stv0900_core.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * stv0900_core.c
  4. *
  5. * Driver for ST STV0900 satellite demodulator IC.
  6. *
  7. * Copyright (C) ST Microelectronics.
  8. * Copyright (C) 2009 NetUP Inc.
  9. * Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/i2c.h>
  16. #include "stv0900.h"
  17. #include "stv0900_reg.h"
  18. #include "stv0900_priv.h"
  19. #include "stv0900_init.h"
  20. int stvdebug = 1;
  21. module_param_named(debug, stvdebug, int, 0644);
  22. /* internal params node */
  23. struct stv0900_inode {
  24. /* pointer for internal params, one for each pair of demods */
  25. struct stv0900_internal *internal;
  26. struct stv0900_inode *next_inode;
  27. };
  28. /* first internal params */
  29. static struct stv0900_inode *stv0900_first_inode;
  30. /* find chip by i2c adapter and i2c address */
  31. static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
  32. u8 i2c_addr)
  33. {
  34. struct stv0900_inode *temp_chip = stv0900_first_inode;
  35. if (temp_chip != NULL) {
  36. /*
  37. Search of the last stv0900 chip or
  38. find it by i2c adapter and i2c address */
  39. while ((temp_chip != NULL) &&
  40. ((temp_chip->internal->i2c_adap != i2c_adap) ||
  41. (temp_chip->internal->i2c_addr != i2c_addr)))
  42. temp_chip = temp_chip->next_inode;
  43. }
  44. return temp_chip;
  45. }
  46. /* deallocating chip */
  47. static void remove_inode(struct stv0900_internal *internal)
  48. {
  49. struct stv0900_inode *prev_node = stv0900_first_inode;
  50. struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
  51. internal->i2c_addr);
  52. if (del_node != NULL) {
  53. if (del_node == stv0900_first_inode) {
  54. stv0900_first_inode = del_node->next_inode;
  55. } else {
  56. while (prev_node->next_inode != del_node)
  57. prev_node = prev_node->next_inode;
  58. if (del_node->next_inode == NULL)
  59. prev_node->next_inode = NULL;
  60. else
  61. prev_node->next_inode =
  62. prev_node->next_inode->next_inode;
  63. }
  64. kfree(del_node);
  65. }
  66. }
  67. /* allocating new chip */
  68. static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
  69. {
  70. struct stv0900_inode *new_node = stv0900_first_inode;
  71. if (new_node == NULL) {
  72. new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
  73. stv0900_first_inode = new_node;
  74. } else {
  75. while (new_node->next_inode != NULL)
  76. new_node = new_node->next_inode;
  77. new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
  78. GFP_KERNEL);
  79. if (new_node->next_inode != NULL)
  80. new_node = new_node->next_inode;
  81. else
  82. new_node = NULL;
  83. }
  84. if (new_node != NULL) {
  85. new_node->internal = internal;
  86. new_node->next_inode = NULL;
  87. }
  88. return new_node;
  89. }
  90. s32 ge2comp(s32 a, s32 width)
  91. {
  92. if (width == 32)
  93. return a;
  94. else
  95. return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
  96. }
  97. void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr,
  98. u8 reg_data)
  99. {
  100. u8 data[3];
  101. int ret;
  102. struct i2c_msg i2cmsg = {
  103. .addr = intp->i2c_addr,
  104. .flags = 0,
  105. .len = 3,
  106. .buf = data,
  107. };
  108. data[0] = MSB(reg_addr);
  109. data[1] = LSB(reg_addr);
  110. data[2] = reg_data;
  111. ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
  112. if (ret != 1)
  113. dprintk("%s: i2c error %d\n", __func__, ret);
  114. }
  115. u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg)
  116. {
  117. int ret;
  118. u8 b0[] = { MSB(reg), LSB(reg) };
  119. u8 buf = 0;
  120. struct i2c_msg msg[] = {
  121. {
  122. .addr = intp->i2c_addr,
  123. .flags = 0,
  124. .buf = b0,
  125. .len = 2,
  126. }, {
  127. .addr = intp->i2c_addr,
  128. .flags = I2C_M_RD,
  129. .buf = &buf,
  130. .len = 1,
  131. },
  132. };
  133. ret = i2c_transfer(intp->i2c_adap, msg, 2);
  134. if (ret != 2)
  135. dprintk("%s: i2c error %d, reg[0x%02x]\n",
  136. __func__, ret, reg);
  137. return buf;
  138. }
  139. static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
  140. {
  141. u8 position = 0, i = 0;
  142. (*mask) = label & 0xff;
  143. while ((position == 0) && (i < 8)) {
  144. position = ((*mask) >> i) & 0x01;
  145. i++;
  146. }
  147. (*pos) = (i - 1);
  148. }
  149. void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
  150. {
  151. u8 reg, mask, pos;
  152. reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
  153. extract_mask_pos(label, &mask, &pos);
  154. val = mask & (val << pos);
  155. reg = (reg & (~mask)) | val;
  156. stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
  157. }
  158. u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label)
  159. {
  160. u8 val = 0xff;
  161. u8 mask, pos;
  162. extract_mask_pos(label, &mask, &pos);
  163. val = stv0900_read_reg(intp, label >> 16);
  164. val = (val & mask) >> pos;
  165. return val;
  166. }
  167. static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
  168. {
  169. s32 i;
  170. if (intp == NULL)
  171. return STV0900_INVALID_HANDLE;
  172. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  173. if (intp->errs != STV0900_NO_ERROR)
  174. return intp->errs;
  175. /*Startup sequence*/
  176. stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c);
  177. stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c);
  178. msleep(3);
  179. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
  180. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
  181. stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
  182. stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
  183. stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
  184. msleep(3);
  185. stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
  186. switch (intp->clkmode) {
  187. case 0:
  188. case 2:
  189. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20
  190. | intp->clkmode);
  191. break;
  192. default:
  193. /* preserve SELOSCI bit */
  194. i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  195. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
  196. break;
  197. }
  198. msleep(3);
  199. for (i = 0; i < 181; i++)
  200. stv0900_write_reg(intp, STV0900_InitVal[i][0],
  201. STV0900_InitVal[i][1]);
  202. if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
  203. stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
  204. for (i = 0; i < 32; i++)
  205. stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
  206. STV0900_Cut20_AddOnVal[i][1]);
  207. }
  208. stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
  209. stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
  210. stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01);
  211. stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21);
  212. stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20);
  213. stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20);
  214. stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
  215. stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
  216. return STV0900_NO_ERROR;
  217. }
  218. static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
  219. {
  220. u32 mclk, div, ad_div;
  221. div = stv0900_get_bits(intp, F0900_M_DIV);
  222. ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  223. mclk = (div + 1) * ext_clk / ad_div;
  224. dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
  225. return mclk;
  226. }
  227. static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
  228. {
  229. u32 m_div, clk_sel;
  230. if (intp == NULL)
  231. return STV0900_INVALID_HANDLE;
  232. if (intp->errs)
  233. return STV0900_I2C_ERROR;
  234. dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
  235. intp->quartz);
  236. clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  237. m_div = ((clk_sel * mclk) / intp->quartz) - 1;
  238. stv0900_write_bits(intp, F0900_M_DIV, m_div);
  239. intp->mclk = stv0900_get_mclk_freq(intp,
  240. intp->quartz);
  241. /*Set the DiseqC frequency to 22KHz */
  242. /*
  243. Formula:
  244. DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
  245. DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
  246. */
  247. m_div = intp->mclk / 704000;
  248. stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
  249. stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
  250. stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
  251. stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
  252. if ((intp->errs))
  253. return STV0900_I2C_ERROR;
  254. return STV0900_NO_ERROR;
  255. }
  256. static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
  257. enum fe_stv0900_demod_num demod)
  258. {
  259. u32 lsb, msb, hsb, err_val;
  260. switch (cntr) {
  261. case 0:
  262. default:
  263. hsb = stv0900_get_bits(intp, ERR_CNT12);
  264. msb = stv0900_get_bits(intp, ERR_CNT11);
  265. lsb = stv0900_get_bits(intp, ERR_CNT10);
  266. break;
  267. case 1:
  268. hsb = stv0900_get_bits(intp, ERR_CNT22);
  269. msb = stv0900_get_bits(intp, ERR_CNT21);
  270. lsb = stv0900_get_bits(intp, ERR_CNT20);
  271. break;
  272. }
  273. err_val = (hsb << 16) + (msb << 8) + (lsb);
  274. return err_val;
  275. }
  276. static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  277. {
  278. struct stv0900_state *state = fe->demodulator_priv;
  279. struct stv0900_internal *intp = state->internal;
  280. enum fe_stv0900_demod_num demod = state->demod;
  281. stv0900_write_bits(intp, I2CT_ON, enable);
  282. return 0;
  283. }
  284. static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
  285. enum fe_stv0900_clock_type path1_ts,
  286. enum fe_stv0900_clock_type path2_ts)
  287. {
  288. dprintk("%s\n", __func__);
  289. if (intp->chip_id >= 0x20) {
  290. switch (path1_ts) {
  291. case STV0900_PARALLEL_PUNCT_CLOCK:
  292. case STV0900_DVBCI_CLOCK:
  293. switch (path2_ts) {
  294. case STV0900_SERIAL_PUNCT_CLOCK:
  295. case STV0900_SERIAL_CONT_CLOCK:
  296. default:
  297. stv0900_write_reg(intp, R0900_TSGENERAL,
  298. 0x00);
  299. break;
  300. case STV0900_PARALLEL_PUNCT_CLOCK:
  301. case STV0900_DVBCI_CLOCK:
  302. stv0900_write_reg(intp, R0900_TSGENERAL,
  303. 0x06);
  304. stv0900_write_bits(intp,
  305. F0900_P1_TSFIFO_MANSPEED, 3);
  306. stv0900_write_bits(intp,
  307. F0900_P2_TSFIFO_MANSPEED, 0);
  308. stv0900_write_reg(intp,
  309. R0900_P1_TSSPEED, 0x14);
  310. stv0900_write_reg(intp,
  311. R0900_P2_TSSPEED, 0x28);
  312. break;
  313. }
  314. break;
  315. case STV0900_SERIAL_PUNCT_CLOCK:
  316. case STV0900_SERIAL_CONT_CLOCK:
  317. default:
  318. switch (path2_ts) {
  319. case STV0900_SERIAL_PUNCT_CLOCK:
  320. case STV0900_SERIAL_CONT_CLOCK:
  321. default:
  322. stv0900_write_reg(intp,
  323. R0900_TSGENERAL, 0x0C);
  324. break;
  325. case STV0900_PARALLEL_PUNCT_CLOCK:
  326. case STV0900_DVBCI_CLOCK:
  327. stv0900_write_reg(intp,
  328. R0900_TSGENERAL, 0x0A);
  329. dprintk("%s: 0x0a\n", __func__);
  330. break;
  331. }
  332. break;
  333. }
  334. } else {
  335. switch (path1_ts) {
  336. case STV0900_PARALLEL_PUNCT_CLOCK:
  337. case STV0900_DVBCI_CLOCK:
  338. switch (path2_ts) {
  339. case STV0900_SERIAL_PUNCT_CLOCK:
  340. case STV0900_SERIAL_CONT_CLOCK:
  341. default:
  342. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  343. 0x10);
  344. break;
  345. case STV0900_PARALLEL_PUNCT_CLOCK:
  346. case STV0900_DVBCI_CLOCK:
  347. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  348. 0x16);
  349. stv0900_write_bits(intp,
  350. F0900_P1_TSFIFO_MANSPEED, 3);
  351. stv0900_write_bits(intp,
  352. F0900_P2_TSFIFO_MANSPEED, 0);
  353. stv0900_write_reg(intp, R0900_P1_TSSPEED,
  354. 0x14);
  355. stv0900_write_reg(intp, R0900_P2_TSSPEED,
  356. 0x28);
  357. break;
  358. }
  359. break;
  360. case STV0900_SERIAL_PUNCT_CLOCK:
  361. case STV0900_SERIAL_CONT_CLOCK:
  362. default:
  363. switch (path2_ts) {
  364. case STV0900_SERIAL_PUNCT_CLOCK:
  365. case STV0900_SERIAL_CONT_CLOCK:
  366. default:
  367. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  368. 0x14);
  369. break;
  370. case STV0900_PARALLEL_PUNCT_CLOCK:
  371. case STV0900_DVBCI_CLOCK:
  372. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  373. 0x12);
  374. dprintk("%s: 0x12\n", __func__);
  375. break;
  376. }
  377. break;
  378. }
  379. }
  380. switch (path1_ts) {
  381. case STV0900_PARALLEL_PUNCT_CLOCK:
  382. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  383. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  384. break;
  385. case STV0900_DVBCI_CLOCK:
  386. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  387. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  388. break;
  389. case STV0900_SERIAL_PUNCT_CLOCK:
  390. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  391. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  392. break;
  393. case STV0900_SERIAL_CONT_CLOCK:
  394. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  395. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  396. break;
  397. default:
  398. break;
  399. }
  400. switch (path2_ts) {
  401. case STV0900_PARALLEL_PUNCT_CLOCK:
  402. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  403. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  404. break;
  405. case STV0900_DVBCI_CLOCK:
  406. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  407. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  408. break;
  409. case STV0900_SERIAL_PUNCT_CLOCK:
  410. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  411. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  412. break;
  413. case STV0900_SERIAL_CONT_CLOCK:
  414. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  415. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  416. break;
  417. default:
  418. break;
  419. }
  420. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  421. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  422. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  423. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  424. }
  425. void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency,
  426. u32 bandwidth)
  427. {
  428. struct dvb_frontend_ops *frontend_ops = NULL;
  429. struct dvb_tuner_ops *tuner_ops = NULL;
  430. frontend_ops = &fe->ops;
  431. tuner_ops = &frontend_ops->tuner_ops;
  432. if (tuner_ops->set_frequency) {
  433. if ((tuner_ops->set_frequency(fe, frequency)) < 0)
  434. dprintk("%s: Invalid parameter\n", __func__);
  435. else
  436. dprintk("%s: Frequency=%d\n", __func__, frequency);
  437. }
  438. if (tuner_ops->set_bandwidth) {
  439. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  440. dprintk("%s: Invalid parameter\n", __func__);
  441. else
  442. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  443. }
  444. }
  445. void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
  446. {
  447. struct dvb_frontend_ops *frontend_ops = NULL;
  448. struct dvb_tuner_ops *tuner_ops = NULL;
  449. frontend_ops = &fe->ops;
  450. tuner_ops = &frontend_ops->tuner_ops;
  451. if (tuner_ops->set_bandwidth) {
  452. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  453. dprintk("%s: Invalid parameter\n", __func__);
  454. else
  455. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  456. }
  457. }
  458. u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod)
  459. {
  460. u32 freq, round;
  461. /* Formulat :
  462. Tuner_Frequency(MHz) = Regs / 64
  463. Tuner_granularity(MHz) = Regs / 2048
  464. real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz)
  465. */
  466. freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
  467. (stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
  468. stv0900_get_bits(intp, TUN_RFFREQ0);
  469. freq = (freq * 1000) / 64;
  470. round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
  471. stv0900_get_bits(intp, TUN_RFRESTE0);
  472. round = (round * 1000) / 2048;
  473. return freq + round;
  474. }
  475. void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
  476. u32 Bandwidth, int demod)
  477. {
  478. u32 tunerFrequency;
  479. /* Formulat:
  480. Tuner_frequency_reg= Frequency(MHz)*64
  481. */
  482. tunerFrequency = (Frequency * 64) / 1000;
  483. stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
  484. stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
  485. stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
  486. /* Low Pass Filter = BW /2 (MHz)*/
  487. stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
  488. /* Tuner Write trig */
  489. stv0900_write_reg(intp, TNRLD, 1);
  490. }
  491. static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
  492. const struct stv0900_table *lookup,
  493. enum fe_stv0900_demod_num demod)
  494. {
  495. s32 agc_gain = 0,
  496. imin,
  497. imax,
  498. i,
  499. rf_lvl = 0;
  500. dprintk("%s\n", __func__);
  501. if ((lookup == NULL) || (lookup->size <= 0))
  502. return 0;
  503. agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
  504. stv0900_get_bits(intp, AGCIQ_VALUE0));
  505. imin = 0;
  506. imax = lookup->size - 1;
  507. if (INRANGE(lookup->table[imin].regval, agc_gain,
  508. lookup->table[imax].regval)) {
  509. while ((imax - imin) > 1) {
  510. i = (imax + imin) >> 1;
  511. if (INRANGE(lookup->table[imin].regval,
  512. agc_gain,
  513. lookup->table[i].regval))
  514. imax = i;
  515. else
  516. imin = i;
  517. }
  518. rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
  519. rf_lvl *= (lookup->table[imax].realval -
  520. lookup->table[imin].realval);
  521. rf_lvl /= (lookup->table[imax].regval -
  522. lookup->table[imin].regval);
  523. rf_lvl += lookup->table[imin].realval;
  524. } else if (agc_gain > lookup->table[0].regval)
  525. rf_lvl = 5;
  526. else if (agc_gain < lookup->table[lookup->size-1].regval)
  527. rf_lvl = -100;
  528. dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
  529. return rf_lvl;
  530. }
  531. static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  532. {
  533. struct stv0900_state *state = fe->demodulator_priv;
  534. struct stv0900_internal *internal = state->internal;
  535. s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
  536. state->demod);
  537. rflevel = (rflevel + 100) * (65535 / 70);
  538. if (rflevel < 0)
  539. rflevel = 0;
  540. if (rflevel > 65535)
  541. rflevel = 65535;
  542. *strength = rflevel;
  543. return 0;
  544. }
  545. static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
  546. const struct stv0900_table *lookup)
  547. {
  548. struct stv0900_state *state = fe->demodulator_priv;
  549. struct stv0900_internal *intp = state->internal;
  550. enum fe_stv0900_demod_num demod = state->demod;
  551. s32 c_n = -100,
  552. regval,
  553. imin,
  554. imax,
  555. i,
  556. noise_field1,
  557. noise_field0;
  558. dprintk("%s\n", __func__);
  559. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  560. noise_field1 = NOSPLHT_NORMED1;
  561. noise_field0 = NOSPLHT_NORMED0;
  562. } else {
  563. noise_field1 = NOSDATAT_NORMED1;
  564. noise_field0 = NOSDATAT_NORMED0;
  565. }
  566. if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
  567. if ((lookup != NULL) && lookup->size) {
  568. regval = 0;
  569. msleep(5);
  570. for (i = 0; i < 16; i++) {
  571. regval += MAKEWORD(stv0900_get_bits(intp,
  572. noise_field1),
  573. stv0900_get_bits(intp,
  574. noise_field0));
  575. msleep(1);
  576. }
  577. regval /= 16;
  578. imin = 0;
  579. imax = lookup->size - 1;
  580. if (INRANGE(lookup->table[imin].regval,
  581. regval,
  582. lookup->table[imax].regval)) {
  583. while ((imax - imin) > 1) {
  584. i = (imax + imin) >> 1;
  585. if (INRANGE(lookup->table[imin].regval,
  586. regval,
  587. lookup->table[i].regval))
  588. imax = i;
  589. else
  590. imin = i;
  591. }
  592. c_n = ((regval - lookup->table[imin].regval)
  593. * (lookup->table[imax].realval
  594. - lookup->table[imin].realval)
  595. / (lookup->table[imax].regval
  596. - lookup->table[imin].regval))
  597. + lookup->table[imin].realval;
  598. } else if (regval < lookup->table[imin].regval)
  599. c_n = 1000;
  600. }
  601. }
  602. return c_n;
  603. }
  604. static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  605. {
  606. struct stv0900_state *state = fe->demodulator_priv;
  607. struct stv0900_internal *intp = state->internal;
  608. enum fe_stv0900_demod_num demod = state->demod;
  609. u8 err_val1, err_val0;
  610. u32 header_err_val = 0;
  611. *ucblocks = 0x0;
  612. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  613. /* DVB-S2 delineator errors count */
  614. /* retrieving number for errnous headers */
  615. err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
  616. err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
  617. header_err_val = (err_val1 << 8) | err_val0;
  618. /* retrieving number for errnous packets */
  619. err_val1 = stv0900_read_reg(intp, UPCRCKO1);
  620. err_val0 = stv0900_read_reg(intp, UPCRCKO0);
  621. *ucblocks = (err_val1 << 8) | err_val0;
  622. *ucblocks += header_err_val;
  623. }
  624. return 0;
  625. }
  626. static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
  627. {
  628. s32 snrlcl = stv0900_carr_get_quality(fe,
  629. (const struct stv0900_table *)&stv0900_s2_cn);
  630. snrlcl = (snrlcl + 30) * 384;
  631. if (snrlcl < 0)
  632. snrlcl = 0;
  633. if (snrlcl > 65535)
  634. snrlcl = 65535;
  635. *snr = snrlcl;
  636. return 0;
  637. }
  638. static u32 stv0900_get_ber(struct stv0900_internal *intp,
  639. enum fe_stv0900_demod_num demod)
  640. {
  641. u32 ber = 10000000, i;
  642. s32 demod_state;
  643. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  644. switch (demod_state) {
  645. case STV0900_SEARCH:
  646. case STV0900_PLH_DETECTED:
  647. default:
  648. ber = 10000000;
  649. break;
  650. case STV0900_DVBS_FOUND:
  651. ber = 0;
  652. for (i = 0; i < 5; i++) {
  653. msleep(5);
  654. ber += stv0900_get_err_count(intp, 0, demod);
  655. }
  656. ber /= 5;
  657. if (stv0900_get_bits(intp, PRFVIT)) {
  658. ber *= 9766;
  659. ber = ber >> 13;
  660. }
  661. break;
  662. case STV0900_DVBS2_FOUND:
  663. ber = 0;
  664. for (i = 0; i < 5; i++) {
  665. msleep(5);
  666. ber += stv0900_get_err_count(intp, 0, demod);
  667. }
  668. ber /= 5;
  669. if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
  670. ber *= 9766;
  671. ber = ber >> 13;
  672. }
  673. break;
  674. }
  675. return ber;
  676. }
  677. static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
  678. {
  679. struct stv0900_state *state = fe->demodulator_priv;
  680. struct stv0900_internal *internal = state->internal;
  681. *ber = stv0900_get_ber(internal, state->demod);
  682. return 0;
  683. }
  684. int stv0900_get_demod_lock(struct stv0900_internal *intp,
  685. enum fe_stv0900_demod_num demod, s32 time_out)
  686. {
  687. s32 timer = 0,
  688. lock = 0;
  689. enum fe_stv0900_search_state dmd_state;
  690. while ((timer < time_out) && (lock == 0)) {
  691. dmd_state = stv0900_get_bits(intp, HEADER_MODE);
  692. dprintk("Demod State = %d\n", dmd_state);
  693. switch (dmd_state) {
  694. case STV0900_SEARCH:
  695. case STV0900_PLH_DETECTED:
  696. default:
  697. lock = 0;
  698. break;
  699. case STV0900_DVBS2_FOUND:
  700. case STV0900_DVBS_FOUND:
  701. lock = stv0900_get_bits(intp, LOCK_DEFINITIF);
  702. break;
  703. }
  704. if (lock == 0)
  705. msleep(10);
  706. timer += 10;
  707. }
  708. if (lock)
  709. dprintk("DEMOD LOCK OK\n");
  710. else
  711. dprintk("DEMOD LOCK FAIL\n");
  712. return lock;
  713. }
  714. void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp,
  715. enum fe_stv0900_demod_num demod)
  716. {
  717. s32 regflist,
  718. i;
  719. dprintk("%s\n", __func__);
  720. regflist = MODCODLST0;
  721. for (i = 0; i < 16; i++)
  722. stv0900_write_reg(intp, regflist + i, 0xff);
  723. }
  724. void stv0900_activate_s2_modcod(struct stv0900_internal *intp,
  725. enum fe_stv0900_demod_num demod)
  726. {
  727. u32 matype,
  728. mod_code,
  729. fmod,
  730. reg_index,
  731. field_index;
  732. dprintk("%s\n", __func__);
  733. if (intp->chip_id <= 0x11) {
  734. msleep(5);
  735. mod_code = stv0900_read_reg(intp, PLHMODCOD);
  736. matype = mod_code & 0x3;
  737. mod_code = (mod_code & 0x7f) >> 2;
  738. reg_index = MODCODLSTF - mod_code / 2;
  739. field_index = mod_code % 2;
  740. switch (matype) {
  741. case 0:
  742. default:
  743. fmod = 14;
  744. break;
  745. case 1:
  746. fmod = 13;
  747. break;
  748. case 2:
  749. fmod = 11;
  750. break;
  751. case 3:
  752. fmod = 7;
  753. break;
  754. }
  755. if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
  756. && (matype <= 1)) {
  757. if (field_index == 0)
  758. stv0900_write_reg(intp, reg_index,
  759. 0xf0 | fmod);
  760. else
  761. stv0900_write_reg(intp, reg_index,
  762. (fmod << 4) | 0xf);
  763. }
  764. } else if (intp->chip_id >= 0x12) {
  765. for (reg_index = 0; reg_index < 7; reg_index++)
  766. stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
  767. stv0900_write_reg(intp, MODCODLSTE, 0xff);
  768. stv0900_write_reg(intp, MODCODLSTF, 0xcf);
  769. for (reg_index = 0; reg_index < 8; reg_index++)
  770. stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
  771. }
  772. }
  773. void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp,
  774. enum fe_stv0900_demod_num demod)
  775. {
  776. u32 reg_index;
  777. dprintk("%s\n", __func__);
  778. stv0900_write_reg(intp, MODCODLST0, 0xff);
  779. stv0900_write_reg(intp, MODCODLST1, 0xf0);
  780. stv0900_write_reg(intp, MODCODLSTF, 0x0f);
  781. for (reg_index = 0; reg_index < 13; reg_index++)
  782. stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
  783. }
  784. static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
  785. {
  786. return DVBFE_ALGO_CUSTOM;
  787. }
  788. void stv0900_start_search(struct stv0900_internal *intp,
  789. enum fe_stv0900_demod_num demod)
  790. {
  791. u32 freq;
  792. s16 freq_s16 ;
  793. stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
  794. if (intp->chip_id == 0x10)
  795. stv0900_write_reg(intp, CORRELEXP, 0xaa);
  796. if (intp->chip_id < 0x20)
  797. stv0900_write_reg(intp, CARHDR, 0x55);
  798. if (intp->chip_id <= 0x20) {
  799. if (intp->symbol_rate[0] <= 5000000) {
  800. stv0900_write_reg(intp, CARCFG, 0x44);
  801. stv0900_write_reg(intp, CFRUP1, 0x0f);
  802. stv0900_write_reg(intp, CFRUP0, 0xff);
  803. stv0900_write_reg(intp, CFRLOW1, 0xf0);
  804. stv0900_write_reg(intp, CFRLOW0, 0x00);
  805. stv0900_write_reg(intp, RTCS2, 0x68);
  806. } else {
  807. stv0900_write_reg(intp, CARCFG, 0xc4);
  808. stv0900_write_reg(intp, RTCS2, 0x44);
  809. }
  810. } else { /*cut 3.0 above*/
  811. if (intp->symbol_rate[demod] <= 5000000)
  812. stv0900_write_reg(intp, RTCS2, 0x68);
  813. else
  814. stv0900_write_reg(intp, RTCS2, 0x44);
  815. stv0900_write_reg(intp, CARCFG, 0x46);
  816. if (intp->srch_algo[demod] == STV0900_WARM_START) {
  817. freq = 1000 << 16;
  818. freq /= (intp->mclk / 1000);
  819. freq_s16 = (s16)freq;
  820. } else {
  821. freq = (intp->srch_range[demod] / 2000);
  822. if (intp->symbol_rate[demod] <= 5000000)
  823. freq += 80;
  824. else
  825. freq += 600;
  826. freq = freq << 16;
  827. freq /= (intp->mclk / 1000);
  828. freq_s16 = (s16)freq;
  829. }
  830. stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
  831. stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
  832. freq_s16 *= (-1);
  833. stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
  834. stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
  835. }
  836. stv0900_write_reg(intp, CFRINIT1, 0);
  837. stv0900_write_reg(intp, CFRINIT0, 0);
  838. if (intp->chip_id >= 0x20) {
  839. stv0900_write_reg(intp, EQUALCFG, 0x41);
  840. stv0900_write_reg(intp, FFECFG, 0x41);
  841. if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
  842. (intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
  843. (intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
  844. stv0900_write_reg(intp, VITSCALE,
  845. 0x82);
  846. stv0900_write_reg(intp, VAVSRVIT, 0x0);
  847. }
  848. }
  849. stv0900_write_reg(intp, SFRSTEP, 0x00);
  850. stv0900_write_reg(intp, TMGTHRISE, 0xe0);
  851. stv0900_write_reg(intp, TMGTHFALL, 0xc0);
  852. stv0900_write_bits(intp, SCAN_ENABLE, 0);
  853. stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
  854. stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0);
  855. stv0900_write_reg(intp, RTC, 0x88);
  856. if (intp->chip_id >= 0x20) {
  857. if (intp->symbol_rate[demod] < 2000000) {
  858. if (intp->chip_id <= 0x20)
  859. stv0900_write_reg(intp, CARFREQ, 0x39);
  860. else /*cut 3.0*/
  861. stv0900_write_reg(intp, CARFREQ, 0x89);
  862. stv0900_write_reg(intp, CARHDR, 0x40);
  863. } else if (intp->symbol_rate[demod] < 10000000) {
  864. stv0900_write_reg(intp, CARFREQ, 0x4c);
  865. stv0900_write_reg(intp, CARHDR, 0x20);
  866. } else {
  867. stv0900_write_reg(intp, CARFREQ, 0x4b);
  868. stv0900_write_reg(intp, CARHDR, 0x20);
  869. }
  870. } else {
  871. if (intp->symbol_rate[demod] < 10000000)
  872. stv0900_write_reg(intp, CARFREQ, 0xef);
  873. else
  874. stv0900_write_reg(intp, CARFREQ, 0xed);
  875. }
  876. switch (intp->srch_algo[demod]) {
  877. case STV0900_WARM_START:
  878. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  879. stv0900_write_reg(intp, DMDISTATE, 0x18);
  880. break;
  881. case STV0900_COLD_START:
  882. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  883. stv0900_write_reg(intp, DMDISTATE, 0x15);
  884. break;
  885. default:
  886. break;
  887. }
  888. }
  889. u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode,
  890. s32 pilot, u8 chip_id)
  891. {
  892. u8 aclc_value = 0x29;
  893. s32 i, cllas2_size;
  894. const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
  895. dprintk("%s\n", __func__);
  896. if (chip_id <= 0x12) {
  897. cls2 = FE_STV0900_S2CarLoop;
  898. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  899. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  900. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
  901. } else if (chip_id == 0x20) {
  902. cls2 = FE_STV0900_S2CarLoopCut20;
  903. cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
  904. cllas2 = FE_STV0900_S2APSKCarLoopCut20;
  905. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut20);
  906. } else {
  907. cls2 = FE_STV0900_S2CarLoopCut30;
  908. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  909. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  910. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
  911. }
  912. if (modcode < STV0900_QPSK_12) {
  913. i = 0;
  914. while ((i < 3) && (modcode != cllqs2[i].modcode))
  915. i++;
  916. if (i >= 3)
  917. i = 2;
  918. } else {
  919. i = 0;
  920. while ((i < 14) && (modcode != cls2[i].modcode))
  921. i++;
  922. if (i >= 14) {
  923. i = 0;
  924. while ((i < 11) && (modcode != cllas2[i].modcode))
  925. i++;
  926. if (i >= 11)
  927. i = 10;
  928. }
  929. }
  930. if (modcode <= STV0900_QPSK_25) {
  931. if (pilot) {
  932. if (srate <= 3000000)
  933. aclc_value = cllqs2[i].car_loop_pilots_on_2;
  934. else if (srate <= 7000000)
  935. aclc_value = cllqs2[i].car_loop_pilots_on_5;
  936. else if (srate <= 15000000)
  937. aclc_value = cllqs2[i].car_loop_pilots_on_10;
  938. else if (srate <= 25000000)
  939. aclc_value = cllqs2[i].car_loop_pilots_on_20;
  940. else
  941. aclc_value = cllqs2[i].car_loop_pilots_on_30;
  942. } else {
  943. if (srate <= 3000000)
  944. aclc_value = cllqs2[i].car_loop_pilots_off_2;
  945. else if (srate <= 7000000)
  946. aclc_value = cllqs2[i].car_loop_pilots_off_5;
  947. else if (srate <= 15000000)
  948. aclc_value = cllqs2[i].car_loop_pilots_off_10;
  949. else if (srate <= 25000000)
  950. aclc_value = cllqs2[i].car_loop_pilots_off_20;
  951. else
  952. aclc_value = cllqs2[i].car_loop_pilots_off_30;
  953. }
  954. } else if (modcode <= STV0900_8PSK_910) {
  955. if (pilot) {
  956. if (srate <= 3000000)
  957. aclc_value = cls2[i].car_loop_pilots_on_2;
  958. else if (srate <= 7000000)
  959. aclc_value = cls2[i].car_loop_pilots_on_5;
  960. else if (srate <= 15000000)
  961. aclc_value = cls2[i].car_loop_pilots_on_10;
  962. else if (srate <= 25000000)
  963. aclc_value = cls2[i].car_loop_pilots_on_20;
  964. else
  965. aclc_value = cls2[i].car_loop_pilots_on_30;
  966. } else {
  967. if (srate <= 3000000)
  968. aclc_value = cls2[i].car_loop_pilots_off_2;
  969. else if (srate <= 7000000)
  970. aclc_value = cls2[i].car_loop_pilots_off_5;
  971. else if (srate <= 15000000)
  972. aclc_value = cls2[i].car_loop_pilots_off_10;
  973. else if (srate <= 25000000)
  974. aclc_value = cls2[i].car_loop_pilots_off_20;
  975. else
  976. aclc_value = cls2[i].car_loop_pilots_off_30;
  977. }
  978. } else if (i < cllas2_size) {
  979. if (srate <= 3000000)
  980. aclc_value = cllas2[i].car_loop_pilots_on_2;
  981. else if (srate <= 7000000)
  982. aclc_value = cllas2[i].car_loop_pilots_on_5;
  983. else if (srate <= 15000000)
  984. aclc_value = cllas2[i].car_loop_pilots_on_10;
  985. else if (srate <= 25000000)
  986. aclc_value = cllas2[i].car_loop_pilots_on_20;
  987. else
  988. aclc_value = cllas2[i].car_loop_pilots_on_30;
  989. }
  990. return aclc_value;
  991. }
  992. u8 stv0900_get_optim_short_carr_loop(s32 srate,
  993. enum fe_stv0900_modulation modulation,
  994. u8 chip_id)
  995. {
  996. const struct stv0900_short_frames_car_loop_optim *s2scl;
  997. const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
  998. s32 mod_index = 0;
  999. u8 aclc_value = 0x0b;
  1000. dprintk("%s\n", __func__);
  1001. s2scl = FE_STV0900_S2ShortCarLoop;
  1002. s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
  1003. switch (modulation) {
  1004. case STV0900_QPSK:
  1005. default:
  1006. mod_index = 0;
  1007. break;
  1008. case STV0900_8PSK:
  1009. mod_index = 1;
  1010. break;
  1011. case STV0900_16APSK:
  1012. mod_index = 2;
  1013. break;
  1014. case STV0900_32APSK:
  1015. mod_index = 3;
  1016. break;
  1017. }
  1018. if (chip_id >= 0x30) {
  1019. if (srate <= 3000000)
  1020. aclc_value = s2sclc30[mod_index].car_loop_2;
  1021. else if (srate <= 7000000)
  1022. aclc_value = s2sclc30[mod_index].car_loop_5;
  1023. else if (srate <= 15000000)
  1024. aclc_value = s2sclc30[mod_index].car_loop_10;
  1025. else if (srate <= 25000000)
  1026. aclc_value = s2sclc30[mod_index].car_loop_20;
  1027. else
  1028. aclc_value = s2sclc30[mod_index].car_loop_30;
  1029. } else if (chip_id >= 0x20) {
  1030. if (srate <= 3000000)
  1031. aclc_value = s2scl[mod_index].car_loop_cut20_2;
  1032. else if (srate <= 7000000)
  1033. aclc_value = s2scl[mod_index].car_loop_cut20_5;
  1034. else if (srate <= 15000000)
  1035. aclc_value = s2scl[mod_index].car_loop_cut20_10;
  1036. else if (srate <= 25000000)
  1037. aclc_value = s2scl[mod_index].car_loop_cut20_20;
  1038. else
  1039. aclc_value = s2scl[mod_index].car_loop_cut20_30;
  1040. } else {
  1041. if (srate <= 3000000)
  1042. aclc_value = s2scl[mod_index].car_loop_cut12_2;
  1043. else if (srate <= 7000000)
  1044. aclc_value = s2scl[mod_index].car_loop_cut12_5;
  1045. else if (srate <= 15000000)
  1046. aclc_value = s2scl[mod_index].car_loop_cut12_10;
  1047. else if (srate <= 25000000)
  1048. aclc_value = s2scl[mod_index].car_loop_cut12_20;
  1049. else
  1050. aclc_value = s2scl[mod_index].car_loop_cut12_30;
  1051. }
  1052. return aclc_value;
  1053. }
  1054. static
  1055. enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
  1056. enum fe_stv0900_demod_mode LDPC_Mode,
  1057. enum fe_stv0900_demod_num demod)
  1058. {
  1059. s32 reg_ind;
  1060. dprintk("%s\n", __func__);
  1061. switch (LDPC_Mode) {
  1062. case STV0900_DUAL:
  1063. default:
  1064. if ((intp->demod_mode != STV0900_DUAL)
  1065. || (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
  1066. stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
  1067. intp->demod_mode = STV0900_DUAL;
  1068. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1069. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1070. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1071. stv0900_write_reg(intp,
  1072. R0900_P1_MODCODLST0 + reg_ind,
  1073. 0xff);
  1074. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1075. stv0900_write_reg(intp,
  1076. R0900_P1_MODCODLST7 + reg_ind,
  1077. 0xcc);
  1078. stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff);
  1079. stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf);
  1080. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1081. stv0900_write_reg(intp,
  1082. R0900_P2_MODCODLST0 + reg_ind,
  1083. 0xff);
  1084. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1085. stv0900_write_reg(intp,
  1086. R0900_P2_MODCODLST7 + reg_ind,
  1087. 0xcc);
  1088. stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff);
  1089. stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf);
  1090. }
  1091. break;
  1092. case STV0900_SINGLE:
  1093. if (demod == STV0900_DEMOD_2) {
  1094. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1);
  1095. stv0900_activate_s2_modcod_single(intp,
  1096. STV0900_DEMOD_2);
  1097. stv0900_write_reg(intp, R0900_GENCFG, 0x06);
  1098. } else {
  1099. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2);
  1100. stv0900_activate_s2_modcod_single(intp,
  1101. STV0900_DEMOD_1);
  1102. stv0900_write_reg(intp, R0900_GENCFG, 0x04);
  1103. }
  1104. intp->demod_mode = STV0900_SINGLE;
  1105. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1106. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1107. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1);
  1108. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0);
  1109. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1);
  1110. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0);
  1111. break;
  1112. }
  1113. return STV0900_NO_ERROR;
  1114. }
  1115. static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
  1116. struct stv0900_init_params *p_init)
  1117. {
  1118. struct stv0900_state *state = fe->demodulator_priv;
  1119. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1120. enum fe_stv0900_error demodError = STV0900_NO_ERROR;
  1121. struct stv0900_internal *intp = NULL;
  1122. int selosci, i;
  1123. struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
  1124. state->config->demod_address);
  1125. dprintk("%s\n", __func__);
  1126. if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
  1127. state->internal = temp_int->internal;
  1128. (state->internal->dmds_used)++;
  1129. dprintk("%s: Find Internal Structure!\n", __func__);
  1130. return STV0900_NO_ERROR;
  1131. } else {
  1132. state->internal = kmalloc(sizeof(struct stv0900_internal),
  1133. GFP_KERNEL);
  1134. if (state->internal == NULL)
  1135. return STV0900_INVALID_HANDLE;
  1136. temp_int = append_internal(state->internal);
  1137. if (temp_int == NULL) {
  1138. kfree(state->internal);
  1139. state->internal = NULL;
  1140. return STV0900_INVALID_HANDLE;
  1141. }
  1142. state->internal->dmds_used = 1;
  1143. state->internal->i2c_adap = state->i2c_adap;
  1144. state->internal->i2c_addr = state->config->demod_address;
  1145. state->internal->clkmode = state->config->clkmode;
  1146. state->internal->errs = STV0900_NO_ERROR;
  1147. dprintk("%s: Create New Internal Structure!\n", __func__);
  1148. }
  1149. if (state->internal == NULL) {
  1150. error = STV0900_INVALID_HANDLE;
  1151. return error;
  1152. }
  1153. demodError = stv0900_initialize(state->internal);
  1154. if (demodError == STV0900_NO_ERROR) {
  1155. error = STV0900_NO_ERROR;
  1156. } else {
  1157. if (demodError == STV0900_INVALID_HANDLE)
  1158. error = STV0900_INVALID_HANDLE;
  1159. else
  1160. error = STV0900_I2C_ERROR;
  1161. return error;
  1162. }
  1163. intp = state->internal;
  1164. intp->demod_mode = p_init->demod_mode;
  1165. stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1);
  1166. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  1167. intp->rolloff = p_init->rolloff;
  1168. intp->quartz = p_init->dmd_ref_clk;
  1169. stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff);
  1170. stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff);
  1171. intp->ts_config = p_init->ts_config;
  1172. if (intp->ts_config == NULL)
  1173. stv0900_set_ts_parallel_serial(intp,
  1174. p_init->path1_ts_clock,
  1175. p_init->path2_ts_clock);
  1176. else {
  1177. for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
  1178. stv0900_write_reg(intp,
  1179. intp->ts_config[i].addr,
  1180. intp->ts_config[i].val);
  1181. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  1182. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  1183. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  1184. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  1185. }
  1186. intp->tuner_type[0] = p_init->tuner1_type;
  1187. intp->tuner_type[1] = p_init->tuner2_type;
  1188. /* tuner init */
  1189. switch (p_init->tuner1_type) {
  1190. case 3: /*FE_AUTO_STB6100:*/
  1191. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
  1192. stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86);
  1193. stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
  1194. stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
  1195. stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
  1196. stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
  1197. stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
  1198. stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
  1199. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3);
  1200. break;
  1201. /* case FE_SW_TUNER: */
  1202. default:
  1203. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6);
  1204. break;
  1205. }
  1206. stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress);
  1207. switch (p_init->tuner1_adc) {
  1208. case 1:
  1209. stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
  1210. break;
  1211. default:
  1212. break;
  1213. }
  1214. stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
  1215. /* tuner init */
  1216. switch (p_init->tuner2_type) {
  1217. case 3: /*FE_AUTO_STB6100:*/
  1218. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
  1219. stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86);
  1220. stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
  1221. stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
  1222. stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
  1223. stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
  1224. stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
  1225. stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
  1226. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3);
  1227. break;
  1228. /* case FE_SW_TUNER: */
  1229. default:
  1230. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6);
  1231. break;
  1232. }
  1233. stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress);
  1234. switch (p_init->tuner2_adc) {
  1235. case 1:
  1236. stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
  1237. break;
  1238. default:
  1239. break;
  1240. }
  1241. stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
  1242. stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv);
  1243. stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv);
  1244. stv0900_set_mclk(intp, 135000000);
  1245. msleep(3);
  1246. switch (intp->clkmode) {
  1247. case 0:
  1248. case 2:
  1249. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
  1250. break;
  1251. default:
  1252. selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  1253. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
  1254. break;
  1255. }
  1256. msleep(3);
  1257. intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
  1258. if (intp->errs)
  1259. error = STV0900_I2C_ERROR;
  1260. return error;
  1261. }
  1262. static int stv0900_status(struct stv0900_internal *intp,
  1263. enum fe_stv0900_demod_num demod)
  1264. {
  1265. enum fe_stv0900_search_state demod_state;
  1266. int locked = FALSE;
  1267. u8 tsbitrate0_val, tsbitrate1_val;
  1268. s32 bitrate;
  1269. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  1270. switch (demod_state) {
  1271. case STV0900_SEARCH:
  1272. case STV0900_PLH_DETECTED:
  1273. default:
  1274. locked = FALSE;
  1275. break;
  1276. case STV0900_DVBS2_FOUND:
  1277. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1278. stv0900_get_bits(intp, PKTDELIN_LOCK) &&
  1279. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1280. break;
  1281. case STV0900_DVBS_FOUND:
  1282. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1283. stv0900_get_bits(intp, LOCKEDVIT) &&
  1284. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1285. break;
  1286. }
  1287. dprintk("%s: locked = %d\n", __func__, locked);
  1288. if (stvdebug) {
  1289. /* Print TS bitrate */
  1290. tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
  1291. tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
  1292. /* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
  1293. bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
  1294. * (tsbitrate1_val << 8 | tsbitrate0_val);
  1295. bitrate /= 16384;
  1296. dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
  1297. }
  1298. return locked;
  1299. }
  1300. static int stv0900_set_mis(struct stv0900_internal *intp,
  1301. enum fe_stv0900_demod_num demod, int mis)
  1302. {
  1303. dprintk("%s\n", __func__);
  1304. if (mis < 0 || mis > 255) {
  1305. dprintk("Disable MIS filtering\n");
  1306. stv0900_write_bits(intp, FILTER_EN, 0);
  1307. } else {
  1308. dprintk("Enable MIS filtering - %d\n", mis);
  1309. stv0900_write_bits(intp, FILTER_EN, 1);
  1310. stv0900_write_reg(intp, ISIENTRY, mis);
  1311. stv0900_write_reg(intp, ISIBITENA, 0xff);
  1312. }
  1313. return STV0900_NO_ERROR;
  1314. }
  1315. static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
  1316. {
  1317. struct stv0900_state *state = fe->demodulator_priv;
  1318. struct stv0900_internal *intp = state->internal;
  1319. enum fe_stv0900_demod_num demod = state->demod;
  1320. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  1321. struct stv0900_search_params p_search;
  1322. struct stv0900_signal_info p_result = intp->result[demod];
  1323. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1324. dprintk("%s: ", __func__);
  1325. if (!(INRANGE(100000, c->symbol_rate, 70000000)))
  1326. return DVBFE_ALGO_SEARCH_FAILED;
  1327. if (state->config->set_ts_params)
  1328. state->config->set_ts_params(fe, 0);
  1329. stv0900_set_mis(intp, demod, c->stream_id);
  1330. p_result.locked = FALSE;
  1331. p_search.path = demod;
  1332. p_search.frequency = c->frequency;
  1333. p_search.symbol_rate = c->symbol_rate;
  1334. p_search.search_range = 10000000;
  1335. p_search.fec = STV0900_FEC_UNKNOWN;
  1336. p_search.standard = STV0900_AUTO_SEARCH;
  1337. p_search.iq_inversion = STV0900_IQ_AUTO;
  1338. p_search.search_algo = STV0900_BLIND_SEARCH;
  1339. /* Speeds up DVB-S searching */
  1340. if (c->delivery_system == SYS_DVBS)
  1341. p_search.standard = STV0900_SEARCH_DVBS1;
  1342. intp->srch_standard[demod] = p_search.standard;
  1343. intp->symbol_rate[demod] = p_search.symbol_rate;
  1344. intp->srch_range[demod] = p_search.search_range;
  1345. intp->freq[demod] = p_search.frequency;
  1346. intp->srch_algo[demod] = p_search.search_algo;
  1347. intp->srch_iq_inv[demod] = p_search.iq_inversion;
  1348. intp->fec[demod] = p_search.fec;
  1349. if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
  1350. (intp->errs == STV0900_NO_ERROR)) {
  1351. p_result.locked = intp->result[demod].locked;
  1352. p_result.standard = intp->result[demod].standard;
  1353. p_result.frequency = intp->result[demod].frequency;
  1354. p_result.symbol_rate = intp->result[demod].symbol_rate;
  1355. p_result.fec = intp->result[demod].fec;
  1356. p_result.modcode = intp->result[demod].modcode;
  1357. p_result.pilot = intp->result[demod].pilot;
  1358. p_result.frame_len = intp->result[demod].frame_len;
  1359. p_result.spectrum = intp->result[demod].spectrum;
  1360. p_result.rolloff = intp->result[demod].rolloff;
  1361. p_result.modulation = intp->result[demod].modulation;
  1362. } else {
  1363. p_result.locked = FALSE;
  1364. switch (intp->err[demod]) {
  1365. case STV0900_I2C_ERROR:
  1366. error = STV0900_I2C_ERROR;
  1367. break;
  1368. case STV0900_NO_ERROR:
  1369. default:
  1370. error = STV0900_SEARCH_FAILED;
  1371. break;
  1372. }
  1373. }
  1374. if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
  1375. dprintk("Search Success\n");
  1376. return DVBFE_ALGO_SEARCH_SUCCESS;
  1377. } else {
  1378. dprintk("Search Fail\n");
  1379. return DVBFE_ALGO_SEARCH_FAILED;
  1380. }
  1381. }
  1382. static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
  1383. {
  1384. struct stv0900_state *state = fe->demodulator_priv;
  1385. dprintk("%s: ", __func__);
  1386. if ((stv0900_status(state->internal, state->demod)) == TRUE) {
  1387. dprintk("DEMOD LOCK OK\n");
  1388. *status = FE_HAS_CARRIER
  1389. | FE_HAS_VITERBI
  1390. | FE_HAS_SYNC
  1391. | FE_HAS_LOCK;
  1392. if (state->config->set_lock_led)
  1393. state->config->set_lock_led(fe, 1);
  1394. } else {
  1395. *status = 0;
  1396. if (state->config->set_lock_led)
  1397. state->config->set_lock_led(fe, 0);
  1398. dprintk("DEMOD LOCK FAIL\n");
  1399. }
  1400. return 0;
  1401. }
  1402. static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
  1403. {
  1404. struct stv0900_state *state = fe->demodulator_priv;
  1405. struct stv0900_internal *intp = state->internal;
  1406. enum fe_stv0900_demod_num demod = state->demod;
  1407. if (stop_ts == TRUE)
  1408. stv0900_write_bits(intp, RST_HWARE, 1);
  1409. else
  1410. stv0900_write_bits(intp, RST_HWARE, 0);
  1411. return 0;
  1412. }
  1413. static int stv0900_diseqc_init(struct dvb_frontend *fe)
  1414. {
  1415. struct stv0900_state *state = fe->demodulator_priv;
  1416. struct stv0900_internal *intp = state->internal;
  1417. enum fe_stv0900_demod_num demod = state->demod;
  1418. stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
  1419. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1420. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1421. return 0;
  1422. }
  1423. static int stv0900_init(struct dvb_frontend *fe)
  1424. {
  1425. dprintk("%s\n", __func__);
  1426. stv0900_stop_ts(fe, 1);
  1427. stv0900_diseqc_init(fe);
  1428. return 0;
  1429. }
  1430. static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
  1431. u32 NbData, enum fe_stv0900_demod_num demod)
  1432. {
  1433. s32 i = 0;
  1434. stv0900_write_bits(intp, DIS_PRECHARGE, 1);
  1435. while (i < NbData) {
  1436. while (stv0900_get_bits(intp, FIFO_FULL))
  1437. ;/* checkpatch complains */
  1438. stv0900_write_reg(intp, DISTXDATA, data[i]);
  1439. i++;
  1440. }
  1441. stv0900_write_bits(intp, DIS_PRECHARGE, 0);
  1442. i = 0;
  1443. while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
  1444. msleep(10);
  1445. i++;
  1446. }
  1447. return 0;
  1448. }
  1449. static int stv0900_send_master_cmd(struct dvb_frontend *fe,
  1450. struct dvb_diseqc_master_cmd *cmd)
  1451. {
  1452. struct stv0900_state *state = fe->demodulator_priv;
  1453. return stv0900_diseqc_send(state->internal,
  1454. cmd->msg,
  1455. cmd->msg_len,
  1456. state->demod);
  1457. }
  1458. static int stv0900_send_burst(struct dvb_frontend *fe,
  1459. enum fe_sec_mini_cmd burst)
  1460. {
  1461. struct stv0900_state *state = fe->demodulator_priv;
  1462. struct stv0900_internal *intp = state->internal;
  1463. enum fe_stv0900_demod_num demod = state->demod;
  1464. u8 data;
  1465. switch (burst) {
  1466. case SEC_MINI_A:
  1467. stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
  1468. data = 0x00;
  1469. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1470. break;
  1471. case SEC_MINI_B:
  1472. stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
  1473. data = 0xff;
  1474. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1475. break;
  1476. }
  1477. return 0;
  1478. }
  1479. static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
  1480. struct dvb_diseqc_slave_reply *reply)
  1481. {
  1482. struct stv0900_state *state = fe->demodulator_priv;
  1483. struct stv0900_internal *intp = state->internal;
  1484. enum fe_stv0900_demod_num demod = state->demod;
  1485. s32 i = 0;
  1486. reply->msg_len = 0;
  1487. while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
  1488. msleep(10);
  1489. i++;
  1490. }
  1491. if (stv0900_get_bits(intp, RX_END)) {
  1492. reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
  1493. for (i = 0; i < reply->msg_len; i++)
  1494. reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
  1495. }
  1496. return 0;
  1497. }
  1498. static int stv0900_set_tone(struct dvb_frontend *fe,
  1499. enum fe_sec_tone_mode toneoff)
  1500. {
  1501. struct stv0900_state *state = fe->demodulator_priv;
  1502. struct stv0900_internal *intp = state->internal;
  1503. enum fe_stv0900_demod_num demod = state->demod;
  1504. dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
  1505. switch (toneoff) {
  1506. case SEC_TONE_ON:
  1507. /*Set the DiseqC mode to 22Khz _continues_ tone*/
  1508. stv0900_write_bits(intp, DISTX_MODE, 0);
  1509. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1510. /*release DiseqC reset to enable the 22KHz tone*/
  1511. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1512. break;
  1513. case SEC_TONE_OFF:
  1514. /*return diseqc mode to config->diseqc_mode.
  1515. Usually it's without _continues_ tone */
  1516. stv0900_write_bits(intp, DISTX_MODE,
  1517. state->config->diseqc_mode);
  1518. /*maintain the DiseqC reset to disable the 22KHz tone*/
  1519. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1520. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1521. break;
  1522. default:
  1523. return -EINVAL;
  1524. }
  1525. return 0;
  1526. }
  1527. static void stv0900_release(struct dvb_frontend *fe)
  1528. {
  1529. struct stv0900_state *state = fe->demodulator_priv;
  1530. dprintk("%s\n", __func__);
  1531. if (state->config->set_lock_led)
  1532. state->config->set_lock_led(fe, 0);
  1533. if ((--(state->internal->dmds_used)) <= 0) {
  1534. dprintk("%s: Actually removing\n", __func__);
  1535. remove_inode(state->internal);
  1536. kfree(state->internal);
  1537. }
  1538. kfree(state);
  1539. }
  1540. static int stv0900_sleep(struct dvb_frontend *fe)
  1541. {
  1542. struct stv0900_state *state = fe->demodulator_priv;
  1543. dprintk("%s\n", __func__);
  1544. if (state->config->set_lock_led)
  1545. state->config->set_lock_led(fe, 0);
  1546. return 0;
  1547. }
  1548. static int stv0900_get_frontend(struct dvb_frontend *fe,
  1549. struct dtv_frontend_properties *p)
  1550. {
  1551. struct stv0900_state *state = fe->demodulator_priv;
  1552. struct stv0900_internal *intp = state->internal;
  1553. enum fe_stv0900_demod_num demod = state->demod;
  1554. struct stv0900_signal_info p_result = intp->result[demod];
  1555. p->frequency = p_result.locked ? p_result.frequency : 0;
  1556. p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
  1557. return 0;
  1558. }
  1559. static const struct dvb_frontend_ops stv0900_ops = {
  1560. .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
  1561. .info = {
  1562. .name = "STV0900 frontend",
  1563. .frequency_min_hz = 950 * MHz,
  1564. .frequency_max_hz = 2150 * MHz,
  1565. .frequency_stepsize_hz = 125 * kHz,
  1566. .symbol_rate_min = 1000000,
  1567. .symbol_rate_max = 45000000,
  1568. .symbol_rate_tolerance = 500,
  1569. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  1570. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
  1571. FE_CAN_FEC_7_8 | FE_CAN_QPSK |
  1572. FE_CAN_2G_MODULATION |
  1573. FE_CAN_FEC_AUTO
  1574. },
  1575. .release = stv0900_release,
  1576. .init = stv0900_init,
  1577. .get_frontend = stv0900_get_frontend,
  1578. .sleep = stv0900_sleep,
  1579. .get_frontend_algo = stv0900_frontend_algo,
  1580. .i2c_gate_ctrl = stv0900_i2c_gate_ctrl,
  1581. .diseqc_send_master_cmd = stv0900_send_master_cmd,
  1582. .diseqc_send_burst = stv0900_send_burst,
  1583. .diseqc_recv_slave_reply = stv0900_recv_slave_reply,
  1584. .set_tone = stv0900_set_tone,
  1585. .search = stv0900_search,
  1586. .read_status = stv0900_read_status,
  1587. .read_ber = stv0900_read_ber,
  1588. .read_signal_strength = stv0900_read_signal_strength,
  1589. .read_snr = stv0900_read_snr,
  1590. .read_ucblocks = stv0900_read_ucblocks,
  1591. };
  1592. struct dvb_frontend *stv0900_attach(const struct stv0900_config *config,
  1593. struct i2c_adapter *i2c,
  1594. int demod)
  1595. {
  1596. struct stv0900_state *state = NULL;
  1597. struct stv0900_init_params init_params;
  1598. enum fe_stv0900_error err_stv0900;
  1599. state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
  1600. if (state == NULL)
  1601. goto error;
  1602. state->demod = demod;
  1603. state->config = config;
  1604. state->i2c_adap = i2c;
  1605. memcpy(&state->frontend.ops, &stv0900_ops,
  1606. sizeof(struct dvb_frontend_ops));
  1607. state->frontend.demodulator_priv = state;
  1608. switch (demod) {
  1609. case 0:
  1610. case 1:
  1611. init_params.dmd_ref_clk = config->xtal;
  1612. init_params.demod_mode = config->demod_mode;
  1613. init_params.rolloff = STV0900_35;
  1614. init_params.path1_ts_clock = config->path1_mode;
  1615. init_params.tun1_maddress = config->tun1_maddress;
  1616. init_params.tun1_iq_inv = STV0900_IQ_NORMAL;
  1617. init_params.tuner1_adc = config->tun1_adc;
  1618. init_params.tuner1_type = config->tun1_type;
  1619. init_params.path2_ts_clock = config->path2_mode;
  1620. init_params.ts_config = config->ts_config_regs;
  1621. init_params.tun2_maddress = config->tun2_maddress;
  1622. init_params.tuner2_adc = config->tun2_adc;
  1623. init_params.tuner2_type = config->tun2_type;
  1624. init_params.tun2_iq_inv = STV0900_IQ_SWAPPED;
  1625. err_stv0900 = stv0900_init_internal(&state->frontend,
  1626. &init_params);
  1627. if (err_stv0900)
  1628. goto error;
  1629. if (state->internal->chip_id >= 0x30)
  1630. state->frontend.ops.info.caps |= FE_CAN_MULTISTREAM;
  1631. break;
  1632. default:
  1633. goto error;
  1634. break;
  1635. }
  1636. dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod);
  1637. return &state->frontend;
  1638. error:
  1639. dprintk("%s: Failed to attach STV0900 demodulator(%d) \n",
  1640. __func__, demod);
  1641. kfree(state);
  1642. return NULL;
  1643. }
  1644. EXPORT_SYMBOL(stv0900_attach);
  1645. MODULE_PARM_DESC(debug, "Set debug");
  1646. MODULE_AUTHOR("Igor M. Liplianin");
  1647. MODULE_DESCRIPTION("ST STV0900 frontend");
  1648. MODULE_LICENSE("GPL");