123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955 |
- ;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
- ;;
- ;; This code is written by Alex Shinn and placed in the
- ;; Public Domain. All warranties are disclaimed.
- ;;> @example-import[(srfi 9)]
- ;;> This is a full superset of the popular @hyperlink[
- ;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
- ;;> package by Andrew Wright, written in fully portable @scheme{syntax-rules}
- ;;> and thus preserving hygiene.
- ;;> The most notable extensions are the ability to use @emph{non-linear}
- ;;> patterns - patterns in which the same identifier occurs multiple
- ;;> times, tail patterns after ellipsis, and the experimental tree patterns.
- ;;> @subsubsection{Patterns}
- ;;> Patterns are written to look like the printed representation of
- ;;> the objects they match. The basic usage is
- ;;> @scheme{(match expr (pat body ...) ...)}
- ;;> where the result of @var{expr} is matched against each pattern in
- ;;> turn, and the corresponding body is evaluated for the first to
- ;;> succeed. Thus, a list of three elements matches a list of three
- ;;> elements.
- ;;> @example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
- ;;> If no patterns match an error is signaled.
- ;;> Identifiers will match anything, and make the corresponding
- ;;> binding available in the body.
- ;;> @example{(match (list 1 2 3) ((a b c) b))}
- ;;> If the same identifier occurs multiple times, the first instance
- ;;> will match anything, but subsequent instances must match a value
- ;;> which is @scheme{equal?} to the first.
- ;;> @example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
- ;;> The special identifier @scheme{_} matches anything, no matter how
- ;;> many times it is used, and does not bind the result in the body.
- ;;> @example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
- ;;> To match a literal identifier (or list or any other literal), use
- ;;> @scheme{quote}.
- ;;> @example{(match 'a ('b 1) ('a 2))}
- ;;> Analogous to its normal usage in scheme, @scheme{quasiquote} can
- ;;> be used to quote a mostly literally matching object with selected
- ;;> parts unquoted.
- ;;> @example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
- ;;> Often you want to match any number of a repeated pattern. Inside
- ;;> a list pattern you can append @scheme{...} after an element to
- ;;> match zero or more of that pattern (like a regexp Kleene star).
- ;;> @example{(match (list 1 2) ((1 2 3 ...) #t))}
- ;;> @example{(match (list 1 2 3) ((1 2 3 ...) #t))}
- ;;> @example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
- ;;> Pattern variables matched inside the repeated pattern are bound to
- ;;> a list of each matching instance in the body.
- ;;> @example{(match (list 1 2) ((a b c ...) c))}
- ;;> @example{(match (list 1 2 3) ((a b c ...) c))}
- ;;> @example{(match (list 1 2 3 4 5) ((a b c ...) c))}
- ;;> More than one @scheme{...} may not be used in the same list, since
- ;;> this would require exponential backtracking in the general case.
- ;;> However, @scheme{...} need not be the final element in the list,
- ;;> and may be succeeded by a fixed number of patterns.
- ;;> @example{(match (list 1 2 3 4) ((a b c ... d e) c))}
- ;;> @example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
- ;;> @example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
- ;;> @scheme{___} is provided as an alias for @scheme{...} when it is
- ;;> inconvenient to use the ellipsis (as in a syntax-rules template).
- ;;> The @scheme{..1} syntax is exactly like the @scheme{...} except
- ;;> that it matches one or more repetitions (like a regexp "+").
- ;;> @example{(match (list 1 2) ((a b c ..1) c))}
- ;;> @example{(match (list 1 2 3) ((a b c ..1) c))}
- ;;> The boolean operators @scheme{and}, @scheme{or} and @scheme{not}
- ;;> can be used to group and negate patterns analogously to their
- ;;> Scheme counterparts.
- ;;> The @scheme{and} operator ensures that all subpatterns match.
- ;;> This operator is often used with the idiom @scheme{(and x pat)} to
- ;;> bind @var{x} to the entire value that matches @var{pat}
- ;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in
- ;;> conjunction with @scheme{not} patterns to match a general case
- ;;> with certain exceptions.
- ;;> @example{(match 1 ((and) #t))}
- ;;> @example{(match 1 ((and x) x))}
- ;;> @example{(match 1 ((and x 1) x))}
- ;;> The @scheme{or} operator ensures that at least one subpattern
- ;;> matches. If the same identifier occurs in different subpatterns,
- ;;> it is matched independently. All identifiers from all subpatterns
- ;;> are bound if the @scheme{or} operator matches, but the binding is
- ;;> only defined for identifiers from the subpattern which matched.
- ;;> @example{(match 1 ((or) #t) (else #f))}
- ;;> @example{(match 1 ((or x) x))}
- ;;> @example{(match 1 ((or x 2) x))}
- ;;> The @scheme{not} operator succeeds if the given pattern doesn't
- ;;> match. None of the identifiers used are available in the body.
- ;;> @example{(match 1 ((not 2) #t))}
- ;;> The more general operator @scheme{?} can be used to provide a
- ;;> predicate. The usage is @scheme{(? predicate pat ...)} where
- ;;> @var{predicate} is a Scheme expression evaluating to a predicate
- ;;> called on the value to match, and any optional patterns after the
- ;;> predicate are then matched as in an @scheme{and} pattern.
- ;;> @example{(match 1 ((? odd? x) x))}
- ;;> The field operator @scheme{=} is used to extract an arbitrary
- ;;> field and match against it. It is useful for more complex or
- ;;> conditional destructuring that can't be more directly expressed in
- ;;> the pattern syntax. The usage is @scheme{(= field pat)}, where
- ;;> @var{field} can be any expression, and should result in a
- ;;> procedure of one argument, which is applied to the value to match
- ;;> to generate a new value to match against @var{pat}.
- ;;> Thus the pattern @scheme{(and (= car x) (= cdr y))} is equivalent
- ;;> to @scheme{(x . y)}, except it will result in an immediate error
- ;;> if the value isn't a pair.
- ;;> @example{(match '(1 . 2) ((= car x) x))}
- ;;> @example{(match 4 ((= sqrt x) x))}
- ;;> The record operator @scheme{$} is used as a concise way to match
- ;;> records defined by SRFI-9 (or SRFI-99). The usage is
- ;;> @scheme{($ rtd field ...)}, where @var{rtd} should be the record
- ;;> type descriptor specified as the first argument to
- ;;> @scheme{define-record-type}, and each @var{field} is a subpattern
- ;;> matched against the fields of the record in order. Not all fields
- ;;> must be present.
- ;;> @example{
- ;;> (let ()
- ;;> (define-record-type employee
- ;;> (make-employee name title)
- ;;> employee?
- ;;> (name get-name)
- ;;> (title get-title))
- ;;> (match (make-employee "Bob" "Doctor")
- ;;> (($ employee n t) (list t n))))
- ;;> }
- ;;> The @scheme{set!} and @scheme{get!} operators are used to bind an
- ;;> identifier to the setter and getter of a field, respectively. The
- ;;> setter is a procedure of one argument, which mutates the field to
- ;;> that argument. The getter is a procedure of no arguments which
- ;;> returns the current value of the field.
- ;;> @example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
- ;;> @example{(match '(1 . 2) ((1 . (get! g)) (g)))}
- ;;> The new operator @scheme{***} can be used to search a tree for
- ;;> subpatterns. A pattern of the form @scheme{(x *** y)} represents
- ;;> the subpattern @var{y} located somewhere in a tree where the path
- ;;> from the current object to @var{y} can be seen as a list of the
- ;;> form @scheme{(x ...)}. @var{y} can immediately match the current
- ;;> object in which case the path is the empty list. In a sense it's
- ;;> a 2-dimensional version of the @scheme{...} pattern.
- ;;> As a common case the pattern @scheme{(_ *** y)} can be used to
- ;;> search for @var{y} anywhere in a tree, regardless of the path
- ;;> used.
- ;;> @example{(match '(a (a (a b))) ((x *** 'b) x))}
- ;;> @example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;; Notes
- ;; The implementation is a simple generative pattern matcher - each
- ;; pattern is expanded into the required tests, calling a failure
- ;; continuation if the tests fail. This makes the logic easy to
- ;; follow and extend, but produces sub-optimal code in cases where you
- ;; have many similar clauses due to repeating the same tests.
- ;; Nonetheless a smart compiler should be able to remove the redundant
- ;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no
- ;; performance hit.
- ;; The original version was written on 2006/11/29 and described in the
- ;; following Usenet post:
- ;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
- ;; and is still available at
- ;; http://synthcode.com/scheme/match-simple.scm
- ;; It's just 80 lines for the core MATCH, and an extra 40 lines for
- ;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
- ;;
- ;; A variant of this file which uses COND-EXPAND in a few places for
- ;; performance can be found at
- ;; http://synthcode.com/scheme/match-cond-expand.scm
- ;;
- ;; 2021/06/21 - fix for `(a ...)' patterns where `a' is already bound
- ;; (thanks to Andy Wingo)
- ;; 2020/09/04 - [OMITTED IN GUILE] perf fix for `not`; rename `..=', `..=', `..1' per SRFI 204
- ;; 2020/08/21 - [OMITTED IN GUILE] fixing match-letrec with unhygienic insertion
- ;; 2020/07/06 - [OMITTED IN GUILE] adding `..=' and `..=' patterns; fixing ,@ patterns
- ;; 2016/10/05 - [OMITTED IN GUILE] treat keywords as literals, not identifiers, in Chicken
- ;; 2016/03/06 - fixing named match-let (thanks to Stefan Israelsson Tampe)
- ;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns
- ;; 2014/11/24 - [OMITTED IN GUILE] adding Gauche's `@' pattern for named record field matching
- ;; 2012/12/26 - wrapping match-let&co body in lexical closure
- ;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code
- ;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
- ;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
- ;; the pattern (thanks to Stefan Israelsson Tampe)
- ;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
- ;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
- ;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
- ;; 2009/11/25 - adding `***' tree search patterns
- ;; 2008/03/20 - fixing bug where (a ...) matched non-lists
- ;; 2008/03/15 - removing redundant check in vector patterns
- ;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
- ;; 2007/09/04 - fixing quasiquote patterns
- ;; 2007/07/21 - allowing ellipsis patterns in non-final list positions
- ;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis
- ;; (thanks to Taylor Campbell)
- ;; 2007/04/08 - clean up, commenting
- ;; 2006/12/24 - bugfixes
- ;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;; force compile-time syntax errors with useful messages
- (define-syntax match-syntax-error
- (syntax-rules ()
- ((_) (match-syntax-error "invalid match-syntax-error usage"))))
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;> @subsubsection{Syntax}
- ;;> @subsubsubsection{@rawcode{(match expr (pattern . body) ...)@br{}
- ;;> (match expr (pattern (=> failure) . body) ...)}}
- ;;> The result of @var{expr} is matched against each @var{pattern} in
- ;;> turn, according to the pattern rules described in the previous
- ;;> section, until the the first @var{pattern} matches. When a match is
- ;;> found, the corresponding @var{body}s are evaluated in order,
- ;;> and the result of the last expression is returned as the result
- ;;> of the entire @scheme{match}. If a @var{failure} is provided,
- ;;> then it is bound to a procedure of no arguments which continues,
- ;;> processing at the next @var{pattern}. If no @var{pattern} matches,
- ;;> an error is signaled.
- ;; The basic interface. MATCH just performs some basic syntax
- ;; validation, binds the match expression to a temporary variable `v',
- ;; and passes it on to MATCH-NEXT. It's a constant throughout the
- ;; code below that the binding `v' is a direct variable reference, not
- ;; an expression.
- (define-syntax match
- (syntax-rules ()
- ((match)
- (match-syntax-error "missing match expression"))
- ((match atom)
- (match-syntax-error "no match clauses"))
- ((match (app ...) (pat . body) ...)
- (let ((v (app ...)))
- (match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
- ((match #(vec ...) (pat . body) ...)
- (let ((v #(vec ...)))
- (match-next v (v (set! v)) (pat . body) ...)))
- ((match atom (pat . body) ...)
- (let ((v atom))
- (match-next v (atom (set! atom)) (pat . body) ...)))
- ))
- ;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
- ;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
- ;; clauses. `g+s' is a list of two elements, the get! and set!
- ;; expressions respectively.
- (define-syntax match-next
- (syntax-rules (=>)
- ;; no more clauses, the match failed
- ((match-next v g+s)
- ;; Here we call error in non-tail context, so that the backtrace
- ;; can show the source location of the failing match form.
- (begin
- (throw 'match-error "match" "no matching pattern" v)
- #f))
- ;; named failure continuation
- ((match-next v g+s (pat (=> failure) . body) . rest)
- (let ((failure (lambda () (match-next v g+s . rest))))
- ;; match-one analyzes the pattern for us
- (match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
- ;; anonymous failure continuation, give it a dummy name
- ((match-next v g+s (pat . body) . rest)
- (match-next v g+s (pat (=> failure) . body) . rest))))
- ;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to
- ;; MATCH-TWO.
- (define-syntax match-one
- (syntax-rules ()
- ;; If it's a list of two or more values, check to see if the
- ;; second one is an ellipsis and handle accordingly, otherwise go
- ;; to MATCH-TWO.
- ((match-one v (p q . r) g+s sk fk i)
- (match-check-ellipsis
- q
- (match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ())
- (match-two v (p q . r) g+s sk fk i)))
- ;; Go directly to MATCH-TWO.
- ((match-one . x)
- (match-two . x))))
- ;; This is the guts of the pattern matcher. We are passed a lot of
- ;; information in the form:
- ;;
- ;; (match-two var pattern getter setter success-k fail-k (ids ...))
- ;;
- ;; usually abbreviated
- ;;
- ;; (match-two v p g+s sk fk i)
- ;;
- ;; where VAR is the symbol name of the current variable we are
- ;; matching, PATTERN is the current pattern, getter and setter are the
- ;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
- ;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
- ;; continuation (which is just a thunk call and is thus safe to expand
- ;; multiple times) and IDS are the list of identifiers bound in the
- ;; pattern so far.
- (define-syntax match-two
- (syntax-rules (_ ___ ..1 *** quote quasiquote ? $ = and or not set! get!)
- ((match-two v () g+s (sk ...) fk i)
- (if (null? v) (sk ... i) fk))
- ((match-two v (quote p) g+s (sk ...) fk i)
- (if (equal? v 'p) (sk ... i) fk))
- ((match-two v (quasiquote p) . x)
- (match-quasiquote v p . x))
- ((match-two v (and) g+s (sk ...) fk i) (sk ... i))
- ((match-two v (and p q ...) g+s sk fk i)
- (match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
- ((match-two v (or) g+s sk fk i) fk)
- ((match-two v (or p) . x)
- (match-one v p . x))
- ((match-two v (or p ...) g+s sk fk i)
- (match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
- ((match-two v (not p) g+s (sk ...) fk i)
- (match-one v p g+s (match-drop-ids fk) (sk ... i) i))
- ((match-two v (get! getter) (g s) (sk ...) fk i)
- (let ((getter (lambda () g))) (sk ... i)))
- ((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
- (let ((setter (lambda (x) (s ... x)))) (sk ... i)))
- ((match-two v (? pred . p) g+s sk fk i)
- (if (pred v) (match-one v (and . p) g+s sk fk i) fk))
- ((match-two v (= proc p) . x)
- (let ((w (proc v))) (match-one w p . x)))
- ((match-two v (p ___ . r) g+s sk fk i)
- (match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()))
- ((match-two v (p) g+s sk fk i)
- (if (and (pair? v) (null? (cdr v)))
- (let ((w (car v)))
- (match-one w p ((car v) (set-car! v)) sk fk i))
- fk))
- ((match-two v (p *** q) g+s sk fk i)
- (match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
- ((match-two v (p *** . q) g+s sk fk i)
- (match-syntax-error "invalid use of ***" (p *** . q)))
- ((match-two v (p ..1) g+s sk fk i)
- (if (pair? v)
- (match-one v (p ___) g+s sk fk i)
- fk))
- ((match-two v ($ rec p ...) g+s sk fk i)
- (if (is-a? v rec)
- (match-record-refs v rec 0 (p ...) g+s sk fk i)
- fk))
- ((match-two v (p . q) g+s sk fk i)
- (if (pair? v)
- (let ((w (car v)) (x (cdr v)))
- (match-one w p ((car v) (set-car! v))
- (match-one x q ((cdr v) (set-cdr! v)) sk fk)
- fk
- i))
- fk))
- ((match-two v #(p ...) g+s . x)
- (match-vector v 0 () (p ...) . x))
- ((match-two v _ g+s (sk ...) fk i) (sk ... i))
- ;; Not a pair or vector or special literal, test to see if it's a
- ;; new symbol, in which case we just bind it, or if it's an
- ;; already bound symbol or some other literal, in which case we
- ;; compare it with EQUAL?.
- ((match-two v x g+s (sk ...) fk (id ...))
- (let-syntax
- ((new-sym?
- (syntax-rules (id ...)
- ((new-sym? x sk2 fk2) sk2)
- ((new-sym? y sk2 fk2) fk2))))
- (new-sym? random-sym-to-match
- (let ((x v)) (sk ... (id ... x)))
- (if (equal? v x) (sk ... (id ...)) fk))))
- ))
- ;; QUASIQUOTE patterns
- (define-syntax match-quasiquote
- (syntax-rules (unquote unquote-splicing quasiquote)
- ((_ v (unquote p) g+s sk fk i)
- (match-one v p g+s sk fk i))
- ((_ v ((unquote-splicing p) . rest) g+s sk fk i)
- (if (pair? v)
- (match-one v
- (p . tmp)
- (match-quasiquote tmp rest g+s sk fk)
- fk
- i)
- fk))
- ((_ v (quasiquote p) g+s sk fk i . depth)
- (match-quasiquote v p g+s sk fk i #f . depth))
- ((_ v (unquote p) g+s sk fk i x . depth)
- (match-quasiquote v p g+s sk fk i . depth))
- ((_ v (unquote-splicing p) g+s sk fk i x . depth)
- (match-quasiquote v p g+s sk fk i . depth))
- ((_ v (p . q) g+s sk fk i . depth)
- (if (pair? v)
- (let ((w (car v)) (x (cdr v)))
- (match-quasiquote
- w p g+s
- (match-quasiquote-step x q g+s sk fk depth)
- fk i . depth))
- fk))
- ((_ v #(elt ...) g+s sk fk i . depth)
- (if (vector? v)
- (let ((ls (vector->list v)))
- (match-quasiquote ls (elt ...) g+s sk fk i . depth))
- fk))
- ((_ v x g+s sk fk i . depth)
- (match-one v 'x g+s sk fk i))))
- (define-syntax match-quasiquote-step
- (syntax-rules ()
- ((match-quasiquote-step x q g+s sk fk depth i)
- (match-quasiquote x q g+s sk fk i . depth))))
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;; Utilities
- ;; Takes two values and just expands into the first.
- (define-syntax match-drop-ids
- (syntax-rules ()
- ((_ expr ids ...) expr)))
- (define-syntax match-tuck-ids
- (syntax-rules ()
- ((_ (letish args (expr ...)) ids ...)
- (letish args (expr ... ids ...)))))
- (define-syntax match-drop-first-arg
- (syntax-rules ()
- ((_ arg expr) expr)))
- ;; To expand an OR group we try each clause in succession, passing the
- ;; first that succeeds to the success continuation. On failure for
- ;; any clause, we just try the next clause, finally resorting to the
- ;; failure continuation fk if all clauses fail. The only trick is
- ;; that we want to unify the identifiers, so that the success
- ;; continuation can refer to a variable from any of the OR clauses.
- (define-syntax match-gen-or
- (syntax-rules ()
- ((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
- (let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
- (match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
- (define-syntax match-gen-or-step
- (syntax-rules ()
- ((_ v () g+s sk fk . x)
- ;; no OR clauses, call the failure continuation
- fk)
- ((_ v (p) . x)
- ;; last (or only) OR clause, just expand normally
- (match-one v p . x))
- ((_ v (p . q) g+s sk fk i)
- ;; match one and try the remaining on failure
- (let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
- (match-one v p g+s sk (fk2) i)))
- ))
- ;; We match a pattern (p ...) by matching the pattern p in a loop on
- ;; each element of the variable, accumulating the bound ids into lists.
- ;; Look at the body of the simple case - it's just a named let loop,
- ;; matching each element in turn to the same pattern. The only trick
- ;; is that we want to keep track of the lists of each extracted id, so
- ;; when the loop recurses we cons the ids onto their respective list
- ;; variables, and on success we bind the ids (what the user input and
- ;; expects to see in the success body) to the reversed accumulated
- ;; list IDs.
- (define-syntax match-gen-ellipsis
- (syntax-rules ()
- ((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
- (match-check-identifier p
- ;; simplest case equivalent to (p ...), just bind the list
- (let ((w v))
- (if (list? w)
- (match-one w p g+s (sk ...) fk i)
- fk))
- ;; simple case, match all elements of the list
- (let loop ((ls v) (id-ls '()) ...)
- (cond
- ((null? ls)
- (let ((id (reverse id-ls)) ...) (sk ... i)))
- ((pair? ls)
- (let ((w (car ls)))
- (match-one w p ((car ls) (set-car! ls))
- (match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
- fk i)))
- (else
- fk)))))
- ((_ v p r g+s sk fk (i ...) ((id id-ls) ...))
- (match-verify-no-ellipsis
- r
- (match-bound-identifier-memv
- p
- (i ...)
- ;; p is bound, match the list up to the known length, then
- ;; match the trailing patterns
- (let loop ((ls v) (expect p))
- (cond
- ((null? expect)
- (match-one ls r (#f #f) sk fk (i ...)))
- ((pair? ls)
- (let ((w (car ls))
- (e (car expect)))
- (if (equal? (car ls) (car expect))
- (match-drop-ids (loop (cdr ls) (cdr expect)))
- fk)))
- (else
- fk)))
- ;; general case, trailing patterns to match, keep track of the
- ;; remaining list length so we don't need any backtracking
- (let* ((tail-len (length 'r))
- (ls v)
- (len (and (list? ls) (length ls))))
- (if (or (not len) (< len tail-len))
- fk
- (let loop ((ls ls) (n len) (id-ls '()) ...)
- (cond
- ((= n tail-len)
- (let ((id (reverse id-ls)) ...)
- (match-one ls r (#f #f) sk fk (i ... id ...))))
- ((pair? ls)
- (let ((w (car ls)))
- (match-one w p ((car ls) (set-car! ls))
- (match-drop-ids
- (loop (cdr ls) (- n 1) (cons id id-ls) ...))
- fk
- (i ...))))
- (else
- fk))))))))))
- ;; This is just a safety check. Although unlike syntax-rules we allow
- ;; trailing patterns after an ellipsis, we explicitly disable multiple
- ;; ellipses at the same level. This is because in the general case
- ;; such patterns are exponential in the number of ellipses, and we
- ;; don't want to make it easy to construct very expensive operations
- ;; with simple looking patterns. For example, it would be O(n^2) for
- ;; patterns like (a ... b ...) because we must consider every trailing
- ;; element for every possible break for the leading "a ...".
- (define-syntax match-verify-no-ellipsis
- (syntax-rules ()
- ((_ (x . y) sk)
- (match-check-ellipsis
- x
- (match-syntax-error
- "multiple ellipsis patterns not allowed at same level")
- (match-verify-no-ellipsis y sk)))
- ((_ () sk)
- sk)
- ((_ x sk)
- (match-syntax-error "dotted tail not allowed after ellipsis" x))))
- ;; To implement the tree search, we use two recursive procedures. TRY
- ;; attempts to match Y once, and on success it calls the normal SK on
- ;; the accumulated list ids as in MATCH-GEN-ELLIPSIS. On failure, we
- ;; call NEXT which first checks if the current value is a list
- ;; beginning with X, then calls TRY on each remaining element of the
- ;; list. Since TRY will recursively call NEXT again on failure, this
- ;; effects a full depth-first search.
- ;;
- ;; The failure continuation throughout is a jump to the next step in
- ;; the tree search, initialized with the original failure continuation
- ;; FK.
- (define-syntax match-gen-search
- (syntax-rules ()
- ((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
- (letrec ((try (lambda (w fail id-ls ...)
- (match-one w q g+s
- (match-tuck-ids
- (let ((id (reverse id-ls)) ...)
- sk))
- (next w fail id-ls ...) i)))
- (next (lambda (w fail id-ls ...)
- (if (not (pair? w))
- (fail)
- (let ((u (car w)))
- (match-one
- u p ((car w) (set-car! w))
- (match-drop-ids
- ;; accumulate the head variables from
- ;; the p pattern, and loop over the tail
- (let ((id-ls (cons id id-ls)) ...)
- (let lp ((ls (cdr w)))
- (if (pair? ls)
- (try (car ls)
- (lambda () (lp (cdr ls)))
- id-ls ...)
- (fail)))))
- (fail) i))))))
- ;; the initial id-ls binding here is a dummy to get the right
- ;; number of '()s
- (let ((id-ls '()) ...)
- (try v (lambda () fk) id-ls ...))))))
- ;; Vector patterns are just more of the same, with the slight
- ;; exception that we pass around the current vector index being
- ;; matched.
- (define-syntax match-vector
- (syntax-rules (___)
- ((_ v n pats (p q) . x)
- (match-check-ellipsis q
- (match-gen-vector-ellipsis v n pats p . x)
- (match-vector-two v n pats (p q) . x)))
- ((_ v n pats (p ___) sk fk i)
- (match-gen-vector-ellipsis v n pats p sk fk i))
- ((_ . x)
- (match-vector-two . x))))
- ;; Check the exact vector length, then check each element in turn.
- (define-syntax match-vector-two
- (syntax-rules ()
- ((_ v n ((pat index) ...) () sk fk i)
- (if (vector? v)
- (let ((len (vector-length v)))
- (if (= len n)
- (match-vector-step v ((pat index) ...) sk fk i)
- fk))
- fk))
- ((_ v n (pats ...) (p . q) . x)
- (match-vector v (+ n 1) (pats ... (p n)) q . x))))
- (define-syntax match-vector-step
- (syntax-rules ()
- ((_ v () (sk ...) fk i) (sk ... i))
- ((_ v ((pat index) . rest) sk fk i)
- (let ((w (vector-ref v index)))
- (match-one w pat ((vector-ref v index) (vector-set! v index))
- (match-vector-step v rest sk fk)
- fk i)))))
- ;; With a vector ellipsis pattern we first check to see if the vector
- ;; length is at least the required length.
- (define-syntax match-gen-vector-ellipsis
- (syntax-rules ()
- ((_ v n ((pat index) ...) p sk fk i)
- (if (vector? v)
- (let ((len (vector-length v)))
- (if (>= len n)
- (match-vector-step v ((pat index) ...)
- (match-vector-tail v p n len sk fk)
- fk i)
- fk))
- fk))))
- (define-syntax match-vector-tail
- (syntax-rules ()
- ((_ v p n len sk fk i)
- (match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
- (define-syntax match-vector-tail-two
- (syntax-rules ()
- ((_ v p n len (sk ...) fk i ((id id-ls) ...))
- (let loop ((j n) (id-ls '()) ...)
- (if (>= j len)
- (let ((id (reverse id-ls)) ...) (sk ... i))
- (let ((w (vector-ref v j)))
- (match-one w p ((vector-ref v j) (vector-set! v j))
- (match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
- fk i)))))))
- (define-syntax match-record-refs
- (syntax-rules ()
- ((_ v rec n (p . q) g+s sk fk i)
- (let ((w (slot-ref rec v n)))
- (match-one w p ((slot-ref rec v n) (slot-set! rec v n))
- (match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
- ((_ v rec n () g+s (sk ...) fk i)
- (sk ... i))))
- ;; Extract all identifiers in a pattern. A little more complicated
- ;; than just looking for symbols, we need to ignore special keywords
- ;; and non-pattern forms (such as the predicate expression in ?
- ;; patterns), and also ignore previously bound identifiers.
- ;;
- ;; Calls the continuation with all new vars as a list of the form
- ;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
- ;; pair with the original variable (e.g. it's used in the ellipsis
- ;; generation for list variables).
- ;;
- ;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
- (define-syntax match-extract-vars
- (syntax-rules (_ ___ ..1 *** ? $ = quote quasiquote and or not get! set!)
- ((match-extract-vars (? pred . p) . x)
- (match-extract-vars p . x))
- ((match-extract-vars ($ rec . p) . x)
- (match-extract-vars p . x))
- ((match-extract-vars (= proc p) . x)
- (match-extract-vars p . x))
- ((match-extract-vars (quote x) (k ...) i v)
- (k ... v))
- ((match-extract-vars (quasiquote x) k i v)
- (match-extract-quasiquote-vars x k i v (#t)))
- ((match-extract-vars (and . p) . x)
- (match-extract-vars p . x))
- ((match-extract-vars (or . p) . x)
- (match-extract-vars p . x))
- ((match-extract-vars (not . p) . x)
- (match-extract-vars p . x))
- ;; A non-keyword pair, expand the CAR with a continuation to
- ;; expand the CDR.
- ((match-extract-vars (p q . r) k i v)
- (match-check-ellipsis
- q
- (match-extract-vars (p . r) k i v)
- (match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
- ((match-extract-vars (p . q) k i v)
- (match-extract-vars p (match-extract-vars-step q k i v) i ()))
- ((match-extract-vars #(p ...) . x)
- (match-extract-vars (p ...) . x))
- ((match-extract-vars _ (k ...) i v) (k ... v))
- ((match-extract-vars ___ (k ...) i v) (k ... v))
- ((match-extract-vars *** (k ...) i v) (k ... v))
- ((match-extract-vars ..1 (k ...) i v) (k ... v))
- ;; This is the main part, the only place where we might add a new
- ;; var if it's an unbound symbol.
- ((match-extract-vars p (k ...) (i ...) v)
- (let-syntax
- ((new-sym?
- (syntax-rules (i ...)
- ((new-sym? p sk fk) sk)
- ((new-sym? any sk fk) fk))))
- (new-sym? random-sym-to-match
- (k ... ((p p-ls) . v))
- (k ... v))))
- ))
- ;; Stepper used in the above so it can expand the CAR and CDR
- ;; separately.
- (define-syntax match-extract-vars-step
- (syntax-rules ()
- ((_ p k i v ((v2 v2-ls) ...))
- (match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
- ))
- (define-syntax match-extract-quasiquote-vars
- (syntax-rules (quasiquote unquote unquote-splicing)
- ((match-extract-quasiquote-vars (quasiquote x) k i v d)
- (match-extract-quasiquote-vars x k i v (#t . d)))
- ((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
- (match-extract-quasiquote-vars (unquote x) k i v d))
- ((match-extract-quasiquote-vars (unquote x) k i v (#t))
- (match-extract-vars x k i v))
- ((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
- (match-extract-quasiquote-vars x k i v d))
- ((match-extract-quasiquote-vars (x . y) k i v d)
- (match-extract-quasiquote-vars
- x
- (match-extract-quasiquote-vars-step y k i v d) i () d))
- ((match-extract-quasiquote-vars #(x ...) k i v d)
- (match-extract-quasiquote-vars (x ...) k i v d))
- ((match-extract-quasiquote-vars x (k ...) i v d)
- (k ... v))
- ))
- (define-syntax match-extract-quasiquote-vars-step
- (syntax-rules ()
- ((_ x k i v d ((v2 v2-ls) ...))
- (match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
- ))
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;; Gimme some sugar baby.
- ;;> Shortcut for @scheme{lambda} + @scheme{match}. Creates a
- ;;> procedure of one argument, and matches that argument against each
- ;;> clause.
- (define-syntax match-lambda
- (syntax-rules ()
- ((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
- ;;> Similar to @scheme{match-lambda}. Creates a procedure of any
- ;;> number of arguments, and matches the argument list against each
- ;;> clause.
- (define-syntax match-lambda*
- (syntax-rules ()
- ((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
- ;;> Matches each var to the corresponding expression, and evaluates
- ;;> the body with all match variables in scope. Raises an error if
- ;;> any of the expressions fail to match. Syntax analogous to named
- ;;> let can also be used for recursive functions which match on their
- ;;> arguments as in @scheme{match-lambda*}.
- (define-syntax match-let
- (syntax-rules ()
- ((_ ((var value) ...) . body)
- (match-let/helper let () () ((var value) ...) . body))
- ((_ loop ((var init) ...) . body)
- (match-named-let loop () ((var init) ...) . body))))
- ;;> Similar to @scheme{match-let}, but analogously to @scheme{letrec}
- ;;> matches and binds the variables with all match variables in scope.
- (define-syntax match-letrec
- (syntax-rules ()
- ((_ ((var value) ...) . body)
- (match-let/helper letrec () () ((var value) ...) . body))))
- (define-syntax match-let/helper
- (syntax-rules ()
- ((_ let ((var expr) ...) () () . body)
- (let ((var expr) ...) . body))
- ((_ let ((var expr) ...) ((pat tmp) ...) () . body)
- (let ((var expr) ...)
- (match-let* ((pat tmp) ...)
- . body)))
- ((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
- (match-let/helper
- let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
- ((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
- (match-let/helper
- let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
- ((_ let (v ...) (p ...) ((a expr) . rest) . body)
- (match-let/helper let (v ... (a expr)) (p ...) rest . body))))
- (define-syntax match-named-let
- (syntax-rules ()
- ((_ loop ((pat expr var) ...) () . body)
- (let loop ((var expr) ...)
- (match-let ((pat var) ...)
- . body)))
- ((_ loop (v ...) ((pat expr) . rest) . body)
- (match-named-let loop (v ... (pat expr tmp)) rest . body))))
- ;;> @subsubsubsection{@rawcode{(match-let* ((var value) ...) body ...)}}
- ;;> Similar to @scheme{match-let}, but analogously to @scheme{let*}
- ;;> matches and binds the variables in sequence, with preceding match
- ;;> variables in scope.
- (define-syntax match-let*
- (syntax-rules ()
- ((_ () . body)
- (let () . body))
- ((_ ((pat expr) . rest) . body)
- (match expr (pat (match-let* rest . body))))))
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;; Otherwise COND-EXPANDed bits.
- ;; This *should* work, but doesn't :(
- ;; (define-syntax match-check-ellipsis
- ;; (syntax-rules (...)
- ;; ((_ ... sk fk) sk)
- ;; ((_ x sk fk) fk)))
- ;; This is a little more complicated, and introduces a new let-syntax,
- ;; but should work portably in any R[56]RS Scheme. Taylor Campbell
- ;; originally came up with the idea.
- (define-syntax match-check-ellipsis
- (syntax-rules ()
- ;; these two aren't necessary but provide fast-case failures
- ((match-check-ellipsis (a . b) success-k failure-k) failure-k)
- ((match-check-ellipsis #(a ...) success-k failure-k) failure-k)
- ;; matching an atom
- ((match-check-ellipsis id success-k failure-k)
- (let-syntax ((ellipsis? (syntax-rules ()
- ;; iff `id' is `...' here then this will
- ;; match a list of any length
- ((ellipsis? (foo id) sk fk) sk)
- ((ellipsis? other sk fk) fk))))
- ;; this list of three elements will only match the (foo id) list
- ;; above if `id' is `...'
- (ellipsis? (a b c) success-k failure-k)))))
- ;; This is portable but can be more efficient with non-portable
- ;; extensions. This trick was originally discovered by Oleg Kiselyov.
- (define-syntax match-check-identifier
- (syntax-rules ()
- ;; fast-case failures, lists and vectors are not identifiers
- ((_ (x . y) success-k failure-k) failure-k)
- ((_ #(x ...) success-k failure-k) failure-k)
- ;; x is an atom
- ((_ x success-k failure-k)
- (let-syntax
- ((sym?
- (syntax-rules ()
- ;; if the symbol `abracadabra' matches x, then x is a
- ;; symbol
- ((sym? x sk fk) sk)
- ;; otherwise x is a non-symbol datum
- ((sym? y sk fk) fk))))
- (sym? abracadabra success-k failure-k)))))
- (define-syntax match-bound-identifier-memv
- (syntax-rules ()
- ((match-bound-identifier-memv a (id ...) sk fk)
- (match-check-identifier
- a
- (let-syntax
- ((memv?
- (syntax-rules (id ...)
- ((memv? a sk2 fk2) fk2)
- ((memv? anything-else sk2 fk2) sk2))))
- (memv? random-sym-to-match sk fk))
- fk))))
|