting at *P_IDX for an unsigned integer
- in base RADIX. Upon success, return the unsigned integer and update
- *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
- static SCM
- mem2uinteger (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- digit_value = char_decimal_value (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else if (hash_seen)
- break;
- else
- {
- digit_value = char_decimal_value (c);
- /* This check catches non-decimals in addition to out-of-range
- decimals. */
- if (digit_value >= radix)
- break;
- }
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
- static SCM
- mem2decimal_from_point (SCM result, SCM mem,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return result;
- if (scm_i_string_ref (mem, idx) == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_INUM1;
- idx++;
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- scm_t_wchar c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (scm_i_string_ref (mem, idx))
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- start = idx;
- c = scm_i_string_ref (mem, idx);
- if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- c = scm_i_string_ref (mem, idx);
- }
- else if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- c = scm_i_string_ref (mem, idx);
- }
- else
- sign = 1;
- if (!uc_is_property_decimal_digit ((uint32_t) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness forced_x,
- int allow_inf_or_nan)
- {
- unsigned int idx = *p_idx;
- SCM result;
- size_t len = scm_i_string_length (mem);
- /* Start off believing that the number will be exact. This changes
- to INEXACT if we see a decimal point or a hash. */
- enum t_exactness implicit_x = EXACT;
- if (idx == len)
- return SCM_BOOL_F;
- if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
- switch (scm_i_string_ref (mem, idx))
- {
- case 'i': case 'I':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'f': case 'F':
- if (scm_i_string_ref (mem, idx + 3) == '.'
- && scm_i_string_ref (mem, idx + 4) == '0')
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- }
- }
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'a': case 'A':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'n': case 'N':
- if (scm_i_string_ref (mem, idx + 3) == '.')
- {
- /* Cobble up the fractional part. We might want to
- set the NaN's mantissa from it. */
- idx += 4;
- if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
- SCM_INUM0))
- return SCM_BOOL_F;
-
- *p_idx = idx;
- return scm_nan ();
- }
- }
- }
- }
- if (scm_i_string_ref (mem, idx) == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!uc_is_property_decimal_digit ((uint32_t) scm_i_string_ref (mem, idx+1)))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_INUM0, mem,
- p_idx, &implicit_x);
- }
- else
- {
- SCM uinteger;
- uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (scm_i_string_ref (mem, idx) == '/')
- {
- SCM divisor;
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- }
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- /* We should never get here */
- assert (0);
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (SCM mem, unsigned int idx,
- unsigned int radix, enum t_exactness forced_x)
- {
- scm_t_wchar c;
- int sign = 0;
- SCM ureal;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) == 'i'
- || scm_i_string_ref (mem, idx) == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = scm_i_string_ref (mem, idx);
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_INUM0, ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- }
- else
- sign = 0;
- angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) != 'i'
- && scm_i_string_ref (mem, idx) != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_i_string_to_number (SCM mem, unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- size_t len = scm_i_string_length (mem);
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
- {
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- radix = default_radix;
- return mem2complex (mem, idx, radix, forced_x);
- }
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- SCM str = scm_from_locale_stringn (mem, len);
- return scm_i_string_to_number (str, default_radix);
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_i_string_to_number (string, base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- return scm_from_bool
- (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, finite floating point numbers are
- rational as well. (finite means neither infinity nor a NaN) */
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_integer_p
- {
- return scm_from_bool (scm_is_integer (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_exact_integer_p
- {
- return scm_from_bool (scm_is_exact_integer (x));
- }
- #undef FUNC_NAME
- SCM
- scm_bigequal (SCM x, SCM y)
- {
- return scm_from_bool
- (scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
- }
- SCM scm_i_num_eq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if all parameters are numerically equal.")
- #define FUNC_NAME s_scm_i_num_eq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_num_eq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_num_eq_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_eq_p (x, y);
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- return scm_from_bool
- (scm_is_integer_equal_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y)));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool
- (scm_is_integer_equal_ic (SCM_I_INUM (x), SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_from_bool
- (scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_from_bool
- (scm_is_integer_equal_zr (scm_bignum (x), SCM_REAL_VALUE (y)));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool
- (scm_is_integer_equal_zc (scm_bignum (x), SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool (SCM_COMPLEX_IMAG (y) == 0.0
- && SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y));
- else if (SCM_FRACTIONP (y))
- {
- if (isnan (SCM_REAL_VALUE (x)) || isinf (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- return scm_num_eq_p (scm_inexact_to_exact (x), y);
- }
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- if (SCM_COMPLEX_IMAG (x) != 0.0
- || isnan (SCM_COMPLEX_REAL (x))
- || isinf (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- return scm_num_eq_p (scm_inexact_to_exact (x), y);
- }
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- return scm_num_eq_p (y, x);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
- s_scm_i_num_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- static int scm_is_less_than (SCM x, SCM y);
- static int scm_is_greater_than (SCM x, SCM y);
- static int scm_is_less_than_or_equal (SCM x, SCM y);
- static int scm_is_greater_than_or_equal (SCM x, SCM y);
- static int
- scm_is_less_than (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_I_INUM (x) < SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- return scm_is_integer_positive_z (scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_is_integer_less_than_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y));
- if (!SCM_FRACTIONP (y))
- abort ();
- /* "x < a/b" becomes "x*b < a" */
- return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_negative_z (scm_bignum (x));
- else if (SCM_BIGP (y))
- return scm_is_integer_less_than_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_is_integer_less_than_zr (scm_bignum (x), SCM_REAL_VALUE (y));
- if (!SCM_FRACTIONP (y))
- abort ();
- /* "x < a/b" becomes "x*b < a" */
- return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_less_than_ri (SCM_REAL_VALUE (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_is_integer_less_than_rz (SCM_REAL_VALUE (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y);
- if (!SCM_FRACTIONP (y))
- abort ();
- if (isnan (SCM_REAL_VALUE (x)))
- return 0;
- if (isinf (SCM_REAL_VALUE (x)))
- return SCM_REAL_VALUE (x) < 0.0;
- return scm_is_less_than (scm_inexact_to_exact (x), y);
- }
- if (!SCM_FRACTIONP (x))
- abort ();
- /* "a/b < " becomes "a < y*b" */
- return scm_is_less_than (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x)));
- }
- static int
- scm_is_greater_than (SCM x, SCM y)
- {
- return scm_is_less_than (y, x);
- }
- static int
- scm_is_less_than_or_equal (SCM x, SCM y)
- {
- if ((SCM_REALP (x) && isnan (SCM_REAL_VALUE (x)))
- || (SCM_REALP (y) && isnan (SCM_REAL_VALUE (y))))
- return 0;
- return !scm_is_less_than (y, x);
- }
- static int
- scm_is_greater_than_or_equal (SCM x, SCM y)
- {
- return scm_is_less_than_or_equal (y, x);
- }
- SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "increasing.")
- #define FUNC_NAME s_scm_i_num_less_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_less_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_less_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_less_p
- SCM
- scm_less_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_less_than (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_gr_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "decreasing.")
- #define FUNC_NAME s_scm_i_num_gr_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_gr_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gr_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_greater_than (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_leq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-decreasing.")
- #define FUNC_NAME s_scm_i_num_leq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_leq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_leq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_less_than_or_equal (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_geq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-increasing.")
- #define FUNC_NAME s_scm_i_num_geq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_geq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_geq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_greater_than_or_equal (x, y));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
- (SCM z),
- "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- "zero.")
- #define FUNC_NAME s_scm_zero_p
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- "zero.")
- #define FUNC_NAME s_scm_positive_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- return scm_from_bool (scm_is_integer_positive_z (scm_bignum (x)));
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- "zero.")
- #define FUNC_NAME s_scm_negative_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- return scm_from_bool (scm_is_integer_negative_z (scm_bignum (x)));
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
- }
- #undef FUNC_NAME
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the maximum of all parameter values.")
- #define FUNC_NAME s_scm_i_max
- {
- while (!scm_is_null (rest))
- { x = scm_max (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_max (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_max, s_scm_i_max);
- else if (scm_is_real (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_max, x, SCM_ARG1, s_scm_i_max);
- }
-
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG1, s_scm_i_max);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG2, s_scm_i_max);
- if (scm_is_exact (x) && scm_is_exact (y))
- return scm_is_less_than (x, y) ? y : x;
- x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
- y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- if (isnan (xx))
- return x;
- if (isnan (yy))
- return y;
- if (xx < yy)
- return y;
- if (xx > yy)
- return x;
- // Distinguish -0.0 from 0.0.
- return (copysign (1.0, xx) < 0) ? y : x;
- }
- SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the minimum of all parameter values.")
- #define FUNC_NAME s_scm_i_min
- {
- while (!scm_is_null (rest))
- { x = scm_min (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_min (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_min, s_scm_i_min);
- else if (scm_is_real (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_min, x, SCM_ARG1, s_scm_i_min);
- }
-
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG1, s_scm_i_min);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG2, s_scm_i_min);
- if (scm_is_exact (x) && scm_is_exact (y))
- return scm_is_less_than (x, y) ? x : y;
- x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
- y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- if (isnan (xx))
- return x;
- if (isnan (yy))
- return y;
- if (xx < yy)
- return x;
- if (xx > yy)
- return y;
- // Distinguish -0.0 from 0.0.
- return (copysign (1.0, xx) < 0) ? x : y;
- }
- SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the sum of all parameter values. Return 0 if called without\n"
- "any parameters." )
- #define FUNC_NAME s_scm_i_sum
- {
- while (!scm_is_null (rest))
- { x = scm_sum (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_sum (x, y);
- }
- #undef FUNC_NAME
- static SCM
- sum (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_add_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_add_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio
- (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_integer_add_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_integer_to_double_z (scm_bignum (x))
- + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return sum (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- return sum (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return sum (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- {
- SCM nx = SCM_FRACTION_NUMERATOR (x);
- SCM ny = SCM_FRACTION_NUMERATOR (y);
- SCM dx = SCM_FRACTION_DENOMINATOR (x);
- SCM dy = SCM_FRACTION_DENOMINATOR (y);
- return scm_i_make_ratio (scm_sum (scm_product (nx, dy),
- scm_product (ny, dx)),
- scm_product (dx, dy));
- }
- else
- return sum (y, x);
- }
- else
- abort (); /* Unreachable. */
- }
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- return scm_wta_dispatch_1 (g_scm_i_sum, x, SCM_ARG1, s_scm_i_sum);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG1, s_scm_i_sum);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG2, s_scm_i_sum);
- return sum (x, y);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- static SCM
- negate (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_integer_negate_i (SCM_I_INUM (x));
- else if (SCM_BIGP (x))
- return scm_integer_negate_z (scm_bignum (x));
- else if (SCM_REALP (x))
- return scm_i_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced
- (negate (SCM_FRACTION_NUMERATOR (x)), SCM_FRACTION_DENOMINATOR (x));
- else
- abort (); /* Unreachable. */
- }
- static SCM
- difference (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUM (x) == 0)
- /* We need to handle x == exact 0 specially because R6RS states
- that:
- (- 0.0) ==> -0.0 and
- (- 0.0 0.0) ==> 0.0
- and the scheme compiler changes
- (- 0.0) into (- 0 0.0)
- So we need to treat (- 0 0.0) like (- 0.0).
- At the C level, (-x) is different than (0.0 - x).
- (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0. */
- return negate (y);
- if (SCM_I_INUMP (y))
- return scm_integer_sub_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_sub_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_sub_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_sub_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular
- (scm_integer_to_double_z (scm_bignum (x)) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio
- (difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_REALP (x))
- {
- double r = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- return scm_i_from_double (r - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_i_from_double (r - scm_integer_to_double_z (scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_i_from_double (r - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (r - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (r - scm_i_fraction2double (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- r -= SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- r -= scm_integer_to_double_z (scm_bignum (y));
- else if (SCM_REALP (y))
- r -= SCM_REAL_VALUE (y);
- else if (SCM_COMPLEXP (y))
- r -= SCM_COMPLEX_REAL (y), i -= SCM_COMPLEX_IMAG (y);
- else if (SCM_FRACTIONP (y))
- r -= scm_i_fraction2double (y);
- else
- abort (); /* Unreachable. */
- return scm_c_make_rectangular (r, i);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_exact (y))
- {
- /* a/b - c/d = (ad - bc) / bd */
- SCM n = scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x),
- scm_denominator (y)),
- scm_product (scm_numerator (y),
- SCM_FRACTION_DENOMINATOR (x)));
- SCM d = scm_product (SCM_FRACTION_DENOMINATOR (x),
- scm_denominator (y));
- return scm_i_make_ratio (n, d);
- }
- double xx = scm_i_fraction2double (x);
- if (SCM_REALP (y))
- return scm_i_from_double (xx - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else
- abort (); /* Unreachable. */
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
- "the sum of all but the first argument are subtracted from the first\n"
- "argument.")
- #define FUNC_NAME s_scm_i_difference
- {
- while (!scm_is_null (rest))
- { x = scm_difference (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_difference (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_difference (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_NUMBERP (x)) return negate (x);
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_difference, s_scm_i_difference);
- return scm_wta_dispatch_1 (g_scm_i_difference, x, SCM_ARG1,
- s_scm_i_difference);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG1,
- s_scm_i_difference);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG2,
- s_scm_i_difference);
- return difference (x, y);
- }
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- static SCM
- product (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (scm_is_eq (x, SCM_I_MAKINUM (-1)))
- return negate (y);
- else if (SCM_I_INUMP (y))
- return scm_integer_mul_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_mul_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) * SCM_COMPLEX_REAL (y),
- SCM_I_INUM (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_integer_mul_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_from_double (scm_integer_to_double_z (scm_bignum (x))
- * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double z = scm_integer_to_double_z (scm_bignum (x));
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return product (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular
- (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double
- (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- return product (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- {
- double rx = SCM_COMPLEX_REAL (x), ry = SCM_COMPLEX_REAL (y);
- double ix = SCM_COMPLEX_IMAG (x), iy = SCM_COMPLEX_IMAG (y);
- return scm_c_make_rectangular (rx * ry - ix * iy, rx * iy + ix * ry);
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- return product (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- return product (y, x);
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the product of all arguments. If called without arguments,\n"
- "1 is returned.")
- #define FUNC_NAME s_scm_i_product
- {
- while (!scm_is_null (rest))
- { x = scm_product (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_product (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_product, x, SCM_ARG1,
- s_scm_i_product);
- }
- /* This is pretty gross! But (* 1 X) is apparently X in Guile, for
- any type of X, even a pair. */
- if (scm_is_eq (x, SCM_INUM1))
- return y;
- if (scm_is_eq (y, SCM_INUM1))
- return x;
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG1,
- s_scm_i_product);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG2,
- s_scm_i_product);
- return product (x, y);
- }
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- static SCM
- invert (SCM x)
- {
- if (SCM_I_INUMP (x))
- switch (SCM_I_INUM (x))
- {
- case -1: return x;
- case 0: scm_num_overflow ("divide");
- case 1: return x;
- default: return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- }
- else if (SCM_BIGP (x))
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- else if (SCM_REALP (x))
- return scm_i_from_double (1.0 / SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- abort (); /* Unreachable. */
- }
- static SCM
- complex_div (double a, SCM y)
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- static SCM
- divide (SCM x, SCM y)
- {
- if (scm_is_eq (y, SCM_INUM0))
- scm_num_overflow ("divide");
- if (SCM_I_INUMP (x))
- {
- if (scm_is_eq (x, SCM_INUM1))
- return invert (y);
- if (SCM_I_INUMP (y))
- return scm_is_integer_divisible_ii (SCM_I_INUM (x), SCM_I_INUM (y))
- ? scm_integer_exact_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double ((double) SCM_I_INUM (x) / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (SCM_I_INUM (x), y);
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_divisible_zi (scm_bignum (x), SCM_I_INUM (y))
- ? scm_integer_exact_quotient_zi (scm_bignum (x), SCM_I_INUM (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_BIGP (y))
- return scm_is_integer_divisible_zz (scm_bignum (x), scm_bignum (y))
- ? scm_integer_exact_quotient_zz (scm_bignum (x), scm_bignum (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) scm_integer_to_double_z (2) Double rounding */
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (scm_integer_to_double_z (scm_bignum (x)), y);
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double (rx / (double) SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- return scm_i_from_double (rx / scm_integer_to_double_z (scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_i_from_double (rx / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (rx, y);
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (rx / scm_i_fraction2double (y));
- else
- abort () ; /* Unreachable. */
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from 'scm_t_inum' to double
- (2) Double rounding */
- double d = SCM_I_INUM (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double d = scm_integer_to_double_z (scm_bignum (y));
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_REALP (y))
- {
- double d = SCM_REAL_VALUE (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d,
- (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d,
- (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- double d = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_exact_integer (y))
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return scm_i_from_double (scm_i_fraction2double (x) /
- SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return complex_div (scm_i_fraction2double (x), y);
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x)));
- else
- abort (); /* Unreachable. */
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Divide the first argument by the product of the remaining\n"
- "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
- "returned.")
- #define FUNC_NAME s_scm_i_divide
- {
- while (!scm_is_null (rest))
- { x = scm_divide (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_divide (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_divide (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_divide, s_scm_i_divide);
- if (SCM_NUMBERP (x))
- return invert (x);
- else
- return scm_wta_dispatch_1 (g_scm_i_divide, x, SCM_ARG1,
- s_scm_i_divide);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG1,
- s_scm_i_divide);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG2,
- s_scm_i_divide);
- return divide (x, y);
- }
- double
- scm_c_truncate (double x)
- {
- return trunc (x);
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
- s_scm_truncate_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
- s_scm_round_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}.")
- #define FUNC_NAME s_scm_expt
- {
- if (scm_is_integer (y))
- {
- if (scm_is_true (scm_exact_p (y)))
- return scm_integer_expt (x, y);
- else
- {
- /* Here we handle the case where the exponent is an inexact
- integer. We make the exponent exact in order to use
- scm_integer_expt, and thus avoid the spurious imaginary
- parts that may result from round-off errors in the general
- e^(y log x) method below (for example when squaring a large
- negative number). In this case, we must return an inexact
- result for correctness. We also make the base inexact so
- that scm_integer_expt will use fast inexact arithmetic
- internally. Note that making the base inexact is not
- sufficient to guarantee an inexact result, because
- scm_integer_expt will return an exact 1 when the exponent
- is 0, even if the base is inexact. */
- return scm_exact_to_inexact
- (scm_integer_expt (scm_exact_to_inexact (x),
- scm_inexact_to_exact (y)));
- }
- }
- else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
- {
- return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
- }
- else if (scm_is_complex (x) && scm_is_complex (y))
- return scm_exp (scm_product (scm_log (x), y));
- else if (scm_is_complex (x))
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
- else
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
- }
- #undef FUNC_NAME
- /* sin/cos/tan/asin/acos/atan
- sinh/cosh/tanh/asinh/acosh/atanh
- Derived from "Transcen.scm", Complex trancendental functions for SCM.
- Written by Jerry D. Hedden, (C) FSF.
- See the file `COPYING' for terms applying to this program. */
- SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
- (SCM z),
- "Compute the sine of @var{z}.")
- #define FUNC_NAME s_scm_sin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sin(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sin (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sin (x) * cosh (y),
- cos (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
- (SCM z),
- "Compute the cosine of @var{z}.")
- #define FUNC_NAME s_scm_cos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cos(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cos (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cos (x) * cosh (y),
- -sin (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
- (SCM z),
- "Compute the tangent of @var{z}.")
- #define FUNC_NAME s_scm_tan
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cos (x) + cosh (y);
- return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sinh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sinh (x) * cos (y),
- cosh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_cosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cosh(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cosh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cosh (x) * cos (y),
- sinh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_tanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tanh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tanh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cosh (x) + cos (y);
- return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
- (SCM z),
- "Compute the arc sine of @var{z}.")
- #define FUNC_NAME s_scm_asin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asin(exact0) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (asin (w));
- else
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (0, w)));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
- (SCM z),
- "Compute the arc cosine of @var{z}.")
- #define FUNC_NAME s_scm_acos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acos(exact1) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (acos (w));
- else
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (0, w))));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x))));
- }
- else
- return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
- (SCM z, SCM y),
- "With one argument, compute the arc tangent of @var{z}.\n"
- "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
- "using the sign of @var{z} and @var{y} to determine the quadrant.")
- #define FUNC_NAME s_scm_atan
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (atan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- {
- double v, w;
- v = SCM_COMPLEX_REAL (z);
- w = SCM_COMPLEX_IMAG (z);
- return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (-v, 1.0 - w),
- scm_c_make_rectangular ( v, 1.0 + w))),
- scm_c_make_rectangular (0, 2));
- }
- else
- return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
- }
- else if (scm_is_real (z))
- {
- if (scm_is_real (y))
- return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
- }
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sys_asinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (asinh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_sum (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_sys_acosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acosh(exact1) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
- return scm_i_from_double (acosh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_difference (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_sys_atanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atanh(exact0) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
- return scm_i_from_double (atanh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
- scm_difference (SCM_INUM1, z))),
- SCM_I_MAKINUM (2));
- else
- return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
- "complex"));
- SCM_SET_CELL_TYPE (z, scm_tc16_complex);
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real_part} "
- "and @var{imaginary_part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
- SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
- SCM_ARG2, FUNC_NAME, "real");
- /* Return a real if and only if the imaginary_part is an _exact_ 0 */
- if (scm_is_eq (imaginary_part, SCM_INUM0))
- return real_part;
- else
- return scm_c_make_rectangular (scm_to_double (real_part),
- scm_to_double (imaginary_part));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
- use it on Glibc-based systems that have it (it's a GNU extension). See
- http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
- details. */
- #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
- sincos (ang, &s, &c);
- #elif (defined HAVE___SINCOS)
- __sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- /* If s and c are NaNs, this indicates that the angle is a NaN,
- infinite, or perhaps simply too large to determine its value
- mod 2*pi. However, we know something that the floating-point
- implementation doesn't know: We know that s and c are finite.
- Therefore, if the magnitude is zero, return a complex zero.
- The reason we check for the NaNs instead of using this case
- whenever mag == 0.0 is because when the angle is known, we'd
- like to return the correct kind of non-real complex zero:
- +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
- on which quadrant the angle is in.
- */
- if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
- return scm_c_make_rectangular (0.0, 0.0);
- else
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM mag, SCM ang),
- "Return the complex number @var{mag} * e^(i * @var{ang}).")
- #define FUNC_NAME s_scm_make_polar
- {
- SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
- /* If mag is exact0, return exact0 */
- if (scm_is_eq (mag, SCM_INUM0))
- return SCM_INUM0;
- /* Return a real if ang is exact0 */
- else if (scm_is_eq (ang, SCM_INUM0))
- return mag;
- else
- return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
- (SCM z),
- "Return the real part of the number @var{z}.")
- #define FUNC_NAME s_scm_real_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
- (SCM z),
- "Return the imaginary part of the number @var{z}.")
- #define FUNC_NAME s_scm_imag_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
- (SCM z),
- "Return the numerator of the number @var{z}.")
- #define FUNC_NAME s_scm_numerator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle -0.0 and infinities in accordance with R6RS
- flnumerator, and optimize handling of integers. */
- return z;
- else
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
- (SCM z),
- "Return the denominator of the number @var{z}.")
- #define FUNC_NAME s_scm_denominator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return SCM_INUM1;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle infinities in accordance with R6RS fldenominator, and
- optimize handling of integers. */
- return scm_i_from_double (1.0);
- else
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
- s_scm_denominator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
- (SCM z),
- "Return the magnitude of the number @var{z}. This is the same as\n"
- "@code{abs} for real arguments, but also allows complex numbers.")
- #define FUNC_NAME s_scm_magnitude
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_NUMBERP (z))
- return scm_abs (z);
- else
- return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
- s_scm_magnitude);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
- (SCM z),
- "Return the angle of the complex number @var{z}.")
- #define FUNC_NAME s_scm_angle
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- flo0 to save allocating a new flonum with scm_i_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z),
- SCM_COMPLEX_REAL (z)));
- else if (SCM_NUMBERP (z))
- return (SCM_REALP (z)
- ? copysign (1.0, SCM_REAL_VALUE (z)) < 0.0
- : scm_is_true (scm_negative_p (z)))
- ? scm_i_from_double (atan2 (0.0, -1.0))
- : flo0;
- else
- return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
- (SCM z),
- "Convert the number @var{z} to its inexact representation.\n")
- #define FUNC_NAME s_scm_exact_to_inexact
- {
- if (SCM_I_INUMP (z))
- return scm_i_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (z)));
- else if (SCM_FRACTIONP (z))
- return scm_i_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
- s_scm_exact_to_inexact);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return z;
- double val;
- if (SCM_REALP (z))
- val = SCM_REAL_VALUE (z);
- else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
- val = SCM_COMPLEX_REAL (z);
- else
- return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
- s_scm_inexact_to_exact);
- if (!SCM_LIKELY (isfinite (val)))
- SCM_OUT_OF_RANGE (1, z);
- if (val == 0)
- return SCM_INUM0;
- int expon;
- mpz_t zn;
- mpz_init_set_d (zn, ldexp (frexp (val, &expon), DBL_MANT_DIG));
- expon -= DBL_MANT_DIG;
- if (expon < 0)
- {
- int shift = mpz_scan1 (zn, 0);
- if (shift > -expon)
- shift = -expon;
- mpz_fdiv_q_2exp (zn, zn, shift);
- expon += shift;
- }
- SCM numerator = scm_integer_from_mpz (zn);
- mpz_clear (zn);
- if (expon < 0)
- return scm_i_make_ratio_already_reduced
- (numerator, scm_integer_lsh_iu (1, -expon));
- else if (expon > 0)
- return lsh (numerator, scm_from_int (expon), FUNC_NAME);
- else
- return numerator;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
- if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
- {
- if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
- {
- if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
- return flo0;
- else
- return scm_nan ();
- }
- else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
- return x;
- else
- return scm_exact_to_inexact
- (scm_rationalize (scm_inexact_to_exact (x),
- scm_inexact_to_exact (eps)));
- }
- else
- {
- /* X and EPS are exact rationals.
- The code that follows is equivalent to the following Scheme code:
- (define (exact-rationalize x eps)
- (let ((n1 (if (negative? x) -1 1))
- (x (abs x))
- (eps (abs eps)))
- (let ((lo (- x eps))
- (hi (+ x eps)))
- (if (<= lo 0)
- 0
- (let loop ((nlo (numerator lo)) (dlo (denominator lo))
- (nhi (numerator hi)) (dhi (denominator hi))
- (n1 n1) (d1 0) (n2 0) (d2 1))
- (let-values (((qlo rlo) (floor/ nlo dlo))
- ((qhi rhi) (floor/ nhi dhi)))
- (let ((n0 (+ n2 (* n1 qlo)))
- (d0 (+ d2 (* d1 qlo))))
- (cond ((zero? rlo) (/ n0 d0))
- ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
- (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
- */
- int n1_init = 1;
- SCM lo, hi;
- eps = scm_abs (eps);
- if (scm_is_true (scm_negative_p (x)))
- {
- n1_init = -1;
- x = scm_difference (x, SCM_UNDEFINED);
- }
- /* X and EPS are non-negative exact rationals. */
- lo = scm_difference (x, eps);
- hi = scm_sum (x, eps);
- if (scm_is_false (scm_positive_p (lo)))
- /* If zero is included in the interval, return it.
- It is the simplest rational of all. */
- return SCM_INUM0;
- else
- {
- SCM result;
- mpz_t n0, d0, n1, d1, n2, d2;
- mpz_t nlo, dlo, nhi, dhi;
- mpz_t qlo, rlo, qhi, rhi;
- /* LO and HI are positive exact rationals. */
- /* Our approach here follows the method described by Alan
- Bawden in a message entitled "(rationalize x y)" on the
- rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
- http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
- In brief, we compute the continued fractions of the two
- endpoints of the interval (LO and HI). The continued
- fraction of the result consists of the common prefix of the
- continued fractions of LO and HI, plus one final term. The
- final term of the result is the smallest integer contained
- in the interval between the remainders of LO and HI after
- the common prefix has been removed.
- The following code lazily computes the continued fraction
- representations of LO and HI, and simultaneously converts
- the continued fraction of the result into a rational
- number. We use MPZ functions directly to avoid type
- dispatch and GC allocation during the loop. */
- mpz_inits (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- /* The variables N1, D1, N2 and D2 are used to compute the
- resulting rational from its continued fraction. At each
- step, N2/D2 and N1/D1 are the last two convergents. They
- are normally initialized to 0/1 and 1/0, respectively.
- However, if we negated X then we must negate the result as
- well, and we do that by initializing N1/D1 to -1/0. */
- mpz_set_si (n1, n1_init);
- mpz_set_ui (d1, 0);
- mpz_set_ui (n2, 0);
- mpz_set_ui (d2, 1);
- /* The variables NLO, DLO, NHI, and DHI are used to lazily
- compute the continued fraction representations of LO and HI
- using Euclid's algorithm. Initially, NLO/DLO == LO and
- NHI/DHI == HI. */
- scm_to_mpz (scm_numerator (lo), nlo);
- scm_to_mpz (scm_denominator (lo), dlo);
- scm_to_mpz (scm_numerator (hi), nhi);
- scm_to_mpz (scm_denominator (hi), dhi);
- /* As long as we're using exact arithmetic, the following loop
- is guaranteed to terminate. */
- for (;;)
- {
- /* Compute the next terms (QLO and QHI) of the continued
- fractions of LO and HI. */
- mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
- mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
- /* The next term of the result will be either QLO or
- QLO+1. Here we compute the next convergent of the
- result based on the assumption that QLO is the next
- term. If that turns out to be wrong, we'll adjust
- these later by adding N1 to N0 and D1 to D0. */
- mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
- mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
- /* We stop iterating when an integer is contained in the
- interval between the remainders NLO/DLO and NHI/DHI.
- There are two cases to consider: either NLO/DLO == QLO
- is an integer (indicated by RLO == 0), or QLO < QHI. */
- if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
- break;
- /* Efficiently shuffle variables around for the next
- iteration. First we shift the recent convergents. */
- mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
- mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
- /* The following shuffling is a bit confusing, so some
- explanation is in order. Conceptually, we're doing a
- couple of things here. After substracting the floor of
- NLO/DLO, the remainder is RLO/DLO. The rest of the
- continued fraction will represent the remainder's
- reciprocal DLO/RLO. Similarly for the HI endpoint.
- So in the next iteration, the new endpoints will be
- DLO/RLO and DHI/RHI. However, when we take the
- reciprocals of these endpoints, their order is
- switched. So in summary, we want NLO/DLO <-- DHI/RHI
- and NHI/DHI <-- DLO/RLO. */
- mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
- mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
- }
- /* There is now an integer in the interval [NLO/DLO NHI/DHI].
- The last term of the result will be the smallest integer in
- that interval, which is ceiling(NLO/DLO). We have already
- computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
- equal to the ceiling. */
- if (mpz_sgn (rlo) != 0)
- {
- /* If RLO is non-zero, then NLO/DLO is not an integer and
- the next term will be QLO+1. QLO was used in the
- computation of N0 and D0 above. Here we adjust N0 and
- D0 to be based on QLO+1 instead of QLO. */
- mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
- mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
- }
- /* The simplest rational in the interval is N0/D0 */
- result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
- scm_from_mpz (d0));
- mpz_clears (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- return result;
- }
- }
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- if (scm_is_exact_integer (val))
- return 1;
- if (SCM_REALP (val))
- {
- double x = SCM_REAL_VALUE (val);
- return !isinf (x) && (x == floor (x));
- }
- return 0;
- }
- int
- scm_is_exact_integer (SCM val)
- {
- return SCM_I_INUMP (val) || SCM_BIGP (val);
- }
- // Given that there is no way to extend intmax_t to encompass types
- // larger than int64, and that we must have int64, intmax will always be
- // 8 bytes wide, and we can treat intmax arguments as int64's.
- verify(SCM_SIZEOF_INTMAX == 8);
- int
- scm_is_signed_integer (SCM val, intmax_t min, intmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return min <= n && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- int64_t n;
- return scm_integer_to_int64_z (scm_bignum (val), &n)
- && min <= n && n <= max;
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, uintmax_t min, uintmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((uintmax_t)n) >= min && ((uintmax_t)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- uint64_t n;
- return scm_integer_to_uint64_z (scm_bignum (val), &n)
- && min <= n && n <= max;
- }
- else
- return 0;
- }
- static void range_error (SCM bad_val, SCM min, SCM max) SCM_NORETURN;
- static void
- range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to< ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define scm_i_range_error range_error
- static scm_t_inum
- inum_in_range (SCM x, scm_t_inum min, scm_t_inum max)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum val = SCM_I_INUM (x);
- if (min <= val && val <= max)
- return val;
- }
- else if (!SCM_BIGP (x))
- scm_wrong_type_arg_msg (NULL, 0, x, "exact integer");
- range_error (x, scm_from_long (min), scm_from_long (max));
- }
- SCM
- scm_from_signed_integer (intmax_t arg)
- {
- return scm_integer_from_int64 (arg);
- }
- intmax_t
- scm_to_signed_integer (SCM arg, intmax_t min, intmax_t max)
- {
- int64_t ret;
- if (SCM_I_INUMP (arg))
- ret = SCM_I_INUM (arg);
- else if (SCM_BIGP (arg))
- {
- if (!scm_integer_to_int64_z (scm_bignum (arg), &ret))
- goto out_of_range;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- if (min <= ret && ret <= max)
- return ret;
- out_of_range:
- range_error (arg, scm_from_intmax (min), scm_from_intmax (max));
- }
- SCM
- scm_from_unsigned_integer (uintmax_t arg)
- {
- return scm_integer_from_uint64 (arg);
- }
- uintmax_t
- scm_to_unsigned_integer (SCM arg, uintmax_t min, uintmax_t max)
- {
- uint64_t ret;
- if (SCM_I_INUMP (arg))
- {
- scm_t_inum n = SCM_I_INUM (arg);
- if (n < 0)
- goto out_of_range;
- ret = n;
- }
- else if (SCM_BIGP (arg))
- {
- if (!scm_integer_to_uint64_z (scm_bignum (arg), &ret))
- goto out_of_range;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- if (min <= ret && ret <= max)
- return ret;
- out_of_range:
- range_error (arg, scm_from_uintmax (min), scm_from_uintmax (max));
- }
- int8_t
- scm_to_int8 (SCM arg)
- {
- return inum_in_range (arg, INT8_MIN, INT8_MAX);
- }
- SCM
- scm_from_int8 (int8_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- uint8_t
- scm_to_uint8 (SCM arg)
- {
- return inum_in_range (arg, 0, UINT8_MAX);
- }
- SCM
- scm_from_uint8 (uint8_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- int16_t
- scm_to_int16 (SCM arg)
- {
- return inum_in_range (arg, INT16_MIN, INT16_MAX);
- }
- SCM
- scm_from_int16 (int16_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- uint16_t
- scm_to_uint16 (SCM arg)
- {
- return inum_in_range (arg, 0, UINT16_MAX);
- }
- SCM
- scm_from_uint16 (uint16_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- int32_t
- scm_to_int32 (SCM arg)
- {
- #if SCM_SIZEOF_LONG == 4
- if (SCM_I_INUMP (arg))
- return SCM_I_INUM (arg);
- else if (!SCM_BIGP (arg))
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- int32_t ret;
- if (scm_integer_to_int32_z (scm_bignum (arg), &ret))
- return ret;
- range_error (arg, scm_integer_from_int32 (INT32_MIN),
- scm_integer_from_int32 (INT32_MAX));
- #elif SCM_SIZEOF_LONG == 8
- return inum_in_range (arg, INT32_MIN, INT32_MAX);
- #else
- #error bad inum size
- #endif
- }
- SCM
- scm_from_int32 (int32_t arg)
- {
- #if SCM_SIZEOF_LONG == 4
- return scm_integer_from_int32 (arg);
- #elif SCM_SIZEOF_LONG == 8
- return SCM_I_MAKINUM (arg);
- #else
- #error bad inum size
- #endif
- }
- uint32_t
- scm_to_uint32 (SCM arg)
- {
- #if SCM_SIZEOF_LONG == 4
- if (SCM_I_INUMP (arg))
- {
- if (SCM_I_INUM (arg) >= 0)
- return SCM_I_INUM (arg);
- }
- else if (SCM_BIGP (arg))
- {
- uint32_t ret;
- if (scm_integer_to_uint32_z (scm_bignum (arg), &ret))
- return ret;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- range_error (arg, scm_integer_from_uint32 (0), scm_integer_from_uint32 (UINT32_MAX));
- #elif SCM_SIZEOF_LONG == 8
- return inum_in_range (arg, 0, UINT32_MAX);
- #else
- #error bad inum size
- #endif
- }
- SCM
- scm_from_uint32 (uint32_t arg)
- {
- #if SCM_SIZEOF_LONG == 4
- return scm_integer_from_uint32 (arg);
- #elif SCM_SIZEOF_LONG == 8
- return SCM_I_MAKINUM (arg);
- #else
- #error bad inum size
- #endif
- }
- int64_t
- scm_to_int64 (SCM arg)
- {
- if (SCM_I_INUMP (arg))
- return SCM_I_INUM (arg);
- else if (!SCM_BIGP (arg))
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- int64_t ret;
- if (scm_integer_to_int64_z (scm_bignum (arg), &ret))
- return ret;
- range_error (arg, scm_integer_from_int64 (INT64_MIN),
- scm_integer_from_int64 (INT64_MAX));
- }
- SCM
- scm_from_int64 (int64_t arg)
- {
- return scm_integer_from_int64 (arg);
- }
- uint64_t
- scm_to_uint64 (SCM arg)
- {
- if (SCM_I_INUMP (arg))
- {
- if (SCM_I_INUM (arg) >= 0)
- return SCM_I_INUM (arg);
- }
- else if (SCM_BIGP (arg))
- {
- uint64_t ret;
- if (scm_integer_to_uint64_z (scm_bignum (arg), &ret))
- return ret;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- range_error (arg, scm_integer_from_uint64(0), scm_integer_from_uint64 (UINT64_MAX));
- }
- SCM
- scm_from_uint64 (uint64_t arg)
- {
- return scm_integer_from_uint64 (arg);
- }
- scm_t_wchar
- scm_to_wchar (SCM arg)
- {
- return inum_in_range (arg, -1, 0x10ffff);
- }
- SCM
- scm_from_wchar (scm_t_wchar arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- scm_integer_set_mpz_z (scm_bignum (val), rop);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_integer_from_mpz (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_integer_to_double_z (scm_bignum (val));
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- return scm_i_from_double (val);
- }
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* Returns log(x * 2^shift) */
- static SCM
- log_of_shifted_double (double x, long shift)
- {
- /* cf scm_log10 */
- double ans = log (fabs (x)) + shift * M_LN2;
- if (signbit (x) && SCM_LIKELY (!isnan (x)))
- return scm_c_make_rectangular (ans, M_PI);
- else
- return scm_i_from_double (ans);
- }
- /* Returns log(n), for exact integer n */
- static SCM
- log_of_exact_integer (SCM n)
- {
- if (SCM_I_INUMP (n))
- return log_of_shifted_double (SCM_I_INUM (n), 0);
- else if (SCM_BIGP (n))
- {
- long expon;
- double signif = scm_integer_frexp_z (scm_bignum (n), &expon);
- return log_of_shifted_double (signif, expon);
- }
- else
- abort ();
- }
- /* Returns log(n/d), for exact non-zero integers n and d */
- static SCM
- log_of_fraction (SCM n, SCM d)
- {
- long n_size = scm_to_long (scm_integer_length (n));
- long d_size = scm_to_long (scm_integer_length (d));
- if (labs (n_size - d_size) > 1)
- return (scm_difference (log_of_exact_integer (n),
- log_of_exact_integer (d)));
- else if (scm_is_false (scm_negative_p (n)))
- return scm_i_from_double
- (log1p (scm_i_divide2double (scm_difference (n, d), d)));
- else
- return scm_c_make_rectangular
- (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
- d)),
- M_PI);
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z))
- return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
- else if (SCM_I_INUMP (z))
- {
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log);
- return log_of_shifted_double (SCM_I_INUM (z), 0);
- }
- else if (SCM_BIGP (z))
- return log_of_exact_integer (z);
- else if (SCM_FRACTIONP (z))
- return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- else
- return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z) || SCM_I_INUMP (z))
- {
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log10);
- {
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- /* cf log_of_shifted_double */
- if (signbit (re) && SCM_LIKELY (!isnan (re)))
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- else
- return scm_i_from_double (l);
- }
- }
- else if (SCM_BIGP (z))
- return scm_product (flo_log10e, log_of_exact_integer (z));
- else if (SCM_FRACTIONP (z))
- return scm_product (flo_log10e,
- log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- else
- return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_i_from_double (exp (scm_to_double (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
- (SCM k),
- "Return two exact non-negative integers @var{s} and @var{r}\n"
- "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
- "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
- "An error is raised if @var{k} is not an exact non-negative integer.\n"
- "\n"
- "@lisp\n"
- "(exact-integer-sqrt 10) @result{} 3 and 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_exact_integer_sqrt
- {
- SCM s, r;
- scm_exact_integer_sqrt (k, &s, &r);
- return scm_values_2 (s, r);
- }
- #undef FUNC_NAME
- void
- scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
- {
- if (SCM_I_INUMP (k))
- {
- scm_t_inum kk = SCM_I_INUM (k);
- if (kk >= 0)
- return scm_integer_exact_sqrt_i (kk, sp, rp);
- }
- else if (SCM_BIGP (k))
- {
- struct scm_bignum *zk = scm_bignum (k);
- if (!scm_is_integer_negative_z (zk))
- return scm_integer_exact_sqrt_z (zk, sp, rp);
- }
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- }
- SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM z),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum i = SCM_I_INUM (z);
- if (scm_is_integer_perfect_square_i (i))
- return scm_integer_floor_sqrt_i (i);
- double root = scm_integer_inexact_sqrt_i (i);
- return (root < 0)
- ? scm_c_make_rectangular (0.0, -root)
- : scm_i_from_double (root);
- }
- else if (SCM_BIGP (z))
- {
- struct scm_bignum *k = scm_bignum (z);
- if (scm_is_integer_perfect_square_z (k))
- return scm_integer_floor_sqrt_z (k);
- double root = scm_integer_inexact_sqrt_z (k);
- return (root < 0)
- ? scm_c_make_rectangular (0.0, -root)
- : scm_i_from_double (root);
- }
- else if (SCM_REALP (z))
- {
- double xx = SCM_REAL_VALUE (z);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_i_from_double (sqrt (xx));
- }
- else if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else if (SCM_FRACTIONP (z))
- {
- SCM n = SCM_FRACTION_NUMERATOR (z);
- SCM d = SCM_FRACTION_DENOMINATOR (z);
- SCM nr = scm_sqrt (n);
- SCM dr = scm_sqrt (d);
- if (scm_is_exact_integer (nr) && scm_is_exact_integer (dr))
- return scm_i_make_ratio_already_reduced (nr, dr);
- double xx = scm_i_divide2double (n, d);
- double abs_xx = fabs (xx);
- long shift = 0;
- if (abs_xx > DBL_MAX || abs_xx < DBL_MIN)
- {
- shift = (scm_to_long (scm_integer_length (n))
- - scm_to_long (scm_integer_length (d))) / 2;
- if (shift > 0)
- d = lsh (d, scm_from_long (2 * shift), FUNC_NAME);
- else
- n = lsh (n, scm_from_long (-2 * shift), FUNC_NAME);
- xx = scm_i_divide2double (n, d);
- }
- if (xx < 0)
- return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
- else
- return scm_i_from_double (ldexp (sqrt (xx), shift));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- flo0 = scm_i_from_double (0.0);
- flo_log10e = scm_i_from_double (M_LOG10E);
- exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
- {
- /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
- mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
- mpz_mul_2exp (scm_i_divide2double_lo2b,
- scm_i_divide2double_lo2b,
- DBL_MANT_DIG + 1); /* 2 b^p */
- mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
- }
- {
- /* Set dbl_minimum_normal_mantissa to b^{p-1} */
- mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
- mpz_mul_2exp (dbl_minimum_normal_mantissa,
- dbl_minimum_normal_mantissa,
- DBL_MANT_DIG - 1);
- }
- #include "numbers.x"
- }
|