rcar_drif.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * R-Car Gen3 Digital Radio Interface (DRIF) driver
  4. *
  5. * Copyright (C) 2017 Renesas Electronics Corporation
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. */
  12. /*
  13. * The R-Car DRIF is a receive only MSIOF like controller with an
  14. * external master device driving the SCK. It receives data into a FIFO,
  15. * then this driver uses the SYS-DMAC engine to move the data from
  16. * the device to memory.
  17. *
  18. * Each DRIF channel DRIFx (as per datasheet) contains two internal
  19. * channels DRIFx0 & DRIFx1 within itself with each having its own resources
  20. * like module clk, register set, irq and dma. These internal channels share
  21. * common CLK & SYNC from master. The two data pins D0 & D1 shall be
  22. * considered to represent the two internal channels. This internal split
  23. * is not visible to the master device.
  24. *
  25. * Depending on the master device, a DRIF channel can use
  26. * (1) both internal channels (D0 & D1) to receive data in parallel (or)
  27. * (2) one internal channel (D0 or D1) to receive data
  28. *
  29. * The primary design goal of this controller is to act as a Digital Radio
  30. * Interface that receives digital samples from a tuner device. Hence the
  31. * driver exposes the device as a V4L2 SDR device. In order to qualify as
  32. * a V4L2 SDR device, it should possess a tuner interface as mandated by the
  33. * framework. This driver expects a tuner driver (sub-device) to bind
  34. * asynchronously with this device and the combined drivers shall expose
  35. * a V4L2 compliant SDR device. The DRIF driver is independent of the
  36. * tuner vendor.
  37. *
  38. * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
  39. * This driver is tested for I2S mode only because of the availability of
  40. * suitable master devices. Hence, not all configurable options of DRIF h/w
  41. * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
  42. * are used. These can be exposed later if needed after testing.
  43. */
  44. #include <linux/bitops.h>
  45. #include <linux/clk.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/dmaengine.h>
  48. #include <linux/ioctl.h>
  49. #include <linux/iopoll.h>
  50. #include <linux/module.h>
  51. #include <linux/of_graph.h>
  52. #include <linux/of_device.h>
  53. #include <linux/platform_device.h>
  54. #include <linux/sched.h>
  55. #include <media/v4l2-async.h>
  56. #include <media/v4l2-ctrls.h>
  57. #include <media/v4l2-device.h>
  58. #include <media/v4l2-event.h>
  59. #include <media/v4l2-fh.h>
  60. #include <media/v4l2-ioctl.h>
  61. #include <media/videobuf2-v4l2.h>
  62. #include <media/videobuf2-vmalloc.h>
  63. /* DRIF register offsets */
  64. #define RCAR_DRIF_SITMDR1 0x00
  65. #define RCAR_DRIF_SITMDR2 0x04
  66. #define RCAR_DRIF_SITMDR3 0x08
  67. #define RCAR_DRIF_SIRMDR1 0x10
  68. #define RCAR_DRIF_SIRMDR2 0x14
  69. #define RCAR_DRIF_SIRMDR3 0x18
  70. #define RCAR_DRIF_SICTR 0x28
  71. #define RCAR_DRIF_SIFCTR 0x30
  72. #define RCAR_DRIF_SISTR 0x40
  73. #define RCAR_DRIF_SIIER 0x44
  74. #define RCAR_DRIF_SIRFDR 0x60
  75. #define RCAR_DRIF_RFOVF BIT(3) /* Receive FIFO overflow */
  76. #define RCAR_DRIF_RFUDF BIT(4) /* Receive FIFO underflow */
  77. #define RCAR_DRIF_RFSERR BIT(5) /* Receive frame sync error */
  78. #define RCAR_DRIF_REOF BIT(7) /* Frame reception end */
  79. #define RCAR_DRIF_RDREQ BIT(12) /* Receive data xfer req */
  80. #define RCAR_DRIF_RFFUL BIT(13) /* Receive FIFO full */
  81. /* SIRMDR1 */
  82. #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME (0 << 28)
  83. #define RCAR_DRIF_SIRMDR1_SYNCMD_LR (3 << 28)
  84. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH (0 << 25)
  85. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW (1 << 25)
  86. #define RCAR_DRIF_SIRMDR1_MSB_FIRST (0 << 24)
  87. #define RCAR_DRIF_SIRMDR1_LSB_FIRST (1 << 24)
  88. #define RCAR_DRIF_SIRMDR1_DTDL_0 (0 << 20)
  89. #define RCAR_DRIF_SIRMDR1_DTDL_1 (1 << 20)
  90. #define RCAR_DRIF_SIRMDR1_DTDL_2 (2 << 20)
  91. #define RCAR_DRIF_SIRMDR1_DTDL_0PT5 (5 << 20)
  92. #define RCAR_DRIF_SIRMDR1_DTDL_1PT5 (6 << 20)
  93. #define RCAR_DRIF_SIRMDR1_SYNCDL_0 (0 << 20)
  94. #define RCAR_DRIF_SIRMDR1_SYNCDL_1 (1 << 20)
  95. #define RCAR_DRIF_SIRMDR1_SYNCDL_2 (2 << 20)
  96. #define RCAR_DRIF_SIRMDR1_SYNCDL_3 (3 << 20)
  97. #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5 (5 << 20)
  98. #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5 (6 << 20)
  99. #define RCAR_DRIF_MDR_GRPCNT(n) (((n) - 1) << 30)
  100. #define RCAR_DRIF_MDR_BITLEN(n) (((n) - 1) << 24)
  101. #define RCAR_DRIF_MDR_WDCNT(n) (((n) - 1) << 16)
  102. /* Hidden Transmit register that controls CLK & SYNC */
  103. #define RCAR_DRIF_SITMDR1_PCON BIT(30)
  104. #define RCAR_DRIF_SICTR_RX_RISING_EDGE BIT(26)
  105. #define RCAR_DRIF_SICTR_RX_EN BIT(8)
  106. #define RCAR_DRIF_SICTR_RESET BIT(0)
  107. /* Constants */
  108. #define RCAR_DRIF_NUM_HWBUFS 32
  109. #define RCAR_DRIF_MAX_DEVS 4
  110. #define RCAR_DRIF_DEFAULT_NUM_HWBUFS 16
  111. #define RCAR_DRIF_DEFAULT_HWBUF_SIZE (4 * PAGE_SIZE)
  112. #define RCAR_DRIF_MAX_CHANNEL 2
  113. #define RCAR_SDR_BUFFER_SIZE SZ_64K
  114. /* Internal buffer status flags */
  115. #define RCAR_DRIF_BUF_DONE BIT(0) /* DMA completed */
  116. #define RCAR_DRIF_BUF_OVERFLOW BIT(1) /* Overflow detected */
  117. #define to_rcar_drif_buf_pair(sdr, ch_num, idx) \
  118. (&((sdr)->ch[!(ch_num)]->buf[(idx)]))
  119. #define for_each_rcar_drif_channel(ch, ch_mask) \
  120. for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
  121. /* Debug */
  122. #define rdrif_dbg(sdr, fmt, arg...) \
  123. dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
  124. #define rdrif_err(sdr, fmt, arg...) \
  125. dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
  126. /* Stream formats */
  127. struct rcar_drif_format {
  128. u32 pixelformat;
  129. u32 buffersize;
  130. u32 bitlen;
  131. u32 wdcnt;
  132. u32 num_ch;
  133. };
  134. /* Format descriptions for capture */
  135. static const struct rcar_drif_format formats[] = {
  136. {
  137. .pixelformat = V4L2_SDR_FMT_PCU16BE,
  138. .buffersize = RCAR_SDR_BUFFER_SIZE,
  139. .bitlen = 16,
  140. .wdcnt = 1,
  141. .num_ch = 2,
  142. },
  143. {
  144. .pixelformat = V4L2_SDR_FMT_PCU18BE,
  145. .buffersize = RCAR_SDR_BUFFER_SIZE,
  146. .bitlen = 18,
  147. .wdcnt = 1,
  148. .num_ch = 2,
  149. },
  150. {
  151. .pixelformat = V4L2_SDR_FMT_PCU20BE,
  152. .buffersize = RCAR_SDR_BUFFER_SIZE,
  153. .bitlen = 20,
  154. .wdcnt = 1,
  155. .num_ch = 2,
  156. },
  157. };
  158. /* Buffer for a received frame from one or both internal channels */
  159. struct rcar_drif_frame_buf {
  160. /* Common v4l buffer stuff -- must be first */
  161. struct vb2_v4l2_buffer vb;
  162. struct list_head list;
  163. };
  164. /* OF graph endpoint's V4L2 async data */
  165. struct rcar_drif_graph_ep {
  166. struct v4l2_subdev *subdev; /* Async matched subdev */
  167. };
  168. /* DMA buffer */
  169. struct rcar_drif_hwbuf {
  170. void *addr; /* CPU-side address */
  171. unsigned int status; /* Buffer status flags */
  172. };
  173. /* Internal channel */
  174. struct rcar_drif {
  175. struct rcar_drif_sdr *sdr; /* Group device */
  176. struct platform_device *pdev; /* Channel's pdev */
  177. void __iomem *base; /* Base register address */
  178. resource_size_t start; /* I/O resource offset */
  179. struct dma_chan *dmach; /* Reserved DMA channel */
  180. struct clk *clk; /* Module clock */
  181. struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
  182. dma_addr_t dma_handle; /* Handle for all bufs */
  183. unsigned int num; /* Channel number */
  184. bool acting_sdr; /* Channel acting as SDR device */
  185. };
  186. /* DRIF V4L2 SDR */
  187. struct rcar_drif_sdr {
  188. struct device *dev; /* Platform device */
  189. struct video_device *vdev; /* V4L2 SDR device */
  190. struct v4l2_device v4l2_dev; /* V4L2 device */
  191. /* Videobuf2 queue and queued buffers list */
  192. struct vb2_queue vb_queue;
  193. struct list_head queued_bufs;
  194. spinlock_t queued_bufs_lock; /* Protects queued_bufs */
  195. spinlock_t dma_lock; /* To serialize DMA cb of channels */
  196. struct mutex v4l2_mutex; /* To serialize ioctls */
  197. struct mutex vb_queue_mutex; /* To serialize streaming ioctls */
  198. struct v4l2_ctrl_handler ctrl_hdl; /* SDR control handler */
  199. struct v4l2_async_notifier notifier; /* For subdev (tuner) */
  200. struct rcar_drif_graph_ep ep; /* Endpoint V4L2 async data */
  201. /* Current V4L2 SDR format ptr */
  202. const struct rcar_drif_format *fmt;
  203. /* Device tree SYNC properties */
  204. u32 mdr1;
  205. /* Internals */
  206. struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
  207. unsigned long hw_ch_mask; /* Enabled channels per DT */
  208. unsigned long cur_ch_mask; /* Used channels for an SDR FMT */
  209. u32 num_hw_ch; /* Num of DT enabled channels */
  210. u32 num_cur_ch; /* Num of used channels */
  211. u32 hwbuf_size; /* Each DMA buffer size */
  212. u32 produced; /* Buffers produced by sdr dev */
  213. };
  214. /* Register access functions */
  215. static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
  216. {
  217. writel(data, ch->base + offset);
  218. }
  219. static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
  220. {
  221. return readl(ch->base + offset);
  222. }
  223. /* Release DMA channels */
  224. static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
  225. {
  226. unsigned int i;
  227. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  228. if (sdr->ch[i]->dmach) {
  229. dma_release_channel(sdr->ch[i]->dmach);
  230. sdr->ch[i]->dmach = NULL;
  231. }
  232. }
  233. /* Allocate DMA channels */
  234. static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
  235. {
  236. struct dma_slave_config dma_cfg;
  237. unsigned int i;
  238. int ret;
  239. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  240. struct rcar_drif *ch = sdr->ch[i];
  241. ch->dmach = dma_request_slave_channel(&ch->pdev->dev, "rx");
  242. if (!ch->dmach) {
  243. rdrif_err(sdr, "ch%u: dma channel req failed\n", i);
  244. ret = -ENODEV;
  245. goto dmach_error;
  246. }
  247. /* Configure slave */
  248. memset(&dma_cfg, 0, sizeof(dma_cfg));
  249. dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
  250. dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  251. ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
  252. if (ret) {
  253. rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
  254. goto dmach_error;
  255. }
  256. }
  257. return 0;
  258. dmach_error:
  259. rcar_drif_release_dmachannels(sdr);
  260. return ret;
  261. }
  262. /* Release queued vb2 buffers */
  263. static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
  264. enum vb2_buffer_state state)
  265. {
  266. struct rcar_drif_frame_buf *fbuf, *tmp;
  267. unsigned long flags;
  268. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  269. list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
  270. list_del(&fbuf->list);
  271. vb2_buffer_done(&fbuf->vb.vb2_buf, state);
  272. }
  273. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  274. }
  275. /* Set MDR defaults */
  276. static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
  277. {
  278. unsigned int i;
  279. /* Set defaults for enabled internal channels */
  280. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  281. /* Refer MSIOF section in manual for this register setting */
  282. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
  283. RCAR_DRIF_SITMDR1_PCON);
  284. /* Setup MDR1 value */
  285. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
  286. rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
  287. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
  288. }
  289. }
  290. /* Set DRIF receive format */
  291. static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
  292. {
  293. unsigned int i;
  294. rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
  295. sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
  296. /* Sanity check */
  297. if (sdr->fmt->num_ch > sdr->num_cur_ch) {
  298. rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
  299. sdr->fmt->num_ch, sdr->num_cur_ch);
  300. return -EINVAL;
  301. }
  302. /* Setup group, bitlen & wdcnt */
  303. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  304. u32 mdr;
  305. /* Two groups */
  306. mdr = RCAR_DRIF_MDR_GRPCNT(2) |
  307. RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  308. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  309. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
  310. mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  311. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  312. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
  313. rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
  314. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
  315. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
  316. }
  317. return 0;
  318. }
  319. /* Release DMA buffers */
  320. static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
  321. {
  322. unsigned int i;
  323. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  324. struct rcar_drif *ch = sdr->ch[i];
  325. /* First entry contains the dma buf ptr */
  326. if (ch->buf[0].addr) {
  327. dma_free_coherent(&ch->pdev->dev,
  328. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  329. ch->buf[0].addr, ch->dma_handle);
  330. ch->buf[0].addr = NULL;
  331. }
  332. }
  333. }
  334. /* Request DMA buffers */
  335. static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
  336. {
  337. int ret = -ENOMEM;
  338. unsigned int i, j;
  339. void *addr;
  340. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  341. struct rcar_drif *ch = sdr->ch[i];
  342. /* Allocate DMA buffers */
  343. addr = dma_alloc_coherent(&ch->pdev->dev,
  344. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  345. &ch->dma_handle, GFP_KERNEL);
  346. if (!addr) {
  347. rdrif_err(sdr,
  348. "ch%u: dma alloc failed. num hwbufs %u size %u\n",
  349. i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  350. goto error;
  351. }
  352. /* Split the chunk and populate bufctxt */
  353. for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
  354. ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
  355. ch->buf[j].status = 0;
  356. }
  357. }
  358. return 0;
  359. error:
  360. return ret;
  361. }
  362. /* Setup vb_queue minimum buffer requirements */
  363. static int rcar_drif_queue_setup(struct vb2_queue *vq,
  364. unsigned int *num_buffers, unsigned int *num_planes,
  365. unsigned int sizes[], struct device *alloc_devs[])
  366. {
  367. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  368. /* Need at least 16 buffers */
  369. if (vq->num_buffers + *num_buffers < 16)
  370. *num_buffers = 16 - vq->num_buffers;
  371. *num_planes = 1;
  372. sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
  373. rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
  374. return 0;
  375. }
  376. /* Enqueue buffer */
  377. static void rcar_drif_buf_queue(struct vb2_buffer *vb)
  378. {
  379. struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
  380. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
  381. struct rcar_drif_frame_buf *fbuf =
  382. container_of(vbuf, struct rcar_drif_frame_buf, vb);
  383. unsigned long flags;
  384. rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
  385. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  386. list_add_tail(&fbuf->list, &sdr->queued_bufs);
  387. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  388. }
  389. /* Get a frame buf from list */
  390. static struct rcar_drif_frame_buf *
  391. rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
  392. {
  393. struct rcar_drif_frame_buf *fbuf;
  394. unsigned long flags;
  395. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  396. fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
  397. rcar_drif_frame_buf, list);
  398. if (!fbuf) {
  399. /*
  400. * App is late in enqueing buffers. Samples lost & there will
  401. * be a gap in sequence number when app recovers
  402. */
  403. rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
  404. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  405. return NULL;
  406. }
  407. list_del(&fbuf->list);
  408. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  409. return fbuf;
  410. }
  411. /* Helpers to set/clear buf pair status */
  412. static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
  413. {
  414. return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
  415. }
  416. static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
  417. {
  418. return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
  419. }
  420. static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
  421. unsigned int bit)
  422. {
  423. unsigned int i;
  424. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  425. buf[i]->status &= ~bit;
  426. }
  427. /* Channel DMA complete */
  428. static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
  429. {
  430. u32 str;
  431. ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
  432. /* Check for DRIF errors */
  433. str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
  434. if (unlikely(str & RCAR_DRIF_RFOVF)) {
  435. /* Writing the same clears it */
  436. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  437. /* Overflow: some samples are lost */
  438. ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
  439. }
  440. }
  441. /* DMA callback for each stage */
  442. static void rcar_drif_dma_complete(void *dma_async_param)
  443. {
  444. struct rcar_drif *ch = dma_async_param;
  445. struct rcar_drif_sdr *sdr = ch->sdr;
  446. struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
  447. struct rcar_drif_frame_buf *fbuf;
  448. bool overflow = false;
  449. u32 idx, produced;
  450. unsigned int i;
  451. spin_lock(&sdr->dma_lock);
  452. /* DMA can be terminated while the callback was waiting on lock */
  453. if (!vb2_is_streaming(&sdr->vb_queue)) {
  454. spin_unlock(&sdr->dma_lock);
  455. return;
  456. }
  457. idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
  458. rcar_drif_channel_complete(ch, idx);
  459. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
  460. buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
  461. &ch->buf[idx];
  462. buf[1] = ch->num ? &ch->buf[idx] :
  463. to_rcar_drif_buf_pair(sdr, ch->num, idx);
  464. /* Check if both DMA buffers are done */
  465. if (!rcar_drif_bufs_done(buf)) {
  466. spin_unlock(&sdr->dma_lock);
  467. return;
  468. }
  469. /* Clear buf done status */
  470. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
  471. if (rcar_drif_bufs_overflow(buf)) {
  472. overflow = true;
  473. /* Clear the flag in status */
  474. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
  475. }
  476. } else {
  477. buf[0] = &ch->buf[idx];
  478. if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
  479. overflow = true;
  480. /* Clear the flag in status */
  481. buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
  482. }
  483. }
  484. /* Buffer produced for consumption */
  485. produced = sdr->produced++;
  486. spin_unlock(&sdr->dma_lock);
  487. rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
  488. /* Get fbuf */
  489. fbuf = rcar_drif_get_fbuf(sdr);
  490. if (!fbuf)
  491. return;
  492. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  493. memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
  494. i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
  495. fbuf->vb.field = V4L2_FIELD_NONE;
  496. fbuf->vb.sequence = produced;
  497. fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
  498. vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
  499. /* Set error state on overflow */
  500. vb2_buffer_done(&fbuf->vb.vb2_buf,
  501. overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
  502. }
  503. static int rcar_drif_qbuf(struct rcar_drif *ch)
  504. {
  505. struct rcar_drif_sdr *sdr = ch->sdr;
  506. dma_addr_t addr = ch->dma_handle;
  507. struct dma_async_tx_descriptor *rxd;
  508. dma_cookie_t cookie;
  509. int ret = -EIO;
  510. /* Setup cyclic DMA with given buffers */
  511. rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
  512. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  513. sdr->hwbuf_size, DMA_DEV_TO_MEM,
  514. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  515. if (!rxd) {
  516. rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
  517. return ret;
  518. }
  519. /* Submit descriptor */
  520. rxd->callback = rcar_drif_dma_complete;
  521. rxd->callback_param = ch;
  522. cookie = dmaengine_submit(rxd);
  523. if (dma_submit_error(cookie)) {
  524. rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
  525. return ret;
  526. }
  527. dma_async_issue_pending(ch->dmach);
  528. return 0;
  529. }
  530. /* Enable reception */
  531. static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
  532. {
  533. unsigned int i;
  534. u32 ctr;
  535. int ret = -EINVAL;
  536. /*
  537. * When both internal channels are enabled, they can be synchronized
  538. * only by the master
  539. */
  540. /* Enable receive */
  541. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  542. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  543. ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
  544. RCAR_DRIF_SICTR_RX_EN);
  545. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  546. }
  547. /* Check receive enabled */
  548. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  549. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  550. ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
  551. if (ret) {
  552. rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
  553. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  554. break;
  555. }
  556. }
  557. return ret;
  558. }
  559. /* Disable reception */
  560. static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
  561. {
  562. unsigned int i;
  563. u32 ctr;
  564. int ret;
  565. /* Disable receive */
  566. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  567. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  568. ctr &= ~RCAR_DRIF_SICTR_RX_EN;
  569. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  570. }
  571. /* Check receive disabled */
  572. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  573. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  574. ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
  575. if (ret)
  576. dev_warn(&sdr->vdev->dev,
  577. "ch%u: failed to disable rx. ctr 0x%08x\n",
  578. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  579. }
  580. }
  581. /* Stop channel */
  582. static void rcar_drif_stop_channel(struct rcar_drif *ch)
  583. {
  584. /* Disable DMA receive interrupt */
  585. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
  586. /* Terminate all DMA transfers */
  587. dmaengine_terminate_sync(ch->dmach);
  588. }
  589. /* Stop receive operation */
  590. static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
  591. {
  592. unsigned int i;
  593. /* Disable Rx */
  594. rcar_drif_disable_rx(sdr);
  595. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  596. rcar_drif_stop_channel(sdr->ch[i]);
  597. }
  598. /* Start channel */
  599. static int rcar_drif_start_channel(struct rcar_drif *ch)
  600. {
  601. struct rcar_drif_sdr *sdr = ch->sdr;
  602. u32 ctr, str;
  603. int ret;
  604. /* Reset receive */
  605. rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
  606. ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
  607. !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
  608. if (ret) {
  609. rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
  610. ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
  611. return ret;
  612. }
  613. /* Queue buffers for DMA */
  614. ret = rcar_drif_qbuf(ch);
  615. if (ret)
  616. return ret;
  617. /* Clear status register flags */
  618. str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
  619. RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
  620. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  621. /* Enable DMA receive interrupt */
  622. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
  623. return ret;
  624. }
  625. /* Start receive operation */
  626. static int rcar_drif_start(struct rcar_drif_sdr *sdr)
  627. {
  628. unsigned long enabled = 0;
  629. unsigned int i;
  630. int ret;
  631. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  632. ret = rcar_drif_start_channel(sdr->ch[i]);
  633. if (ret)
  634. goto start_error;
  635. enabled |= BIT(i);
  636. }
  637. ret = rcar_drif_enable_rx(sdr);
  638. if (ret)
  639. goto enable_error;
  640. sdr->produced = 0;
  641. return ret;
  642. enable_error:
  643. rcar_drif_disable_rx(sdr);
  644. start_error:
  645. for_each_rcar_drif_channel(i, &enabled)
  646. rcar_drif_stop_channel(sdr->ch[i]);
  647. return ret;
  648. }
  649. /* Start streaming */
  650. static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
  651. {
  652. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  653. unsigned long enabled = 0;
  654. unsigned int i;
  655. int ret;
  656. mutex_lock(&sdr->v4l2_mutex);
  657. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  658. ret = clk_prepare_enable(sdr->ch[i]->clk);
  659. if (ret)
  660. goto error;
  661. enabled |= BIT(i);
  662. }
  663. /* Set default MDRx settings */
  664. rcar_drif_set_mdr1(sdr);
  665. /* Set new format */
  666. ret = rcar_drif_set_format(sdr);
  667. if (ret)
  668. goto error;
  669. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
  670. sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
  671. else
  672. sdr->hwbuf_size = sdr->fmt->buffersize;
  673. rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
  674. RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  675. /* Alloc DMA channel */
  676. ret = rcar_drif_alloc_dmachannels(sdr);
  677. if (ret)
  678. goto error;
  679. /* Request buffers */
  680. ret = rcar_drif_request_buf(sdr);
  681. if (ret)
  682. goto error;
  683. /* Start Rx */
  684. ret = rcar_drif_start(sdr);
  685. if (ret)
  686. goto error;
  687. mutex_unlock(&sdr->v4l2_mutex);
  688. return ret;
  689. error:
  690. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
  691. rcar_drif_release_buf(sdr);
  692. rcar_drif_release_dmachannels(sdr);
  693. for_each_rcar_drif_channel(i, &enabled)
  694. clk_disable_unprepare(sdr->ch[i]->clk);
  695. mutex_unlock(&sdr->v4l2_mutex);
  696. return ret;
  697. }
  698. /* Stop streaming */
  699. static void rcar_drif_stop_streaming(struct vb2_queue *vq)
  700. {
  701. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  702. unsigned int i;
  703. mutex_lock(&sdr->v4l2_mutex);
  704. /* Stop hardware streaming */
  705. rcar_drif_stop(sdr);
  706. /* Return all queued buffers to vb2 */
  707. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
  708. /* Release buf */
  709. rcar_drif_release_buf(sdr);
  710. /* Release DMA channel resources */
  711. rcar_drif_release_dmachannels(sdr);
  712. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  713. clk_disable_unprepare(sdr->ch[i]->clk);
  714. mutex_unlock(&sdr->v4l2_mutex);
  715. }
  716. /* Vb2 ops */
  717. static const struct vb2_ops rcar_drif_vb2_ops = {
  718. .queue_setup = rcar_drif_queue_setup,
  719. .buf_queue = rcar_drif_buf_queue,
  720. .start_streaming = rcar_drif_start_streaming,
  721. .stop_streaming = rcar_drif_stop_streaming,
  722. .wait_prepare = vb2_ops_wait_prepare,
  723. .wait_finish = vb2_ops_wait_finish,
  724. };
  725. static int rcar_drif_querycap(struct file *file, void *fh,
  726. struct v4l2_capability *cap)
  727. {
  728. struct rcar_drif_sdr *sdr = video_drvdata(file);
  729. strscpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
  730. strscpy(cap->card, sdr->vdev->name, sizeof(cap->card));
  731. snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
  732. sdr->vdev->name);
  733. return 0;
  734. }
  735. static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
  736. {
  737. unsigned int i;
  738. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  739. /* Matching fmt based on required channels is set as default */
  740. if (sdr->num_hw_ch == formats[i].num_ch) {
  741. sdr->fmt = &formats[i];
  742. sdr->cur_ch_mask = sdr->hw_ch_mask;
  743. sdr->num_cur_ch = sdr->num_hw_ch;
  744. dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
  745. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  746. return 0;
  747. }
  748. }
  749. return -EINVAL;
  750. }
  751. static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
  752. struct v4l2_fmtdesc *f)
  753. {
  754. if (f->index >= ARRAY_SIZE(formats))
  755. return -EINVAL;
  756. f->pixelformat = formats[f->index].pixelformat;
  757. return 0;
  758. }
  759. static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
  760. struct v4l2_format *f)
  761. {
  762. struct rcar_drif_sdr *sdr = video_drvdata(file);
  763. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  764. f->fmt.sdr.buffersize = sdr->fmt->buffersize;
  765. return 0;
  766. }
  767. static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
  768. struct v4l2_format *f)
  769. {
  770. struct rcar_drif_sdr *sdr = video_drvdata(file);
  771. struct vb2_queue *q = &sdr->vb_queue;
  772. unsigned int i;
  773. if (vb2_is_busy(q))
  774. return -EBUSY;
  775. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  776. if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
  777. break;
  778. }
  779. if (i == ARRAY_SIZE(formats))
  780. i = 0; /* Set the 1st format as default on no match */
  781. sdr->fmt = &formats[i];
  782. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  783. f->fmt.sdr.buffersize = formats[i].buffersize;
  784. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  785. /*
  786. * If a format demands one channel only out of two
  787. * enabled channels, pick the 0th channel.
  788. */
  789. if (formats[i].num_ch < sdr->num_hw_ch) {
  790. sdr->cur_ch_mask = BIT(0);
  791. sdr->num_cur_ch = formats[i].num_ch;
  792. } else {
  793. sdr->cur_ch_mask = sdr->hw_ch_mask;
  794. sdr->num_cur_ch = sdr->num_hw_ch;
  795. }
  796. rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
  797. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  798. return 0;
  799. }
  800. static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
  801. struct v4l2_format *f)
  802. {
  803. unsigned int i;
  804. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  805. if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
  806. f->fmt.sdr.buffersize = formats[i].buffersize;
  807. return 0;
  808. }
  809. }
  810. f->fmt.sdr.pixelformat = formats[0].pixelformat;
  811. f->fmt.sdr.buffersize = formats[0].buffersize;
  812. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  813. return 0;
  814. }
  815. /* Tuner subdev ioctls */
  816. static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
  817. struct v4l2_frequency_band *band)
  818. {
  819. struct rcar_drif_sdr *sdr = video_drvdata(file);
  820. return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
  821. }
  822. static int rcar_drif_g_frequency(struct file *file, void *priv,
  823. struct v4l2_frequency *f)
  824. {
  825. struct rcar_drif_sdr *sdr = video_drvdata(file);
  826. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
  827. }
  828. static int rcar_drif_s_frequency(struct file *file, void *priv,
  829. const struct v4l2_frequency *f)
  830. {
  831. struct rcar_drif_sdr *sdr = video_drvdata(file);
  832. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
  833. }
  834. static int rcar_drif_g_tuner(struct file *file, void *priv,
  835. struct v4l2_tuner *vt)
  836. {
  837. struct rcar_drif_sdr *sdr = video_drvdata(file);
  838. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
  839. }
  840. static int rcar_drif_s_tuner(struct file *file, void *priv,
  841. const struct v4l2_tuner *vt)
  842. {
  843. struct rcar_drif_sdr *sdr = video_drvdata(file);
  844. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
  845. }
  846. static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
  847. .vidioc_querycap = rcar_drif_querycap,
  848. .vidioc_enum_fmt_sdr_cap = rcar_drif_enum_fmt_sdr_cap,
  849. .vidioc_g_fmt_sdr_cap = rcar_drif_g_fmt_sdr_cap,
  850. .vidioc_s_fmt_sdr_cap = rcar_drif_s_fmt_sdr_cap,
  851. .vidioc_try_fmt_sdr_cap = rcar_drif_try_fmt_sdr_cap,
  852. .vidioc_reqbufs = vb2_ioctl_reqbufs,
  853. .vidioc_create_bufs = vb2_ioctl_create_bufs,
  854. .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
  855. .vidioc_querybuf = vb2_ioctl_querybuf,
  856. .vidioc_qbuf = vb2_ioctl_qbuf,
  857. .vidioc_dqbuf = vb2_ioctl_dqbuf,
  858. .vidioc_streamon = vb2_ioctl_streamon,
  859. .vidioc_streamoff = vb2_ioctl_streamoff,
  860. .vidioc_s_frequency = rcar_drif_s_frequency,
  861. .vidioc_g_frequency = rcar_drif_g_frequency,
  862. .vidioc_s_tuner = rcar_drif_s_tuner,
  863. .vidioc_g_tuner = rcar_drif_g_tuner,
  864. .vidioc_enum_freq_bands = rcar_drif_enum_freq_bands,
  865. .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
  866. .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
  867. .vidioc_log_status = v4l2_ctrl_log_status,
  868. };
  869. static const struct v4l2_file_operations rcar_drif_fops = {
  870. .owner = THIS_MODULE,
  871. .open = v4l2_fh_open,
  872. .release = vb2_fop_release,
  873. .read = vb2_fop_read,
  874. .poll = vb2_fop_poll,
  875. .mmap = vb2_fop_mmap,
  876. .unlocked_ioctl = video_ioctl2,
  877. };
  878. static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
  879. {
  880. int ret;
  881. /* Init video_device structure */
  882. sdr->vdev = video_device_alloc();
  883. if (!sdr->vdev)
  884. return -ENOMEM;
  885. snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
  886. sdr->vdev->fops = &rcar_drif_fops;
  887. sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
  888. sdr->vdev->release = video_device_release;
  889. sdr->vdev->lock = &sdr->v4l2_mutex;
  890. sdr->vdev->queue = &sdr->vb_queue;
  891. sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
  892. sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
  893. sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
  894. sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
  895. V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
  896. video_set_drvdata(sdr->vdev, sdr);
  897. /* Register V4L2 SDR device */
  898. ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
  899. if (ret) {
  900. video_device_release(sdr->vdev);
  901. sdr->vdev = NULL;
  902. dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
  903. }
  904. return ret;
  905. }
  906. static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
  907. {
  908. video_unregister_device(sdr->vdev);
  909. sdr->vdev = NULL;
  910. }
  911. /* Sub-device bound callback */
  912. static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
  913. struct v4l2_subdev *subdev,
  914. struct v4l2_async_subdev *asd)
  915. {
  916. struct rcar_drif_sdr *sdr =
  917. container_of(notifier, struct rcar_drif_sdr, notifier);
  918. v4l2_set_subdev_hostdata(subdev, sdr);
  919. sdr->ep.subdev = subdev;
  920. rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
  921. return 0;
  922. }
  923. /* Sub-device unbind callback */
  924. static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
  925. struct v4l2_subdev *subdev,
  926. struct v4l2_async_subdev *asd)
  927. {
  928. struct rcar_drif_sdr *sdr =
  929. container_of(notifier, struct rcar_drif_sdr, notifier);
  930. if (sdr->ep.subdev != subdev) {
  931. rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
  932. return;
  933. }
  934. /* Free ctrl handler if initialized */
  935. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  936. sdr->v4l2_dev.ctrl_handler = NULL;
  937. sdr->ep.subdev = NULL;
  938. rcar_drif_sdr_unregister(sdr);
  939. rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
  940. }
  941. /* Sub-device registered notification callback */
  942. static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
  943. {
  944. struct rcar_drif_sdr *sdr =
  945. container_of(notifier, struct rcar_drif_sdr, notifier);
  946. int ret;
  947. /*
  948. * The subdev tested at this point uses 4 controls. Using 10 as a worst
  949. * case scenario hint. When less controls are needed there will be some
  950. * unused memory and when more controls are needed the framework uses
  951. * hash to manage controls within this number.
  952. */
  953. ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
  954. if (ret)
  955. return -ENOMEM;
  956. sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
  957. ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
  958. if (ret) {
  959. rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
  960. goto error;
  961. }
  962. ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
  963. sdr->ep.subdev->ctrl_handler, NULL, true);
  964. if (ret) {
  965. rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
  966. goto error;
  967. }
  968. ret = rcar_drif_sdr_register(sdr);
  969. if (ret)
  970. goto error;
  971. return ret;
  972. error:
  973. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  974. return ret;
  975. }
  976. static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
  977. .bound = rcar_drif_notify_bound,
  978. .unbind = rcar_drif_notify_unbind,
  979. .complete = rcar_drif_notify_complete,
  980. };
  981. /* Read endpoint properties */
  982. static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
  983. struct fwnode_handle *fwnode)
  984. {
  985. u32 val;
  986. /* Set the I2S defaults for SIRMDR1*/
  987. sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
  988. RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
  989. /* Parse sync polarity from endpoint */
  990. if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
  991. sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
  992. RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
  993. else
  994. sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
  995. dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
  996. }
  997. /* Parse sub-devs (tuner) to find a matching device */
  998. static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
  999. {
  1000. struct v4l2_async_notifier *notifier = &sdr->notifier;
  1001. struct fwnode_handle *fwnode, *ep;
  1002. struct v4l2_async_subdev *asd;
  1003. v4l2_async_notifier_init(notifier);
  1004. ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
  1005. NULL);
  1006. if (!ep)
  1007. return 0;
  1008. /* Get the endpoint properties */
  1009. rcar_drif_get_ep_properties(sdr, ep);
  1010. fwnode = fwnode_graph_get_remote_port_parent(ep);
  1011. fwnode_handle_put(ep);
  1012. if (!fwnode) {
  1013. dev_warn(sdr->dev, "bad remote port parent\n");
  1014. return -EINVAL;
  1015. }
  1016. asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
  1017. sizeof(*asd));
  1018. fwnode_handle_put(fwnode);
  1019. if (IS_ERR(asd))
  1020. return PTR_ERR(asd);
  1021. return 0;
  1022. }
  1023. /* Check if the given device is the primary bond */
  1024. static bool rcar_drif_primary_bond(struct platform_device *pdev)
  1025. {
  1026. return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
  1027. }
  1028. /* Check if both devices of the bond are enabled */
  1029. static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
  1030. {
  1031. struct device_node *np;
  1032. np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
  1033. if (np && of_device_is_available(np))
  1034. return np;
  1035. return NULL;
  1036. }
  1037. /* Check if the bonded device is probed */
  1038. static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
  1039. struct device_node *np)
  1040. {
  1041. struct platform_device *pdev;
  1042. struct rcar_drif *ch;
  1043. int ret = 0;
  1044. pdev = of_find_device_by_node(np);
  1045. if (!pdev) {
  1046. dev_err(sdr->dev, "failed to get bonded device from node\n");
  1047. return -ENODEV;
  1048. }
  1049. device_lock(&pdev->dev);
  1050. ch = platform_get_drvdata(pdev);
  1051. if (ch) {
  1052. /* Update sdr data in the bonded device */
  1053. ch->sdr = sdr;
  1054. /* Update sdr with bonded device data */
  1055. sdr->ch[ch->num] = ch;
  1056. sdr->hw_ch_mask |= BIT(ch->num);
  1057. } else {
  1058. /* Defer */
  1059. dev_info(sdr->dev, "defer probe\n");
  1060. ret = -EPROBE_DEFER;
  1061. }
  1062. device_unlock(&pdev->dev);
  1063. put_device(&pdev->dev);
  1064. return ret;
  1065. }
  1066. /* V4L2 SDR device probe */
  1067. static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
  1068. {
  1069. int ret;
  1070. /* Validate any supported format for enabled channels */
  1071. ret = rcar_drif_set_default_format(sdr);
  1072. if (ret) {
  1073. dev_err(sdr->dev, "failed to set default format\n");
  1074. return ret;
  1075. }
  1076. /* Set defaults */
  1077. sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
  1078. mutex_init(&sdr->v4l2_mutex);
  1079. mutex_init(&sdr->vb_queue_mutex);
  1080. spin_lock_init(&sdr->queued_bufs_lock);
  1081. spin_lock_init(&sdr->dma_lock);
  1082. INIT_LIST_HEAD(&sdr->queued_bufs);
  1083. /* Init videobuf2 queue structure */
  1084. sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
  1085. sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
  1086. sdr->vb_queue.drv_priv = sdr;
  1087. sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
  1088. sdr->vb_queue.ops = &rcar_drif_vb2_ops;
  1089. sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
  1090. sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
  1091. /* Init videobuf2 queue */
  1092. ret = vb2_queue_init(&sdr->vb_queue);
  1093. if (ret) {
  1094. dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
  1095. return ret;
  1096. }
  1097. /* Register the v4l2_device */
  1098. ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
  1099. if (ret) {
  1100. dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
  1101. return ret;
  1102. }
  1103. /*
  1104. * Parse subdevs after v4l2_device_register because if the subdev
  1105. * is already probed, bound and complete will be called immediately
  1106. */
  1107. ret = rcar_drif_parse_subdevs(sdr);
  1108. if (ret)
  1109. goto error;
  1110. sdr->notifier.ops = &rcar_drif_notify_ops;
  1111. /* Register notifier */
  1112. ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier);
  1113. if (ret < 0) {
  1114. dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
  1115. goto cleanup;
  1116. }
  1117. return ret;
  1118. cleanup:
  1119. v4l2_async_notifier_cleanup(&sdr->notifier);
  1120. error:
  1121. v4l2_device_unregister(&sdr->v4l2_dev);
  1122. return ret;
  1123. }
  1124. /* V4L2 SDR device remove */
  1125. static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
  1126. {
  1127. v4l2_async_notifier_unregister(&sdr->notifier);
  1128. v4l2_async_notifier_cleanup(&sdr->notifier);
  1129. v4l2_device_unregister(&sdr->v4l2_dev);
  1130. }
  1131. /* DRIF channel probe */
  1132. static int rcar_drif_probe(struct platform_device *pdev)
  1133. {
  1134. struct rcar_drif_sdr *sdr;
  1135. struct device_node *np;
  1136. struct rcar_drif *ch;
  1137. struct resource *res;
  1138. int ret;
  1139. /* Reserve memory for enabled channel */
  1140. ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
  1141. if (!ch)
  1142. return -ENOMEM;
  1143. ch->pdev = pdev;
  1144. /* Module clock */
  1145. ch->clk = devm_clk_get(&pdev->dev, "fck");
  1146. if (IS_ERR(ch->clk)) {
  1147. ret = PTR_ERR(ch->clk);
  1148. dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
  1149. return ret;
  1150. }
  1151. /* Register map */
  1152. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1153. ch->base = devm_ioremap_resource(&pdev->dev, res);
  1154. if (IS_ERR(ch->base))
  1155. return PTR_ERR(ch->base);
  1156. ch->start = res->start;
  1157. platform_set_drvdata(pdev, ch);
  1158. /* Check if both channels of the bond are enabled */
  1159. np = rcar_drif_bond_enabled(pdev);
  1160. if (np) {
  1161. /* Check if current channel acting as primary-bond */
  1162. if (!rcar_drif_primary_bond(pdev)) {
  1163. ch->num = 1; /* Primary bond is channel 0 always */
  1164. of_node_put(np);
  1165. return 0;
  1166. }
  1167. }
  1168. /* Reserve memory for SDR structure */
  1169. sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
  1170. if (!sdr) {
  1171. of_node_put(np);
  1172. return -ENOMEM;
  1173. }
  1174. ch->sdr = sdr;
  1175. sdr->dev = &pdev->dev;
  1176. /* Establish links between SDR and channel(s) */
  1177. sdr->ch[ch->num] = ch;
  1178. sdr->hw_ch_mask = BIT(ch->num);
  1179. if (np) {
  1180. /* Check if bonded device is ready */
  1181. ret = rcar_drif_bond_available(sdr, np);
  1182. of_node_put(np);
  1183. if (ret)
  1184. return ret;
  1185. }
  1186. sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
  1187. return rcar_drif_sdr_probe(sdr);
  1188. }
  1189. /* DRIF channel remove */
  1190. static int rcar_drif_remove(struct platform_device *pdev)
  1191. {
  1192. struct rcar_drif *ch = platform_get_drvdata(pdev);
  1193. struct rcar_drif_sdr *sdr = ch->sdr;
  1194. /* Channel 0 will be the SDR instance */
  1195. if (ch->num)
  1196. return 0;
  1197. /* SDR instance */
  1198. rcar_drif_sdr_remove(sdr);
  1199. return 0;
  1200. }
  1201. /* FIXME: Implement suspend/resume support */
  1202. static int __maybe_unused rcar_drif_suspend(struct device *dev)
  1203. {
  1204. return 0;
  1205. }
  1206. static int __maybe_unused rcar_drif_resume(struct device *dev)
  1207. {
  1208. return 0;
  1209. }
  1210. static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
  1211. rcar_drif_resume);
  1212. static const struct of_device_id rcar_drif_of_table[] = {
  1213. { .compatible = "renesas,rcar-gen3-drif" },
  1214. { }
  1215. };
  1216. MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
  1217. #define RCAR_DRIF_DRV_NAME "rcar_drif"
  1218. static struct platform_driver rcar_drif_driver = {
  1219. .driver = {
  1220. .name = RCAR_DRIF_DRV_NAME,
  1221. .of_match_table = of_match_ptr(rcar_drif_of_table),
  1222. .pm = &rcar_drif_pm_ops,
  1223. },
  1224. .probe = rcar_drif_probe,
  1225. .remove = rcar_drif_remove,
  1226. };
  1227. module_platform_driver(rcar_drif_driver);
  1228. MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
  1229. MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
  1230. MODULE_LICENSE("GPL");
  1231. MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");