fc0013.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Fitipower FC0013 tuner driver
  4. *
  5. * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
  6. * partially based on driver code from Fitipower
  7. * Copyright (C) 2010 Fitipower Integrated Technology Inc
  8. */
  9. #include "fc0013.h"
  10. #include "fc0013-priv.h"
  11. static int fc0013_writereg(struct fc0013_priv *priv, u8 reg, u8 val)
  12. {
  13. u8 buf[2] = {reg, val};
  14. struct i2c_msg msg = {
  15. .addr = priv->addr, .flags = 0, .buf = buf, .len = 2
  16. };
  17. if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
  18. err("I2C write reg failed, reg: %02x, val: %02x", reg, val);
  19. return -EREMOTEIO;
  20. }
  21. return 0;
  22. }
  23. static int fc0013_readreg(struct fc0013_priv *priv, u8 reg, u8 *val)
  24. {
  25. struct i2c_msg msg[2] = {
  26. { .addr = priv->addr, .flags = 0, .buf = &reg, .len = 1 },
  27. { .addr = priv->addr, .flags = I2C_M_RD, .buf = val, .len = 1 },
  28. };
  29. if (i2c_transfer(priv->i2c, msg, 2) != 2) {
  30. err("I2C read reg failed, reg: %02x", reg);
  31. return -EREMOTEIO;
  32. }
  33. return 0;
  34. }
  35. static void fc0013_release(struct dvb_frontend *fe)
  36. {
  37. kfree(fe->tuner_priv);
  38. fe->tuner_priv = NULL;
  39. }
  40. static int fc0013_init(struct dvb_frontend *fe)
  41. {
  42. struct fc0013_priv *priv = fe->tuner_priv;
  43. int i, ret = 0;
  44. unsigned char reg[] = {
  45. 0x00, /* reg. 0x00: dummy */
  46. 0x09, /* reg. 0x01 */
  47. 0x16, /* reg. 0x02 */
  48. 0x00, /* reg. 0x03 */
  49. 0x00, /* reg. 0x04 */
  50. 0x17, /* reg. 0x05 */
  51. 0x02, /* reg. 0x06 */
  52. 0x0a, /* reg. 0x07: CHECK */
  53. 0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
  54. Loop Bw 1/8 */
  55. 0x6f, /* reg. 0x09: enable LoopThrough */
  56. 0xb8, /* reg. 0x0a: Disable LO Test Buffer */
  57. 0x82, /* reg. 0x0b: CHECK */
  58. 0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
  59. 0x01, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, may need 0x02 */
  60. 0x00, /* reg. 0x0e */
  61. 0x00, /* reg. 0x0f */
  62. 0x00, /* reg. 0x10 */
  63. 0x00, /* reg. 0x11 */
  64. 0x00, /* reg. 0x12 */
  65. 0x00, /* reg. 0x13 */
  66. 0x50, /* reg. 0x14: DVB-t High Gain, UHF.
  67. Middle Gain: 0x48, Low Gain: 0x40 */
  68. 0x01, /* reg. 0x15 */
  69. };
  70. switch (priv->xtal_freq) {
  71. case FC_XTAL_27_MHZ:
  72. case FC_XTAL_28_8_MHZ:
  73. reg[0x07] |= 0x20;
  74. break;
  75. case FC_XTAL_36_MHZ:
  76. default:
  77. break;
  78. }
  79. if (priv->dual_master)
  80. reg[0x0c] |= 0x02;
  81. if (fe->ops.i2c_gate_ctrl)
  82. fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
  83. for (i = 1; i < sizeof(reg); i++) {
  84. ret = fc0013_writereg(priv, i, reg[i]);
  85. if (ret)
  86. break;
  87. }
  88. if (fe->ops.i2c_gate_ctrl)
  89. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  90. if (ret)
  91. err("fc0013_writereg failed: %d", ret);
  92. return ret;
  93. }
  94. static int fc0013_sleep(struct dvb_frontend *fe)
  95. {
  96. /* nothing to do here */
  97. return 0;
  98. }
  99. int fc0013_rc_cal_add(struct dvb_frontend *fe, int rc_val)
  100. {
  101. struct fc0013_priv *priv = fe->tuner_priv;
  102. int ret;
  103. u8 rc_cal;
  104. int val;
  105. if (fe->ops.i2c_gate_ctrl)
  106. fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
  107. /* push rc_cal value, get rc_cal value */
  108. ret = fc0013_writereg(priv, 0x10, 0x00);
  109. if (ret)
  110. goto error_out;
  111. /* get rc_cal value */
  112. ret = fc0013_readreg(priv, 0x10, &rc_cal);
  113. if (ret)
  114. goto error_out;
  115. rc_cal &= 0x0f;
  116. val = (int)rc_cal + rc_val;
  117. /* forcing rc_cal */
  118. ret = fc0013_writereg(priv, 0x0d, 0x11);
  119. if (ret)
  120. goto error_out;
  121. /* modify rc_cal value */
  122. if (val > 15)
  123. ret = fc0013_writereg(priv, 0x10, 0x0f);
  124. else if (val < 0)
  125. ret = fc0013_writereg(priv, 0x10, 0x00);
  126. else
  127. ret = fc0013_writereg(priv, 0x10, (u8)val);
  128. error_out:
  129. if (fe->ops.i2c_gate_ctrl)
  130. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  131. return ret;
  132. }
  133. EXPORT_SYMBOL(fc0013_rc_cal_add);
  134. int fc0013_rc_cal_reset(struct dvb_frontend *fe)
  135. {
  136. struct fc0013_priv *priv = fe->tuner_priv;
  137. int ret;
  138. if (fe->ops.i2c_gate_ctrl)
  139. fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
  140. ret = fc0013_writereg(priv, 0x0d, 0x01);
  141. if (!ret)
  142. ret = fc0013_writereg(priv, 0x10, 0x00);
  143. if (fe->ops.i2c_gate_ctrl)
  144. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  145. return ret;
  146. }
  147. EXPORT_SYMBOL(fc0013_rc_cal_reset);
  148. static int fc0013_set_vhf_track(struct fc0013_priv *priv, u32 freq)
  149. {
  150. int ret;
  151. u8 tmp;
  152. ret = fc0013_readreg(priv, 0x1d, &tmp);
  153. if (ret)
  154. goto error_out;
  155. tmp &= 0xe3;
  156. if (freq <= 177500) { /* VHF Track: 7 */
  157. ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c);
  158. } else if (freq <= 184500) { /* VHF Track: 6 */
  159. ret = fc0013_writereg(priv, 0x1d, tmp | 0x18);
  160. } else if (freq <= 191500) { /* VHF Track: 5 */
  161. ret = fc0013_writereg(priv, 0x1d, tmp | 0x14);
  162. } else if (freq <= 198500) { /* VHF Track: 4 */
  163. ret = fc0013_writereg(priv, 0x1d, tmp | 0x10);
  164. } else if (freq <= 205500) { /* VHF Track: 3 */
  165. ret = fc0013_writereg(priv, 0x1d, tmp | 0x0c);
  166. } else if (freq <= 219500) { /* VHF Track: 2 */
  167. ret = fc0013_writereg(priv, 0x1d, tmp | 0x08);
  168. } else if (freq < 300000) { /* VHF Track: 1 */
  169. ret = fc0013_writereg(priv, 0x1d, tmp | 0x04);
  170. } else { /* UHF and GPS */
  171. ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c);
  172. }
  173. error_out:
  174. return ret;
  175. }
  176. static int fc0013_set_params(struct dvb_frontend *fe)
  177. {
  178. struct fc0013_priv *priv = fe->tuner_priv;
  179. int i, ret = 0;
  180. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  181. u32 freq = p->frequency / 1000;
  182. u32 delsys = p->delivery_system;
  183. unsigned char reg[7], am, pm, multi, tmp;
  184. unsigned long f_vco;
  185. unsigned short xtal_freq_khz_2, xin, xdiv;
  186. bool vco_select = false;
  187. if (fe->callback) {
  188. ret = fe->callback(priv->i2c, DVB_FRONTEND_COMPONENT_TUNER,
  189. FC_FE_CALLBACK_VHF_ENABLE, (freq > 300000 ? 0 : 1));
  190. if (ret)
  191. goto exit;
  192. }
  193. switch (priv->xtal_freq) {
  194. case FC_XTAL_27_MHZ:
  195. xtal_freq_khz_2 = 27000 / 2;
  196. break;
  197. case FC_XTAL_36_MHZ:
  198. xtal_freq_khz_2 = 36000 / 2;
  199. break;
  200. case FC_XTAL_28_8_MHZ:
  201. default:
  202. xtal_freq_khz_2 = 28800 / 2;
  203. break;
  204. }
  205. if (fe->ops.i2c_gate_ctrl)
  206. fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
  207. /* set VHF track */
  208. ret = fc0013_set_vhf_track(priv, freq);
  209. if (ret)
  210. goto exit;
  211. if (freq < 300000) {
  212. /* enable VHF filter */
  213. ret = fc0013_readreg(priv, 0x07, &tmp);
  214. if (ret)
  215. goto exit;
  216. ret = fc0013_writereg(priv, 0x07, tmp | 0x10);
  217. if (ret)
  218. goto exit;
  219. /* disable UHF & disable GPS */
  220. ret = fc0013_readreg(priv, 0x14, &tmp);
  221. if (ret)
  222. goto exit;
  223. ret = fc0013_writereg(priv, 0x14, tmp & 0x1f);
  224. if (ret)
  225. goto exit;
  226. } else if (freq <= 862000) {
  227. /* disable VHF filter */
  228. ret = fc0013_readreg(priv, 0x07, &tmp);
  229. if (ret)
  230. goto exit;
  231. ret = fc0013_writereg(priv, 0x07, tmp & 0xef);
  232. if (ret)
  233. goto exit;
  234. /* enable UHF & disable GPS */
  235. ret = fc0013_readreg(priv, 0x14, &tmp);
  236. if (ret)
  237. goto exit;
  238. ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x40);
  239. if (ret)
  240. goto exit;
  241. } else {
  242. /* disable VHF filter */
  243. ret = fc0013_readreg(priv, 0x07, &tmp);
  244. if (ret)
  245. goto exit;
  246. ret = fc0013_writereg(priv, 0x07, tmp & 0xef);
  247. if (ret)
  248. goto exit;
  249. /* disable UHF & enable GPS */
  250. ret = fc0013_readreg(priv, 0x14, &tmp);
  251. if (ret)
  252. goto exit;
  253. ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x20);
  254. if (ret)
  255. goto exit;
  256. }
  257. /* select frequency divider and the frequency of VCO */
  258. if (freq < 37084) { /* freq * 96 < 3560000 */
  259. multi = 96;
  260. reg[5] = 0x82;
  261. reg[6] = 0x00;
  262. } else if (freq < 55625) { /* freq * 64 < 3560000 */
  263. multi = 64;
  264. reg[5] = 0x02;
  265. reg[6] = 0x02;
  266. } else if (freq < 74167) { /* freq * 48 < 3560000 */
  267. multi = 48;
  268. reg[5] = 0x42;
  269. reg[6] = 0x00;
  270. } else if (freq < 111250) { /* freq * 32 < 3560000 */
  271. multi = 32;
  272. reg[5] = 0x82;
  273. reg[6] = 0x02;
  274. } else if (freq < 148334) { /* freq * 24 < 3560000 */
  275. multi = 24;
  276. reg[5] = 0x22;
  277. reg[6] = 0x00;
  278. } else if (freq < 222500) { /* freq * 16 < 3560000 */
  279. multi = 16;
  280. reg[5] = 0x42;
  281. reg[6] = 0x02;
  282. } else if (freq < 296667) { /* freq * 12 < 3560000 */
  283. multi = 12;
  284. reg[5] = 0x12;
  285. reg[6] = 0x00;
  286. } else if (freq < 445000) { /* freq * 8 < 3560000 */
  287. multi = 8;
  288. reg[5] = 0x22;
  289. reg[6] = 0x02;
  290. } else if (freq < 593334) { /* freq * 6 < 3560000 */
  291. multi = 6;
  292. reg[5] = 0x0a;
  293. reg[6] = 0x00;
  294. } else if (freq < 950000) { /* freq * 4 < 3800000 */
  295. multi = 4;
  296. reg[5] = 0x12;
  297. reg[6] = 0x02;
  298. } else {
  299. multi = 2;
  300. reg[5] = 0x0a;
  301. reg[6] = 0x02;
  302. }
  303. f_vco = freq * multi;
  304. if (f_vco >= 3060000) {
  305. reg[6] |= 0x08;
  306. vco_select = true;
  307. }
  308. if (freq >= 45000) {
  309. /* From divided value (XDIV) determined the FA and FP value */
  310. xdiv = (unsigned short)(f_vco / xtal_freq_khz_2);
  311. if ((f_vco - xdiv * xtal_freq_khz_2) >= (xtal_freq_khz_2 / 2))
  312. xdiv++;
  313. pm = (unsigned char)(xdiv / 8);
  314. am = (unsigned char)(xdiv - (8 * pm));
  315. if (am < 2) {
  316. reg[1] = am + 8;
  317. reg[2] = pm - 1;
  318. } else {
  319. reg[1] = am;
  320. reg[2] = pm;
  321. }
  322. } else {
  323. /* fix for frequency less than 45 MHz */
  324. reg[1] = 0x06;
  325. reg[2] = 0x11;
  326. }
  327. /* fix clock out */
  328. reg[6] |= 0x20;
  329. /* From VCO frequency determines the XIN ( fractional part of Delta
  330. Sigma PLL) and divided value (XDIV) */
  331. xin = (unsigned short)(f_vco - (f_vco / xtal_freq_khz_2) * xtal_freq_khz_2);
  332. xin = (xin << 15) / xtal_freq_khz_2;
  333. if (xin >= 16384)
  334. xin += 32768;
  335. reg[3] = xin >> 8;
  336. reg[4] = xin & 0xff;
  337. if (delsys == SYS_DVBT) {
  338. reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
  339. switch (p->bandwidth_hz) {
  340. case 6000000:
  341. reg[6] |= 0x80;
  342. break;
  343. case 7000000:
  344. reg[6] |= 0x40;
  345. break;
  346. case 8000000:
  347. default:
  348. break;
  349. }
  350. } else {
  351. err("%s: modulation type not supported!", __func__);
  352. return -EINVAL;
  353. }
  354. /* modified for Realtek demod */
  355. reg[5] |= 0x07;
  356. for (i = 1; i <= 6; i++) {
  357. ret = fc0013_writereg(priv, i, reg[i]);
  358. if (ret)
  359. goto exit;
  360. }
  361. ret = fc0013_readreg(priv, 0x11, &tmp);
  362. if (ret)
  363. goto exit;
  364. if (multi == 64)
  365. ret = fc0013_writereg(priv, 0x11, tmp | 0x04);
  366. else
  367. ret = fc0013_writereg(priv, 0x11, tmp & 0xfb);
  368. if (ret)
  369. goto exit;
  370. /* VCO Calibration */
  371. ret = fc0013_writereg(priv, 0x0e, 0x80);
  372. if (!ret)
  373. ret = fc0013_writereg(priv, 0x0e, 0x00);
  374. /* VCO Re-Calibration if needed */
  375. if (!ret)
  376. ret = fc0013_writereg(priv, 0x0e, 0x00);
  377. if (!ret) {
  378. msleep(10);
  379. ret = fc0013_readreg(priv, 0x0e, &tmp);
  380. }
  381. if (ret)
  382. goto exit;
  383. /* vco selection */
  384. tmp &= 0x3f;
  385. if (vco_select) {
  386. if (tmp > 0x3c) {
  387. reg[6] &= ~0x08;
  388. ret = fc0013_writereg(priv, 0x06, reg[6]);
  389. if (!ret)
  390. ret = fc0013_writereg(priv, 0x0e, 0x80);
  391. if (!ret)
  392. ret = fc0013_writereg(priv, 0x0e, 0x00);
  393. }
  394. } else {
  395. if (tmp < 0x02) {
  396. reg[6] |= 0x08;
  397. ret = fc0013_writereg(priv, 0x06, reg[6]);
  398. if (!ret)
  399. ret = fc0013_writereg(priv, 0x0e, 0x80);
  400. if (!ret)
  401. ret = fc0013_writereg(priv, 0x0e, 0x00);
  402. }
  403. }
  404. priv->frequency = p->frequency;
  405. priv->bandwidth = p->bandwidth_hz;
  406. exit:
  407. if (fe->ops.i2c_gate_ctrl)
  408. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  409. if (ret)
  410. warn("%s: failed: %d", __func__, ret);
  411. return ret;
  412. }
  413. static int fc0013_get_frequency(struct dvb_frontend *fe, u32 *frequency)
  414. {
  415. struct fc0013_priv *priv = fe->tuner_priv;
  416. *frequency = priv->frequency;
  417. return 0;
  418. }
  419. static int fc0013_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
  420. {
  421. /* always ? */
  422. *frequency = 0;
  423. return 0;
  424. }
  425. static int fc0013_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
  426. {
  427. struct fc0013_priv *priv = fe->tuner_priv;
  428. *bandwidth = priv->bandwidth;
  429. return 0;
  430. }
  431. #define INPUT_ADC_LEVEL -8
  432. static int fc0013_get_rf_strength(struct dvb_frontend *fe, u16 *strength)
  433. {
  434. struct fc0013_priv *priv = fe->tuner_priv;
  435. int ret;
  436. unsigned char tmp;
  437. int int_temp, lna_gain, int_lna, tot_agc_gain, power;
  438. static const int fc0013_lna_gain_table[] = {
  439. /* low gain */
  440. -63, -58, -99, -73,
  441. -63, -65, -54, -60,
  442. /* middle gain */
  443. 71, 70, 68, 67,
  444. 65, 63, 61, 58,
  445. /* high gain */
  446. 197, 191, 188, 186,
  447. 184, 182, 181, 179,
  448. };
  449. if (fe->ops.i2c_gate_ctrl)
  450. fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
  451. ret = fc0013_writereg(priv, 0x13, 0x00);
  452. if (ret)
  453. goto err;
  454. ret = fc0013_readreg(priv, 0x13, &tmp);
  455. if (ret)
  456. goto err;
  457. int_temp = tmp;
  458. ret = fc0013_readreg(priv, 0x14, &tmp);
  459. if (ret)
  460. goto err;
  461. lna_gain = tmp & 0x1f;
  462. if (fe->ops.i2c_gate_ctrl)
  463. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  464. if (lna_gain < ARRAY_SIZE(fc0013_lna_gain_table)) {
  465. int_lna = fc0013_lna_gain_table[lna_gain];
  466. tot_agc_gain = (abs((int_temp >> 5) - 7) - 2 +
  467. (int_temp & 0x1f)) * 2;
  468. power = INPUT_ADC_LEVEL - tot_agc_gain - int_lna / 10;
  469. if (power >= 45)
  470. *strength = 255; /* 100% */
  471. else if (power < -95)
  472. *strength = 0;
  473. else
  474. *strength = (power + 95) * 255 / 140;
  475. *strength |= *strength << 8;
  476. } else {
  477. ret = -1;
  478. }
  479. goto exit;
  480. err:
  481. if (fe->ops.i2c_gate_ctrl)
  482. fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
  483. exit:
  484. if (ret)
  485. warn("%s: failed: %d", __func__, ret);
  486. return ret;
  487. }
  488. static const struct dvb_tuner_ops fc0013_tuner_ops = {
  489. .info = {
  490. .name = "Fitipower FC0013",
  491. .frequency_min_hz = 37 * MHz, /* estimate */
  492. .frequency_max_hz = 1680 * MHz, /* CHECK */
  493. },
  494. .release = fc0013_release,
  495. .init = fc0013_init,
  496. .sleep = fc0013_sleep,
  497. .set_params = fc0013_set_params,
  498. .get_frequency = fc0013_get_frequency,
  499. .get_if_frequency = fc0013_get_if_frequency,
  500. .get_bandwidth = fc0013_get_bandwidth,
  501. .get_rf_strength = fc0013_get_rf_strength,
  502. };
  503. struct dvb_frontend *fc0013_attach(struct dvb_frontend *fe,
  504. struct i2c_adapter *i2c, u8 i2c_address, int dual_master,
  505. enum fc001x_xtal_freq xtal_freq)
  506. {
  507. struct fc0013_priv *priv = NULL;
  508. priv = kzalloc(sizeof(struct fc0013_priv), GFP_KERNEL);
  509. if (priv == NULL)
  510. return NULL;
  511. priv->i2c = i2c;
  512. priv->dual_master = dual_master;
  513. priv->addr = i2c_address;
  514. priv->xtal_freq = xtal_freq;
  515. info("Fitipower FC0013 successfully attached.");
  516. fe->tuner_priv = priv;
  517. memcpy(&fe->ops.tuner_ops, &fc0013_tuner_ops,
  518. sizeof(struct dvb_tuner_ops));
  519. return fe;
  520. }
  521. EXPORT_SYMBOL(fc0013_attach);
  522. MODULE_DESCRIPTION("Fitipower FC0013 silicon tuner driver");
  523. MODULE_AUTHOR("Hans-Frieder Vogt <hfvogt@gmx.net>");
  524. MODULE_LICENSE("GPL");
  525. MODULE_VERSION("0.2");