arm_pmu.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #undef DEBUG
  3. /*
  4. * ARM performance counter support.
  5. *
  6. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  8. *
  9. * This code is based on the sparc64 perf event code, which is in turn based
  10. * on the x86 code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/cpumask.h>
  15. #include <linux/cpu_pm.h>
  16. #include <linux/export.h>
  17. #include <linux/kernel.h>
  18. #include <linux/perf/arm_pmu.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched/clock.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/irq.h>
  23. #include <linux/irqdesc.h>
  24. #include <asm/irq_regs.h>
  25. static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
  26. static DEFINE_PER_CPU(int, cpu_irq);
  27. static inline u64 arm_pmu_event_max_period(struct perf_event *event)
  28. {
  29. if (event->hw.flags & ARMPMU_EVT_64BIT)
  30. return GENMASK_ULL(63, 0);
  31. else
  32. return GENMASK_ULL(31, 0);
  33. }
  34. static int
  35. armpmu_map_cache_event(const unsigned (*cache_map)
  36. [PERF_COUNT_HW_CACHE_MAX]
  37. [PERF_COUNT_HW_CACHE_OP_MAX]
  38. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  39. u64 config)
  40. {
  41. unsigned int cache_type, cache_op, cache_result, ret;
  42. cache_type = (config >> 0) & 0xff;
  43. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  44. return -EINVAL;
  45. cache_op = (config >> 8) & 0xff;
  46. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  47. return -EINVAL;
  48. cache_result = (config >> 16) & 0xff;
  49. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  50. return -EINVAL;
  51. if (!cache_map)
  52. return -ENOENT;
  53. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  54. if (ret == CACHE_OP_UNSUPPORTED)
  55. return -ENOENT;
  56. return ret;
  57. }
  58. static int
  59. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  60. {
  61. int mapping;
  62. if (config >= PERF_COUNT_HW_MAX)
  63. return -EINVAL;
  64. if (!event_map)
  65. return -ENOENT;
  66. mapping = (*event_map)[config];
  67. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  68. }
  69. static int
  70. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  71. {
  72. return (int)(config & raw_event_mask);
  73. }
  74. int
  75. armpmu_map_event(struct perf_event *event,
  76. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  77. const unsigned (*cache_map)
  78. [PERF_COUNT_HW_CACHE_MAX]
  79. [PERF_COUNT_HW_CACHE_OP_MAX]
  80. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  81. u32 raw_event_mask)
  82. {
  83. u64 config = event->attr.config;
  84. int type = event->attr.type;
  85. if (type == event->pmu->type)
  86. return armpmu_map_raw_event(raw_event_mask, config);
  87. switch (type) {
  88. case PERF_TYPE_HARDWARE:
  89. return armpmu_map_hw_event(event_map, config);
  90. case PERF_TYPE_HW_CACHE:
  91. return armpmu_map_cache_event(cache_map, config);
  92. case PERF_TYPE_RAW:
  93. return armpmu_map_raw_event(raw_event_mask, config);
  94. }
  95. return -ENOENT;
  96. }
  97. int armpmu_event_set_period(struct perf_event *event)
  98. {
  99. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  100. struct hw_perf_event *hwc = &event->hw;
  101. s64 left = local64_read(&hwc->period_left);
  102. s64 period = hwc->sample_period;
  103. u64 max_period;
  104. int ret = 0;
  105. max_period = arm_pmu_event_max_period(event);
  106. if (unlikely(left <= -period)) {
  107. left = period;
  108. local64_set(&hwc->period_left, left);
  109. hwc->last_period = period;
  110. ret = 1;
  111. }
  112. if (unlikely(left <= 0)) {
  113. left += period;
  114. local64_set(&hwc->period_left, left);
  115. hwc->last_period = period;
  116. ret = 1;
  117. }
  118. /*
  119. * Limit the maximum period to prevent the counter value
  120. * from overtaking the one we are about to program. In
  121. * effect we are reducing max_period to account for
  122. * interrupt latency (and we are being very conservative).
  123. */
  124. if (left > (max_period >> 1))
  125. left = (max_period >> 1);
  126. local64_set(&hwc->prev_count, (u64)-left);
  127. armpmu->write_counter(event, (u64)(-left) & max_period);
  128. perf_event_update_userpage(event);
  129. return ret;
  130. }
  131. u64 armpmu_event_update(struct perf_event *event)
  132. {
  133. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  134. struct hw_perf_event *hwc = &event->hw;
  135. u64 delta, prev_raw_count, new_raw_count;
  136. u64 max_period = arm_pmu_event_max_period(event);
  137. again:
  138. prev_raw_count = local64_read(&hwc->prev_count);
  139. new_raw_count = armpmu->read_counter(event);
  140. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  141. new_raw_count) != prev_raw_count)
  142. goto again;
  143. delta = (new_raw_count - prev_raw_count) & max_period;
  144. local64_add(delta, &event->count);
  145. local64_sub(delta, &hwc->period_left);
  146. return new_raw_count;
  147. }
  148. static void
  149. armpmu_read(struct perf_event *event)
  150. {
  151. armpmu_event_update(event);
  152. }
  153. static void
  154. armpmu_stop(struct perf_event *event, int flags)
  155. {
  156. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  157. struct hw_perf_event *hwc = &event->hw;
  158. /*
  159. * ARM pmu always has to update the counter, so ignore
  160. * PERF_EF_UPDATE, see comments in armpmu_start().
  161. */
  162. if (!(hwc->state & PERF_HES_STOPPED)) {
  163. armpmu->disable(event);
  164. armpmu_event_update(event);
  165. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  166. }
  167. }
  168. static void armpmu_start(struct perf_event *event, int flags)
  169. {
  170. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  171. struct hw_perf_event *hwc = &event->hw;
  172. /*
  173. * ARM pmu always has to reprogram the period, so ignore
  174. * PERF_EF_RELOAD, see the comment below.
  175. */
  176. if (flags & PERF_EF_RELOAD)
  177. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  178. hwc->state = 0;
  179. /*
  180. * Set the period again. Some counters can't be stopped, so when we
  181. * were stopped we simply disabled the IRQ source and the counter
  182. * may have been left counting. If we don't do this step then we may
  183. * get an interrupt too soon or *way* too late if the overflow has
  184. * happened since disabling.
  185. */
  186. armpmu_event_set_period(event);
  187. armpmu->enable(event);
  188. }
  189. static void
  190. armpmu_del(struct perf_event *event, int flags)
  191. {
  192. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  193. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  194. struct hw_perf_event *hwc = &event->hw;
  195. int idx = hwc->idx;
  196. armpmu_stop(event, PERF_EF_UPDATE);
  197. hw_events->events[idx] = NULL;
  198. armpmu->clear_event_idx(hw_events, event);
  199. perf_event_update_userpage(event);
  200. /* Clear the allocated counter */
  201. hwc->idx = -1;
  202. }
  203. static int
  204. armpmu_add(struct perf_event *event, int flags)
  205. {
  206. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  207. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  208. struct hw_perf_event *hwc = &event->hw;
  209. int idx;
  210. /* An event following a process won't be stopped earlier */
  211. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  212. return -ENOENT;
  213. /* If we don't have a space for the counter then finish early. */
  214. idx = armpmu->get_event_idx(hw_events, event);
  215. if (idx < 0)
  216. return idx;
  217. /*
  218. * If there is an event in the counter we are going to use then make
  219. * sure it is disabled.
  220. */
  221. event->hw.idx = idx;
  222. armpmu->disable(event);
  223. hw_events->events[idx] = event;
  224. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  225. if (flags & PERF_EF_START)
  226. armpmu_start(event, PERF_EF_RELOAD);
  227. /* Propagate our changes to the userspace mapping. */
  228. perf_event_update_userpage(event);
  229. return 0;
  230. }
  231. static int
  232. validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
  233. struct perf_event *event)
  234. {
  235. struct arm_pmu *armpmu;
  236. if (is_software_event(event))
  237. return 1;
  238. /*
  239. * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
  240. * core perf code won't check that the pmu->ctx == leader->ctx
  241. * until after pmu->event_init(event).
  242. */
  243. if (event->pmu != pmu)
  244. return 0;
  245. if (event->state < PERF_EVENT_STATE_OFF)
  246. return 1;
  247. if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
  248. return 1;
  249. armpmu = to_arm_pmu(event->pmu);
  250. return armpmu->get_event_idx(hw_events, event) >= 0;
  251. }
  252. static int
  253. validate_group(struct perf_event *event)
  254. {
  255. struct perf_event *sibling, *leader = event->group_leader;
  256. struct pmu_hw_events fake_pmu;
  257. /*
  258. * Initialise the fake PMU. We only need to populate the
  259. * used_mask for the purposes of validation.
  260. */
  261. memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
  262. if (!validate_event(event->pmu, &fake_pmu, leader))
  263. return -EINVAL;
  264. for_each_sibling_event(sibling, leader) {
  265. if (!validate_event(event->pmu, &fake_pmu, sibling))
  266. return -EINVAL;
  267. }
  268. if (!validate_event(event->pmu, &fake_pmu, event))
  269. return -EINVAL;
  270. return 0;
  271. }
  272. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  273. {
  274. struct arm_pmu *armpmu;
  275. int ret;
  276. u64 start_clock, finish_clock;
  277. /*
  278. * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
  279. * the handlers expect a struct arm_pmu*. The percpu_irq framework will
  280. * do any necessary shifting, we just need to perform the first
  281. * dereference.
  282. */
  283. armpmu = *(void **)dev;
  284. if (WARN_ON_ONCE(!armpmu))
  285. return IRQ_NONE;
  286. start_clock = sched_clock();
  287. ret = armpmu->handle_irq(armpmu);
  288. finish_clock = sched_clock();
  289. perf_sample_event_took(finish_clock - start_clock);
  290. return ret;
  291. }
  292. static int
  293. __hw_perf_event_init(struct perf_event *event)
  294. {
  295. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  296. struct hw_perf_event *hwc = &event->hw;
  297. int mapping;
  298. hwc->flags = 0;
  299. mapping = armpmu->map_event(event);
  300. if (mapping < 0) {
  301. pr_debug("event %x:%llx not supported\n", event->attr.type,
  302. event->attr.config);
  303. return mapping;
  304. }
  305. /*
  306. * We don't assign an index until we actually place the event onto
  307. * hardware. Use -1 to signify that we haven't decided where to put it
  308. * yet. For SMP systems, each core has it's own PMU so we can't do any
  309. * clever allocation or constraints checking at this point.
  310. */
  311. hwc->idx = -1;
  312. hwc->config_base = 0;
  313. hwc->config = 0;
  314. hwc->event_base = 0;
  315. /*
  316. * Check whether we need to exclude the counter from certain modes.
  317. */
  318. if (armpmu->set_event_filter &&
  319. armpmu->set_event_filter(hwc, &event->attr)) {
  320. pr_debug("ARM performance counters do not support "
  321. "mode exclusion\n");
  322. return -EOPNOTSUPP;
  323. }
  324. /*
  325. * Store the event encoding into the config_base field.
  326. */
  327. hwc->config_base |= (unsigned long)mapping;
  328. if (!is_sampling_event(event)) {
  329. /*
  330. * For non-sampling runs, limit the sample_period to half
  331. * of the counter width. That way, the new counter value
  332. * is far less likely to overtake the previous one unless
  333. * you have some serious IRQ latency issues.
  334. */
  335. hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
  336. hwc->last_period = hwc->sample_period;
  337. local64_set(&hwc->period_left, hwc->sample_period);
  338. }
  339. if (event->group_leader != event) {
  340. if (validate_group(event) != 0)
  341. return -EINVAL;
  342. }
  343. return 0;
  344. }
  345. static int armpmu_event_init(struct perf_event *event)
  346. {
  347. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  348. /*
  349. * Reject CPU-affine events for CPUs that are of a different class to
  350. * that which this PMU handles. Process-following events (where
  351. * event->cpu == -1) can be migrated between CPUs, and thus we have to
  352. * reject them later (in armpmu_add) if they're scheduled on a
  353. * different class of CPU.
  354. */
  355. if (event->cpu != -1 &&
  356. !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
  357. return -ENOENT;
  358. /* does not support taken branch sampling */
  359. if (has_branch_stack(event))
  360. return -EOPNOTSUPP;
  361. if (armpmu->map_event(event) == -ENOENT)
  362. return -ENOENT;
  363. return __hw_perf_event_init(event);
  364. }
  365. static void armpmu_enable(struct pmu *pmu)
  366. {
  367. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  368. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  369. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  370. /* For task-bound events we may be called on other CPUs */
  371. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  372. return;
  373. if (enabled)
  374. armpmu->start(armpmu);
  375. }
  376. static void armpmu_disable(struct pmu *pmu)
  377. {
  378. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  379. /* For task-bound events we may be called on other CPUs */
  380. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  381. return;
  382. armpmu->stop(armpmu);
  383. }
  384. /*
  385. * In heterogeneous systems, events are specific to a particular
  386. * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
  387. * the same microarchitecture.
  388. */
  389. static int armpmu_filter_match(struct perf_event *event)
  390. {
  391. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  392. unsigned int cpu = smp_processor_id();
  393. int ret;
  394. ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
  395. if (ret && armpmu->filter_match)
  396. return armpmu->filter_match(event);
  397. return ret;
  398. }
  399. static ssize_t armpmu_cpumask_show(struct device *dev,
  400. struct device_attribute *attr, char *buf)
  401. {
  402. struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
  403. return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
  404. }
  405. static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
  406. static struct attribute *armpmu_common_attrs[] = {
  407. &dev_attr_cpus.attr,
  408. NULL,
  409. };
  410. static struct attribute_group armpmu_common_attr_group = {
  411. .attrs = armpmu_common_attrs,
  412. };
  413. /* Set at runtime when we know what CPU type we are. */
  414. static struct arm_pmu *__oprofile_cpu_pmu;
  415. /*
  416. * Despite the names, these two functions are CPU-specific and are used
  417. * by the OProfile/perf code.
  418. */
  419. const char *perf_pmu_name(void)
  420. {
  421. if (!__oprofile_cpu_pmu)
  422. return NULL;
  423. return __oprofile_cpu_pmu->name;
  424. }
  425. EXPORT_SYMBOL_GPL(perf_pmu_name);
  426. int perf_num_counters(void)
  427. {
  428. int max_events = 0;
  429. if (__oprofile_cpu_pmu != NULL)
  430. max_events = __oprofile_cpu_pmu->num_events;
  431. return max_events;
  432. }
  433. EXPORT_SYMBOL_GPL(perf_num_counters);
  434. static int armpmu_count_irq_users(const int irq)
  435. {
  436. int cpu, count = 0;
  437. for_each_possible_cpu(cpu) {
  438. if (per_cpu(cpu_irq, cpu) == irq)
  439. count++;
  440. }
  441. return count;
  442. }
  443. void armpmu_free_irq(int irq, int cpu)
  444. {
  445. if (per_cpu(cpu_irq, cpu) == 0)
  446. return;
  447. if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
  448. return;
  449. if (!irq_is_percpu_devid(irq))
  450. free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
  451. else if (armpmu_count_irq_users(irq) == 1)
  452. free_percpu_irq(irq, &cpu_armpmu);
  453. per_cpu(cpu_irq, cpu) = 0;
  454. }
  455. int armpmu_request_irq(int irq, int cpu)
  456. {
  457. int err = 0;
  458. const irq_handler_t handler = armpmu_dispatch_irq;
  459. if (!irq)
  460. return 0;
  461. if (!irq_is_percpu_devid(irq)) {
  462. unsigned long irq_flags;
  463. err = irq_force_affinity(irq, cpumask_of(cpu));
  464. if (err && num_possible_cpus() > 1) {
  465. pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
  466. irq, cpu);
  467. goto err_out;
  468. }
  469. irq_flags = IRQF_PERCPU |
  470. IRQF_NOBALANCING |
  471. IRQF_NO_THREAD;
  472. irq_set_status_flags(irq, IRQ_NOAUTOEN);
  473. err = request_irq(irq, handler, irq_flags, "arm-pmu",
  474. per_cpu_ptr(&cpu_armpmu, cpu));
  475. } else if (armpmu_count_irq_users(irq) == 0) {
  476. err = request_percpu_irq(irq, handler, "arm-pmu",
  477. &cpu_armpmu);
  478. }
  479. if (err)
  480. goto err_out;
  481. per_cpu(cpu_irq, cpu) = irq;
  482. return 0;
  483. err_out:
  484. pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
  485. return err;
  486. }
  487. static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
  488. {
  489. struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
  490. return per_cpu(hw_events->irq, cpu);
  491. }
  492. /*
  493. * PMU hardware loses all context when a CPU goes offline.
  494. * When a CPU is hotplugged back in, since some hardware registers are
  495. * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
  496. * junk values out of them.
  497. */
  498. static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
  499. {
  500. struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
  501. int irq;
  502. if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
  503. return 0;
  504. if (pmu->reset)
  505. pmu->reset(pmu);
  506. per_cpu(cpu_armpmu, cpu) = pmu;
  507. irq = armpmu_get_cpu_irq(pmu, cpu);
  508. if (irq) {
  509. if (irq_is_percpu_devid(irq))
  510. enable_percpu_irq(irq, IRQ_TYPE_NONE);
  511. else
  512. enable_irq(irq);
  513. }
  514. return 0;
  515. }
  516. static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
  517. {
  518. struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
  519. int irq;
  520. if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
  521. return 0;
  522. irq = armpmu_get_cpu_irq(pmu, cpu);
  523. if (irq) {
  524. if (irq_is_percpu_devid(irq))
  525. disable_percpu_irq(irq);
  526. else
  527. disable_irq_nosync(irq);
  528. }
  529. per_cpu(cpu_armpmu, cpu) = NULL;
  530. return 0;
  531. }
  532. #ifdef CONFIG_CPU_PM
  533. static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
  534. {
  535. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  536. struct perf_event *event;
  537. int idx;
  538. for (idx = 0; idx < armpmu->num_events; idx++) {
  539. event = hw_events->events[idx];
  540. if (!event)
  541. continue;
  542. switch (cmd) {
  543. case CPU_PM_ENTER:
  544. /*
  545. * Stop and update the counter
  546. */
  547. armpmu_stop(event, PERF_EF_UPDATE);
  548. break;
  549. case CPU_PM_EXIT:
  550. case CPU_PM_ENTER_FAILED:
  551. /*
  552. * Restore and enable the counter.
  553. * armpmu_start() indirectly calls
  554. *
  555. * perf_event_update_userpage()
  556. *
  557. * that requires RCU read locking to be functional,
  558. * wrap the call within RCU_NONIDLE to make the
  559. * RCU subsystem aware this cpu is not idle from
  560. * an RCU perspective for the armpmu_start() call
  561. * duration.
  562. */
  563. RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
  564. break;
  565. default:
  566. break;
  567. }
  568. }
  569. }
  570. static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
  571. void *v)
  572. {
  573. struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
  574. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  575. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  576. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  577. return NOTIFY_DONE;
  578. /*
  579. * Always reset the PMU registers on power-up even if
  580. * there are no events running.
  581. */
  582. if (cmd == CPU_PM_EXIT && armpmu->reset)
  583. armpmu->reset(armpmu);
  584. if (!enabled)
  585. return NOTIFY_OK;
  586. switch (cmd) {
  587. case CPU_PM_ENTER:
  588. armpmu->stop(armpmu);
  589. cpu_pm_pmu_setup(armpmu, cmd);
  590. break;
  591. case CPU_PM_EXIT:
  592. case CPU_PM_ENTER_FAILED:
  593. cpu_pm_pmu_setup(armpmu, cmd);
  594. armpmu->start(armpmu);
  595. break;
  596. default:
  597. return NOTIFY_DONE;
  598. }
  599. return NOTIFY_OK;
  600. }
  601. static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
  602. {
  603. cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
  604. return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
  605. }
  606. static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
  607. {
  608. cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
  609. }
  610. #else
  611. static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
  612. static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
  613. #endif
  614. static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
  615. {
  616. int err;
  617. err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
  618. &cpu_pmu->node);
  619. if (err)
  620. goto out;
  621. err = cpu_pm_pmu_register(cpu_pmu);
  622. if (err)
  623. goto out_unregister;
  624. return 0;
  625. out_unregister:
  626. cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
  627. &cpu_pmu->node);
  628. out:
  629. return err;
  630. }
  631. static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
  632. {
  633. cpu_pm_pmu_unregister(cpu_pmu);
  634. cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
  635. &cpu_pmu->node);
  636. }
  637. static struct arm_pmu *__armpmu_alloc(gfp_t flags)
  638. {
  639. struct arm_pmu *pmu;
  640. int cpu;
  641. pmu = kzalloc(sizeof(*pmu), flags);
  642. if (!pmu) {
  643. pr_info("failed to allocate PMU device!\n");
  644. goto out;
  645. }
  646. pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
  647. if (!pmu->hw_events) {
  648. pr_info("failed to allocate per-cpu PMU data.\n");
  649. goto out_free_pmu;
  650. }
  651. pmu->pmu = (struct pmu) {
  652. .pmu_enable = armpmu_enable,
  653. .pmu_disable = armpmu_disable,
  654. .event_init = armpmu_event_init,
  655. .add = armpmu_add,
  656. .del = armpmu_del,
  657. .start = armpmu_start,
  658. .stop = armpmu_stop,
  659. .read = armpmu_read,
  660. .filter_match = armpmu_filter_match,
  661. .attr_groups = pmu->attr_groups,
  662. /*
  663. * This is a CPU PMU potentially in a heterogeneous
  664. * configuration (e.g. big.LITTLE). This is not an uncore PMU,
  665. * and we have taken ctx sharing into account (e.g. with our
  666. * pmu::filter_match callback and pmu::event_init group
  667. * validation).
  668. */
  669. .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
  670. };
  671. pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
  672. &armpmu_common_attr_group;
  673. for_each_possible_cpu(cpu) {
  674. struct pmu_hw_events *events;
  675. events = per_cpu_ptr(pmu->hw_events, cpu);
  676. raw_spin_lock_init(&events->pmu_lock);
  677. events->percpu_pmu = pmu;
  678. }
  679. return pmu;
  680. out_free_pmu:
  681. kfree(pmu);
  682. out:
  683. return NULL;
  684. }
  685. struct arm_pmu *armpmu_alloc(void)
  686. {
  687. return __armpmu_alloc(GFP_KERNEL);
  688. }
  689. struct arm_pmu *armpmu_alloc_atomic(void)
  690. {
  691. return __armpmu_alloc(GFP_ATOMIC);
  692. }
  693. void armpmu_free(struct arm_pmu *pmu)
  694. {
  695. free_percpu(pmu->hw_events);
  696. kfree(pmu);
  697. }
  698. int armpmu_register(struct arm_pmu *pmu)
  699. {
  700. int ret;
  701. ret = cpu_pmu_init(pmu);
  702. if (ret)
  703. return ret;
  704. if (!pmu->set_event_filter)
  705. pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
  706. ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
  707. if (ret)
  708. goto out_destroy;
  709. if (!__oprofile_cpu_pmu)
  710. __oprofile_cpu_pmu = pmu;
  711. pr_info("enabled with %s PMU driver, %d counters available\n",
  712. pmu->name, pmu->num_events);
  713. return 0;
  714. out_destroy:
  715. cpu_pmu_destroy(pmu);
  716. return ret;
  717. }
  718. static int arm_pmu_hp_init(void)
  719. {
  720. int ret;
  721. ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
  722. "perf/arm/pmu:starting",
  723. arm_perf_starting_cpu,
  724. arm_perf_teardown_cpu);
  725. if (ret)
  726. pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
  727. ret);
  728. return ret;
  729. }
  730. subsys_initcall(arm_pmu_hp_init);