dib8000.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
  4. *
  5. * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/i2c.h>
  11. #include <linux/mutex.h>
  12. #include <asm/div64.h>
  13. #include <media/dvb_math.h>
  14. #include <media/dvb_frontend.h>
  15. #include "dib8000.h"
  16. #define LAYER_ALL -1
  17. #define LAYER_A 1
  18. #define LAYER_B 2
  19. #define LAYER_C 3
  20. #define MAX_NUMBER_OF_FRONTENDS 6
  21. /* #define DIB8000_AGC_FREEZE */
  22. static int debug;
  23. module_param(debug, int, 0644);
  24. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  25. #define dprintk(fmt, arg...) do { \
  26. if (debug) \
  27. printk(KERN_DEBUG pr_fmt("%s: " fmt), \
  28. __func__, ##arg); \
  29. } while (0)
  30. struct i2c_device {
  31. struct i2c_adapter *adap;
  32. u8 addr;
  33. u8 *i2c_write_buffer;
  34. u8 *i2c_read_buffer;
  35. struct mutex *i2c_buffer_lock;
  36. };
  37. enum param_loop_step {
  38. LOOP_TUNE_1,
  39. LOOP_TUNE_2
  40. };
  41. enum dib8000_autosearch_step {
  42. AS_START = 0,
  43. AS_SEARCHING_FFT,
  44. AS_SEARCHING_GUARD,
  45. AS_DONE = 100,
  46. };
  47. enum timeout_mode {
  48. SYMBOL_DEPENDENT_OFF = 0,
  49. SYMBOL_DEPENDENT_ON,
  50. };
  51. struct dib8000_state {
  52. struct dib8000_config cfg;
  53. struct i2c_device i2c;
  54. struct dibx000_i2c_master i2c_master;
  55. u16 wbd_ref;
  56. u8 current_band;
  57. u32 current_bandwidth;
  58. struct dibx000_agc_config *current_agc;
  59. u32 timf;
  60. u32 timf_default;
  61. u8 div_force_off:1;
  62. u8 div_state:1;
  63. u16 div_sync_wait;
  64. u8 agc_state;
  65. u8 differential_constellation;
  66. u8 diversity_onoff;
  67. s16 ber_monitored_layer;
  68. u16 gpio_dir;
  69. u16 gpio_val;
  70. u16 revision;
  71. u8 isdbt_cfg_loaded;
  72. enum frontend_tune_state tune_state;
  73. s32 status;
  74. struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
  75. /* for the I2C transfer */
  76. struct i2c_msg msg[2];
  77. u8 i2c_write_buffer[4];
  78. u8 i2c_read_buffer[2];
  79. struct mutex i2c_buffer_lock;
  80. u8 input_mode_mpeg;
  81. u16 tuner_enable;
  82. struct i2c_adapter dib8096p_tuner_adap;
  83. u16 current_demod_bw;
  84. u16 seg_mask;
  85. u16 seg_diff_mask;
  86. u16 mode;
  87. u8 layer_b_nb_seg;
  88. u8 layer_c_nb_seg;
  89. u8 channel_parameters_set;
  90. u16 autosearch_state;
  91. u16 found_nfft;
  92. u16 found_guard;
  93. u8 subchannel;
  94. u8 symbol_duration;
  95. unsigned long timeout;
  96. u8 longest_intlv_layer;
  97. u16 output_mode;
  98. /* for DVBv5 stats */
  99. s64 init_ucb;
  100. unsigned long per_jiffies_stats;
  101. unsigned long ber_jiffies_stats;
  102. unsigned long ber_jiffies_stats_layer[3];
  103. #ifdef DIB8000_AGC_FREEZE
  104. u16 agc1_max;
  105. u16 agc1_min;
  106. u16 agc2_max;
  107. u16 agc2_min;
  108. #endif
  109. };
  110. enum dib8000_power_mode {
  111. DIB8000_POWER_ALL = 0,
  112. DIB8000_POWER_INTERFACE_ONLY,
  113. };
  114. static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
  115. {
  116. u16 ret;
  117. struct i2c_msg msg[2] = {
  118. {.addr = i2c->addr >> 1, .flags = 0, .len = 2},
  119. {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2},
  120. };
  121. if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
  122. dprintk("could not acquire lock\n");
  123. return 0;
  124. }
  125. msg[0].buf = i2c->i2c_write_buffer;
  126. msg[0].buf[0] = reg >> 8;
  127. msg[0].buf[1] = reg & 0xff;
  128. msg[1].buf = i2c->i2c_read_buffer;
  129. if (i2c_transfer(i2c->adap, msg, 2) != 2)
  130. dprintk("i2c read error on %d\n", reg);
  131. ret = (msg[1].buf[0] << 8) | msg[1].buf[1];
  132. mutex_unlock(i2c->i2c_buffer_lock);
  133. return ret;
  134. }
  135. static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg)
  136. {
  137. u16 ret;
  138. state->i2c_write_buffer[0] = reg >> 8;
  139. state->i2c_write_buffer[1] = reg & 0xff;
  140. memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
  141. state->msg[0].addr = state->i2c.addr >> 1;
  142. state->msg[0].flags = 0;
  143. state->msg[0].buf = state->i2c_write_buffer;
  144. state->msg[0].len = 2;
  145. state->msg[1].addr = state->i2c.addr >> 1;
  146. state->msg[1].flags = I2C_M_RD;
  147. state->msg[1].buf = state->i2c_read_buffer;
  148. state->msg[1].len = 2;
  149. if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2)
  150. dprintk("i2c read error on %d\n", reg);
  151. ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
  152. return ret;
  153. }
  154. static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
  155. {
  156. u16 ret;
  157. if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
  158. dprintk("could not acquire lock\n");
  159. return 0;
  160. }
  161. ret = __dib8000_read_word(state, reg);
  162. mutex_unlock(&state->i2c_buffer_lock);
  163. return ret;
  164. }
  165. static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
  166. {
  167. u16 rw[2];
  168. if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
  169. dprintk("could not acquire lock\n");
  170. return 0;
  171. }
  172. rw[0] = __dib8000_read_word(state, reg + 0);
  173. rw[1] = __dib8000_read_word(state, reg + 1);
  174. mutex_unlock(&state->i2c_buffer_lock);
  175. return ((rw[0] << 16) | (rw[1]));
  176. }
  177. static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
  178. {
  179. struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4};
  180. int ret = 0;
  181. if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
  182. dprintk("could not acquire lock\n");
  183. return -EINVAL;
  184. }
  185. msg.buf = i2c->i2c_write_buffer;
  186. msg.buf[0] = (reg >> 8) & 0xff;
  187. msg.buf[1] = reg & 0xff;
  188. msg.buf[2] = (val >> 8) & 0xff;
  189. msg.buf[3] = val & 0xff;
  190. ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  191. mutex_unlock(i2c->i2c_buffer_lock);
  192. return ret;
  193. }
  194. static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
  195. {
  196. int ret;
  197. if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
  198. dprintk("could not acquire lock\n");
  199. return -EINVAL;
  200. }
  201. state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
  202. state->i2c_write_buffer[1] = reg & 0xff;
  203. state->i2c_write_buffer[2] = (val >> 8) & 0xff;
  204. state->i2c_write_buffer[3] = val & 0xff;
  205. memset(&state->msg[0], 0, sizeof(struct i2c_msg));
  206. state->msg[0].addr = state->i2c.addr >> 1;
  207. state->msg[0].flags = 0;
  208. state->msg[0].buf = state->i2c_write_buffer;
  209. state->msg[0].len = 4;
  210. ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ?
  211. -EREMOTEIO : 0);
  212. mutex_unlock(&state->i2c_buffer_lock);
  213. return ret;
  214. }
  215. static const s16 coeff_2k_sb_1seg_dqpsk[8] = {
  216. (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
  217. (920 << 5) | 0x09
  218. };
  219. static const s16 coeff_2k_sb_1seg[8] = {
  220. (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
  221. };
  222. static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
  223. (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
  224. (-931 << 5) | 0x0f
  225. };
  226. static const s16 coeff_2k_sb_3seg_0dqpsk[8] = {
  227. (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
  228. (982 << 5) | 0x0c
  229. };
  230. static const s16 coeff_2k_sb_3seg_1dqpsk[8] = {
  231. (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
  232. (-720 << 5) | 0x0d
  233. };
  234. static const s16 coeff_2k_sb_3seg[8] = {
  235. (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
  236. (-610 << 5) | 0x0a
  237. };
  238. static const s16 coeff_4k_sb_1seg_dqpsk[8] = {
  239. (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
  240. (-922 << 5) | 0x0d
  241. };
  242. static const s16 coeff_4k_sb_1seg[8] = {
  243. (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
  244. (-655 << 5) | 0x0a
  245. };
  246. static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
  247. (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
  248. (-958 << 5) | 0x13
  249. };
  250. static const s16 coeff_4k_sb_3seg_0dqpsk[8] = {
  251. (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
  252. (-568 << 5) | 0x0f
  253. };
  254. static const s16 coeff_4k_sb_3seg_1dqpsk[8] = {
  255. (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
  256. (-848 << 5) | 0x13
  257. };
  258. static const s16 coeff_4k_sb_3seg[8] = {
  259. (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
  260. (-869 << 5) | 0x13
  261. };
  262. static const s16 coeff_8k_sb_1seg_dqpsk[8] = {
  263. (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
  264. (-598 << 5) | 0x10
  265. };
  266. static const s16 coeff_8k_sb_1seg[8] = {
  267. (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
  268. (585 << 5) | 0x0f
  269. };
  270. static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
  271. (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
  272. (0 << 5) | 0x14
  273. };
  274. static const s16 coeff_8k_sb_3seg_0dqpsk[8] = {
  275. (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
  276. (-877 << 5) | 0x15
  277. };
  278. static const s16 coeff_8k_sb_3seg_1dqpsk[8] = {
  279. (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
  280. (-921 << 5) | 0x14
  281. };
  282. static const s16 coeff_8k_sb_3seg[8] = {
  283. (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
  284. (690 << 5) | 0x14
  285. };
  286. static const s16 ana_fe_coeff_3seg[24] = {
  287. 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
  288. };
  289. static const s16 ana_fe_coeff_1seg[24] = {
  290. 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
  291. };
  292. static const s16 ana_fe_coeff_13seg[24] = {
  293. 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
  294. };
  295. static u16 fft_to_mode(struct dib8000_state *state)
  296. {
  297. u16 mode;
  298. switch (state->fe[0]->dtv_property_cache.transmission_mode) {
  299. case TRANSMISSION_MODE_2K:
  300. mode = 1;
  301. break;
  302. case TRANSMISSION_MODE_4K:
  303. mode = 2;
  304. break;
  305. default:
  306. case TRANSMISSION_MODE_AUTO:
  307. case TRANSMISSION_MODE_8K:
  308. mode = 3;
  309. break;
  310. }
  311. return mode;
  312. }
  313. static void dib8000_set_acquisition_mode(struct dib8000_state *state)
  314. {
  315. u16 nud = dib8000_read_word(state, 298);
  316. nud |= (1 << 3) | (1 << 0);
  317. dprintk("acquisition mode activated\n");
  318. dib8000_write_word(state, 298, nud);
  319. }
  320. static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
  321. {
  322. struct dib8000_state *state = fe->demodulator_priv;
  323. u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
  324. state->output_mode = mode;
  325. outreg = 0;
  326. fifo_threshold = 1792;
  327. smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
  328. dprintk("-I- Setting output mode for demod %p to %d\n",
  329. &state->fe[0], mode);
  330. switch (mode) {
  331. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  332. outreg = (1 << 10); /* 0x0400 */
  333. break;
  334. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  335. outreg = (1 << 10) | (1 << 6); /* 0x0440 */
  336. break;
  337. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  338. outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
  339. break;
  340. case OUTMODE_DIVERSITY:
  341. if (state->cfg.hostbus_diversity) {
  342. outreg = (1 << 10) | (4 << 6); /* 0x0500 */
  343. sram &= 0xfdff;
  344. } else
  345. sram |= 0x0c00;
  346. break;
  347. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  348. smo_mode |= (3 << 1);
  349. fifo_threshold = 512;
  350. outreg = (1 << 10) | (5 << 6);
  351. break;
  352. case OUTMODE_HIGH_Z: // disable
  353. outreg = 0;
  354. break;
  355. case OUTMODE_ANALOG_ADC:
  356. outreg = (1 << 10) | (3 << 6);
  357. dib8000_set_acquisition_mode(state);
  358. break;
  359. default:
  360. dprintk("Unhandled output_mode passed to be set for demod %p\n",
  361. &state->fe[0]);
  362. return -EINVAL;
  363. }
  364. if (state->cfg.output_mpeg2_in_188_bytes)
  365. smo_mode |= (1 << 5);
  366. dib8000_write_word(state, 299, smo_mode);
  367. dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
  368. dib8000_write_word(state, 1286, outreg);
  369. dib8000_write_word(state, 1291, sram);
  370. return 0;
  371. }
  372. static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
  373. {
  374. struct dib8000_state *state = fe->demodulator_priv;
  375. u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0;
  376. dprintk("set diversity input to %i\n", onoff);
  377. if (!state->differential_constellation) {
  378. dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
  379. dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
  380. } else {
  381. dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
  382. dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
  383. }
  384. state->diversity_onoff = onoff;
  385. switch (onoff) {
  386. case 0: /* only use the internal way - not the diversity input */
  387. dib8000_write_word(state, 270, 1);
  388. dib8000_write_word(state, 271, 0);
  389. break;
  390. case 1: /* both ways */
  391. dib8000_write_word(state, 270, 6);
  392. dib8000_write_word(state, 271, 6);
  393. break;
  394. case 2: /* only the diversity input */
  395. dib8000_write_word(state, 270, 0);
  396. dib8000_write_word(state, 271, 1);
  397. break;
  398. }
  399. if (state->revision == 0x8002) {
  400. tmp = dib8000_read_word(state, 903);
  401. dib8000_write_word(state, 903, tmp & ~(1 << 3));
  402. msleep(30);
  403. dib8000_write_word(state, 903, tmp | (1 << 3));
  404. }
  405. return 0;
  406. }
  407. static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
  408. {
  409. /* by default everything is going to be powered off */
  410. u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
  411. reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
  412. reg_1280;
  413. if (state->revision != 0x8090)
  414. reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
  415. else
  416. reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80;
  417. /* now, depending on the requested mode, we power on */
  418. switch (mode) {
  419. /* power up everything in the demod */
  420. case DIB8000_POWER_ALL:
  421. reg_774 = 0x0000;
  422. reg_775 = 0x0000;
  423. reg_776 = 0x0000;
  424. reg_900 &= 0xfffc;
  425. if (state->revision != 0x8090)
  426. reg_1280 &= 0x00ff;
  427. else
  428. reg_1280 &= 0x707f;
  429. break;
  430. case DIB8000_POWER_INTERFACE_ONLY:
  431. if (state->revision != 0x8090)
  432. reg_1280 &= 0x00ff;
  433. else
  434. reg_1280 &= 0xfa7b;
  435. break;
  436. }
  437. dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280);
  438. dib8000_write_word(state, 774, reg_774);
  439. dib8000_write_word(state, 775, reg_775);
  440. dib8000_write_word(state, 776, reg_776);
  441. dib8000_write_word(state, 900, reg_900);
  442. dib8000_write_word(state, 1280, reg_1280);
  443. }
  444. static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
  445. {
  446. int ret = 0;
  447. u16 reg, reg_907 = dib8000_read_word(state, 907);
  448. u16 reg_908 = dib8000_read_word(state, 908);
  449. switch (no) {
  450. case DIBX000_SLOW_ADC_ON:
  451. if (state->revision != 0x8090) {
  452. reg_908 |= (1 << 1) | (1 << 0);
  453. ret |= dib8000_write_word(state, 908, reg_908);
  454. reg_908 &= ~(1 << 1);
  455. } else {
  456. reg = dib8000_read_word(state, 1925);
  457. /* en_slowAdc = 1 & reset_sladc = 1 */
  458. dib8000_write_word(state, 1925, reg |
  459. (1<<4) | (1<<2));
  460. /* read access to make it works... strange ... */
  461. reg = dib8000_read_word(state, 1925);
  462. msleep(20);
  463. /* en_slowAdc = 1 & reset_sladc = 0 */
  464. dib8000_write_word(state, 1925, reg & ~(1<<4));
  465. reg = dib8000_read_word(state, 921) & ~((0x3 << 14)
  466. | (0x3 << 12));
  467. /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
  468. (Vin2 = Vcm) */
  469. dib8000_write_word(state, 921, reg | (1 << 14)
  470. | (3 << 12));
  471. }
  472. break;
  473. case DIBX000_SLOW_ADC_OFF:
  474. if (state->revision == 0x8090) {
  475. reg = dib8000_read_word(state, 1925);
  476. /* reset_sladc = 1 en_slowAdc = 0 */
  477. dib8000_write_word(state, 1925,
  478. (reg & ~(1<<2)) | (1<<4));
  479. }
  480. reg_908 |= (1 << 1) | (1 << 0);
  481. break;
  482. case DIBX000_ADC_ON:
  483. reg_907 &= 0x0fff;
  484. reg_908 &= 0x0003;
  485. break;
  486. case DIBX000_ADC_OFF: // leave the VBG voltage on
  487. reg_907 = (1 << 13) | (1 << 12);
  488. reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
  489. break;
  490. case DIBX000_VBG_ENABLE:
  491. reg_907 &= ~(1 << 15);
  492. break;
  493. case DIBX000_VBG_DISABLE:
  494. reg_907 |= (1 << 15);
  495. break;
  496. default:
  497. break;
  498. }
  499. ret |= dib8000_write_word(state, 907, reg_907);
  500. ret |= dib8000_write_word(state, 908, reg_908);
  501. return ret;
  502. }
  503. static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw)
  504. {
  505. struct dib8000_state *state = fe->demodulator_priv;
  506. u32 timf;
  507. if (bw == 0)
  508. bw = 6000;
  509. if (state->timf == 0) {
  510. dprintk("using default timf\n");
  511. timf = state->timf_default;
  512. } else {
  513. dprintk("using updated timf\n");
  514. timf = state->timf;
  515. }
  516. dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
  517. dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
  518. return 0;
  519. }
  520. static int dib8000_sad_calib(struct dib8000_state *state)
  521. {
  522. u8 sad_sel = 3;
  523. if (state->revision == 0x8090) {
  524. dib8000_write_word(state, 922, (sad_sel << 2));
  525. dib8000_write_word(state, 923, 2048);
  526. dib8000_write_word(state, 922, (sad_sel << 2) | 0x1);
  527. dib8000_write_word(state, 922, (sad_sel << 2));
  528. } else {
  529. /* internal */
  530. dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
  531. dib8000_write_word(state, 924, 776);
  532. /* do the calibration */
  533. dib8000_write_word(state, 923, (1 << 0));
  534. dib8000_write_word(state, 923, (0 << 0));
  535. }
  536. msleep(1);
  537. return 0;
  538. }
  539. static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
  540. {
  541. struct dib8000_state *state = fe->demodulator_priv;
  542. if (value > 4095)
  543. value = 4095;
  544. state->wbd_ref = value;
  545. return dib8000_write_word(state, 106, value);
  546. }
  547. static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
  548. {
  549. dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
  550. if (state->revision != 0x8090) {
  551. dib8000_write_word(state, 23,
  552. (u16) (((bw->internal * 1000) >> 16) & 0xffff));
  553. dib8000_write_word(state, 24,
  554. (u16) ((bw->internal * 1000) & 0xffff));
  555. } else {
  556. dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff));
  557. dib8000_write_word(state, 24,
  558. (u16) ((bw->internal / 2 * 1000) & 0xffff));
  559. }
  560. dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
  561. dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
  562. dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
  563. if (state->revision != 0x8090)
  564. dib8000_write_word(state, 922, bw->sad_cfg);
  565. }
  566. static void dib8000_reset_pll(struct dib8000_state *state)
  567. {
  568. const struct dibx000_bandwidth_config *pll = state->cfg.pll;
  569. u16 clk_cfg1, reg;
  570. if (state->revision != 0x8090) {
  571. dib8000_write_word(state, 901,
  572. (pll->pll_prediv << 8) | (pll->pll_ratio << 0));
  573. clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
  574. (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) |
  575. (1 << 3) | (pll->pll_range << 1) |
  576. (pll->pll_reset << 0);
  577. dib8000_write_word(state, 902, clk_cfg1);
  578. clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
  579. dib8000_write_word(state, 902, clk_cfg1);
  580. dprintk("clk_cfg1: 0x%04x\n", clk_cfg1);
  581. /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
  582. if (state->cfg.pll->ADClkSrc == 0)
  583. dib8000_write_word(state, 904,
  584. (0 << 15) | (0 << 12) | (0 << 10) |
  585. (pll->modulo << 8) |
  586. (pll->ADClkSrc << 7) | (0 << 1));
  587. else if (state->cfg.refclksel != 0)
  588. dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
  589. ((state->cfg.refclksel & 0x3) << 10) |
  590. (pll->modulo << 8) |
  591. (pll->ADClkSrc << 7) | (0 << 1));
  592. else
  593. dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
  594. (3 << 10) | (pll->modulo << 8) |
  595. (pll->ADClkSrc << 7) | (0 << 1));
  596. } else {
  597. dib8000_write_word(state, 1856, (!pll->pll_reset<<13) |
  598. (pll->pll_range<<12) | (pll->pll_ratio<<6) |
  599. (pll->pll_prediv));
  600. reg = dib8000_read_word(state, 1857);
  601. dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15));
  602. reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */
  603. dib8000_write_word(state, 1858, reg | 1);
  604. dib8000_write_word(state, 904, (pll->modulo << 8));
  605. }
  606. dib8000_reset_pll_common(state, pll);
  607. }
  608. static int dib8000_update_pll(struct dvb_frontend *fe,
  609. struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio)
  610. {
  611. struct dib8000_state *state = fe->demodulator_priv;
  612. u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856);
  613. u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ;
  614. u32 internal, xtal;
  615. /* get back old values */
  616. prediv = reg_1856 & 0x3f;
  617. loopdiv = (reg_1856 >> 6) & 0x3f;
  618. if ((pll == NULL) || (pll->pll_prediv == prediv &&
  619. pll->pll_ratio == loopdiv))
  620. return -EINVAL;
  621. dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio);
  622. if (state->revision == 0x8090) {
  623. reg_1856 &= 0xf000;
  624. reg_1857 = dib8000_read_word(state, 1857);
  625. /* disable PLL */
  626. dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15));
  627. dib8000_write_word(state, 1856, reg_1856 |
  628. ((pll->pll_ratio & 0x3f) << 6) |
  629. (pll->pll_prediv & 0x3f));
  630. /* write new system clk into P_sec_len */
  631. internal = dib8000_read32(state, 23) / 1000;
  632. dprintk("Old Internal = %d\n", internal);
  633. xtal = 2 * (internal / loopdiv) * prediv;
  634. internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio;
  635. dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000);
  636. dprintk("New Internal = %d\n", internal);
  637. dib8000_write_word(state, 23,
  638. (u16) (((internal / 2) >> 16) & 0xffff));
  639. dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff));
  640. /* enable PLL */
  641. dib8000_write_word(state, 1857, reg_1857 | (1 << 15));
  642. while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1)
  643. dprintk("Waiting for PLL to lock\n");
  644. /* verify */
  645. reg_1856 = dib8000_read_word(state, 1856);
  646. dprintk("PLL Updated with prediv = %d and loopdiv = %d\n",
  647. reg_1856&0x3f, (reg_1856>>6)&0x3f);
  648. } else {
  649. if (bw != state->current_demod_bw) {
  650. /** Bandwidth change => force PLL update **/
  651. dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv);
  652. if (state->cfg.pll->pll_prediv != oldprediv) {
  653. /** Full PLL change only if prediv is changed **/
  654. /** full update => bypass and reconfigure **/
  655. dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio);
  656. dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */
  657. dib8000_reset_pll(state);
  658. dib8000_write_word(state, 898, 0x0004); /* sad */
  659. } else
  660. ratio = state->cfg.pll->pll_ratio;
  661. state->current_demod_bw = bw;
  662. }
  663. if (ratio != 0) {
  664. /** ratio update => only change ratio **/
  665. dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio);
  666. dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */
  667. }
  668. }
  669. return 0;
  670. }
  671. static int dib8000_reset_gpio(struct dib8000_state *st)
  672. {
  673. /* reset the GPIOs */
  674. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  675. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  676. /* TODO 782 is P_gpio_od */
  677. dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
  678. dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
  679. return 0;
  680. }
  681. static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
  682. {
  683. st->cfg.gpio_dir = dib8000_read_word(st, 1029);
  684. st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
  685. st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
  686. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  687. st->cfg.gpio_val = dib8000_read_word(st, 1030);
  688. st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
  689. st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
  690. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  691. dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val);
  692. return 0;
  693. }
  694. static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
  695. {
  696. struct dib8000_state *state = fe->demodulator_priv;
  697. return dib8000_cfg_gpio(state, num, dir, val);
  698. }
  699. static const u16 dib8000_defaults[] = {
  700. /* auto search configuration - lock0 by default waiting
  701. * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
  702. 3, 7,
  703. 0x0004,
  704. 0x0400,
  705. 0x0814,
  706. 12, 11,
  707. 0x001b,
  708. 0x7740,
  709. 0x005b,
  710. 0x8d80,
  711. 0x01c9,
  712. 0xc380,
  713. 0x0000,
  714. 0x0080,
  715. 0x0000,
  716. 0x0090,
  717. 0x0001,
  718. 0xd4c0,
  719. /*1, 32,
  720. 0x6680 // P_corm_thres Lock algorithms configuration */
  721. 11, 80, /* set ADC level to -16 */
  722. (1 << 13) - 825 - 117,
  723. (1 << 13) - 837 - 117,
  724. (1 << 13) - 811 - 117,
  725. (1 << 13) - 766 - 117,
  726. (1 << 13) - 737 - 117,
  727. (1 << 13) - 693 - 117,
  728. (1 << 13) - 648 - 117,
  729. (1 << 13) - 619 - 117,
  730. (1 << 13) - 575 - 117,
  731. (1 << 13) - 531 - 117,
  732. (1 << 13) - 501 - 117,
  733. 4, 108,
  734. 0,
  735. 0,
  736. 0,
  737. 0,
  738. 1, 175,
  739. 0x0410,
  740. 1, 179,
  741. 8192, // P_fft_nb_to_cut
  742. 6, 181,
  743. 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
  744. 0x2800,
  745. 0x2800,
  746. 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
  747. 0x2800,
  748. 0x2800,
  749. 2, 193,
  750. 0x0666, // P_pha3_thres
  751. 0x0000, // P_cti_use_cpe, P_cti_use_prog
  752. 2, 205,
  753. 0x200f, // P_cspu_regul, P_cspu_win_cut
  754. 0x000f, // P_des_shift_work
  755. 5, 215,
  756. 0x023d, // P_adp_regul_cnt
  757. 0x00a4, // P_adp_noise_cnt
  758. 0x00a4, // P_adp_regul_ext
  759. 0x7ff0, // P_adp_noise_ext
  760. 0x3ccc, // P_adp_fil
  761. 1, 230,
  762. 0x0000, // P_2d_byp_ti_num
  763. 1, 263,
  764. 0x800, //P_equal_thres_wgn
  765. 1, 268,
  766. (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
  767. 1, 270,
  768. 0x0001, // P_div_lock0_wait
  769. 1, 285,
  770. 0x0020, //p_fec_
  771. 1, 299,
  772. 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
  773. 1, 338,
  774. (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
  775. (1 << 10) |
  776. (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
  777. (3 << 5) | /* P_ctrl_pre_freq_step=3 */
  778. (1 << 0), /* P_pre_freq_win_len=1 */
  779. 0,
  780. };
  781. static u16 dib8000_identify(struct i2c_device *client)
  782. {
  783. u16 value;
  784. //because of glitches sometimes
  785. value = dib8000_i2c_read16(client, 896);
  786. if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
  787. dprintk("wrong Vendor ID (read=0x%x)\n", value);
  788. return 0;
  789. }
  790. value = dib8000_i2c_read16(client, 897);
  791. if (value != 0x8000 && value != 0x8001 &&
  792. value != 0x8002 && value != 0x8090) {
  793. dprintk("wrong Device ID (%x)\n", value);
  794. return 0;
  795. }
  796. switch (value) {
  797. case 0x8000:
  798. dprintk("found DiB8000A\n");
  799. break;
  800. case 0x8001:
  801. dprintk("found DiB8000B\n");
  802. break;
  803. case 0x8002:
  804. dprintk("found DiB8000C\n");
  805. break;
  806. case 0x8090:
  807. dprintk("found DiB8096P\n");
  808. break;
  809. }
  810. return value;
  811. }
  812. static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc);
  813. static void dib8000_reset_stats(struct dvb_frontend *fe)
  814. {
  815. struct dib8000_state *state = fe->demodulator_priv;
  816. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  817. u32 ucb;
  818. memset(&c->strength, 0, sizeof(c->strength));
  819. memset(&c->cnr, 0, sizeof(c->cnr));
  820. memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
  821. memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
  822. memset(&c->block_error, 0, sizeof(c->block_error));
  823. c->strength.len = 1;
  824. c->cnr.len = 1;
  825. c->block_error.len = 1;
  826. c->block_count.len = 1;
  827. c->post_bit_error.len = 1;
  828. c->post_bit_count.len = 1;
  829. c->strength.stat[0].scale = FE_SCALE_DECIBEL;
  830. c->strength.stat[0].uvalue = 0;
  831. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  832. c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  833. c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  834. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  835. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  836. dib8000_read_unc_blocks(fe, &ucb);
  837. state->init_ucb = -ucb;
  838. state->ber_jiffies_stats = 0;
  839. state->per_jiffies_stats = 0;
  840. memset(&state->ber_jiffies_stats_layer, 0,
  841. sizeof(state->ber_jiffies_stats_layer));
  842. }
  843. static int dib8000_reset(struct dvb_frontend *fe)
  844. {
  845. struct dib8000_state *state = fe->demodulator_priv;
  846. if ((state->revision = dib8000_identify(&state->i2c)) == 0)
  847. return -EINVAL;
  848. /* sram lead in, rdy */
  849. if (state->revision != 0x8090)
  850. dib8000_write_word(state, 1287, 0x0003);
  851. if (state->revision == 0x8000)
  852. dprintk("error : dib8000 MA not supported\n");
  853. dibx000_reset_i2c_master(&state->i2c_master);
  854. dib8000_set_power_mode(state, DIB8000_POWER_ALL);
  855. /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
  856. dib8000_set_adc_state(state, DIBX000_ADC_OFF);
  857. /* restart all parts */
  858. dib8000_write_word(state, 770, 0xffff);
  859. dib8000_write_word(state, 771, 0xffff);
  860. dib8000_write_word(state, 772, 0xfffc);
  861. dib8000_write_word(state, 898, 0x000c); /* restart sad */
  862. if (state->revision == 0x8090)
  863. dib8000_write_word(state, 1280, 0x0045);
  864. else
  865. dib8000_write_word(state, 1280, 0x004d);
  866. dib8000_write_word(state, 1281, 0x000c);
  867. dib8000_write_word(state, 770, 0x0000);
  868. dib8000_write_word(state, 771, 0x0000);
  869. dib8000_write_word(state, 772, 0x0000);
  870. dib8000_write_word(state, 898, 0x0004); // sad
  871. dib8000_write_word(state, 1280, 0x0000);
  872. dib8000_write_word(state, 1281, 0x0000);
  873. /* drives */
  874. if (state->revision != 0x8090) {
  875. if (state->cfg.drives)
  876. dib8000_write_word(state, 906, state->cfg.drives);
  877. else {
  878. dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n");
  879. /* min drive SDRAM - not optimal - adjust */
  880. dib8000_write_word(state, 906, 0x2d98);
  881. }
  882. }
  883. dib8000_reset_pll(state);
  884. if (state->revision != 0x8090)
  885. dib8000_write_word(state, 898, 0x0004);
  886. if (dib8000_reset_gpio(state) != 0)
  887. dprintk("GPIO reset was not successful.\n");
  888. if ((state->revision != 0x8090) &&
  889. (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0))
  890. dprintk("OUTPUT_MODE could not be reset.\n");
  891. state->current_agc = NULL;
  892. // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
  893. /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
  894. if (state->cfg.pll->ifreq == 0)
  895. dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
  896. else
  897. dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
  898. {
  899. u16 l = 0, r;
  900. const u16 *n;
  901. n = dib8000_defaults;
  902. l = *n++;
  903. while (l) {
  904. r = *n++;
  905. do {
  906. dib8000_write_word(state, r, *n++);
  907. r++;
  908. } while (--l);
  909. l = *n++;
  910. }
  911. }
  912. state->isdbt_cfg_loaded = 0;
  913. //div_cfg override for special configs
  914. if ((state->revision != 8090) && (state->cfg.div_cfg != 0))
  915. dib8000_write_word(state, 903, state->cfg.div_cfg);
  916. /* unforce divstr regardless whether i2c enumeration was done or not */
  917. dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
  918. dib8000_set_bandwidth(fe, 6000);
  919. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
  920. dib8000_sad_calib(state);
  921. if (state->revision != 0x8090)
  922. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
  923. /* ber_rs_len = 3 */
  924. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));
  925. dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
  926. dib8000_reset_stats(fe);
  927. return 0;
  928. }
  929. static void dib8000_restart_agc(struct dib8000_state *state)
  930. {
  931. // P_restart_iqc & P_restart_agc
  932. dib8000_write_word(state, 770, 0x0a00);
  933. dib8000_write_word(state, 770, 0x0000);
  934. }
  935. static int dib8000_update_lna(struct dib8000_state *state)
  936. {
  937. u16 dyn_gain;
  938. if (state->cfg.update_lna) {
  939. // read dyn_gain here (because it is demod-dependent and not tuner)
  940. dyn_gain = dib8000_read_word(state, 390);
  941. if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
  942. dib8000_restart_agc(state);
  943. return 1;
  944. }
  945. }
  946. return 0;
  947. }
  948. static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
  949. {
  950. struct dibx000_agc_config *agc = NULL;
  951. int i;
  952. u16 reg;
  953. if (state->current_band == band && state->current_agc != NULL)
  954. return 0;
  955. state->current_band = band;
  956. for (i = 0; i < state->cfg.agc_config_count; i++)
  957. if (state->cfg.agc[i].band_caps & band) {
  958. agc = &state->cfg.agc[i];
  959. break;
  960. }
  961. if (agc == NULL) {
  962. dprintk("no valid AGC configuration found for band 0x%02x\n", band);
  963. return -EINVAL;
  964. }
  965. state->current_agc = agc;
  966. /* AGC */
  967. dib8000_write_word(state, 76, agc->setup);
  968. dib8000_write_word(state, 77, agc->inv_gain);
  969. dib8000_write_word(state, 78, agc->time_stabiliz);
  970. dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
  971. // Demod AGC loop configuration
  972. dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
  973. dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
  974. dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
  975. state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
  976. /* AGC continued */
  977. if (state->wbd_ref != 0)
  978. dib8000_write_word(state, 106, state->wbd_ref);
  979. else // use default
  980. dib8000_write_word(state, 106, agc->wbd_ref);
  981. if (state->revision == 0x8090) {
  982. reg = dib8000_read_word(state, 922) & (0x3 << 2);
  983. dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2));
  984. }
  985. dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
  986. dib8000_write_word(state, 108, agc->agc1_max);
  987. dib8000_write_word(state, 109, agc->agc1_min);
  988. dib8000_write_word(state, 110, agc->agc2_max);
  989. dib8000_write_word(state, 111, agc->agc2_min);
  990. dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
  991. dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  992. dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  993. dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  994. dib8000_write_word(state, 75, agc->agc1_pt3);
  995. if (state->revision != 0x8090)
  996. dib8000_write_word(state, 923,
  997. (dib8000_read_word(state, 923) & 0xffe3) |
  998. (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
  999. return 0;
  1000. }
  1001. static void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
  1002. {
  1003. struct dib8000_state *state = fe->demodulator_priv;
  1004. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  1005. dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
  1006. }
  1007. static int dib8000_agc_soft_split(struct dib8000_state *state)
  1008. {
  1009. u16 agc, split_offset;
  1010. if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
  1011. return 0;
  1012. // n_agc_global
  1013. agc = dib8000_read_word(state, 390);
  1014. if (agc > state->current_agc->split.min_thres)
  1015. split_offset = state->current_agc->split.min;
  1016. else if (agc < state->current_agc->split.max_thres)
  1017. split_offset = state->current_agc->split.max;
  1018. else
  1019. split_offset = state->current_agc->split.max *
  1020. (agc - state->current_agc->split.min_thres) /
  1021. (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
  1022. dprintk("AGC split_offset: %d\n", split_offset);
  1023. // P_agc_force_split and P_agc_split_offset
  1024. dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
  1025. return 5000;
  1026. }
  1027. static int dib8000_agc_startup(struct dvb_frontend *fe)
  1028. {
  1029. struct dib8000_state *state = fe->demodulator_priv;
  1030. enum frontend_tune_state *tune_state = &state->tune_state;
  1031. int ret = 0;
  1032. u16 reg;
  1033. u32 upd_demod_gain_period = 0x8000;
  1034. switch (*tune_state) {
  1035. case CT_AGC_START:
  1036. // set power-up level: interf+analog+AGC
  1037. if (state->revision != 0x8090)
  1038. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  1039. else {
  1040. dib8000_set_power_mode(state, DIB8000_POWER_ALL);
  1041. reg = dib8000_read_word(state, 1947)&0xff00;
  1042. dib8000_write_word(state, 1946,
  1043. upd_demod_gain_period & 0xFFFF);
  1044. /* bit 14 = enDemodGain */
  1045. dib8000_write_word(state, 1947, reg | (1<<14) |
  1046. ((upd_demod_gain_period >> 16) & 0xFF));
  1047. /* enable adc i & q */
  1048. reg = dib8000_read_word(state, 1920);
  1049. dib8000_write_word(state, 1920, (reg | 0x3) &
  1050. (~(1 << 7)));
  1051. }
  1052. if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
  1053. *tune_state = CT_AGC_STOP;
  1054. state->status = FE_STATUS_TUNE_FAILED;
  1055. break;
  1056. }
  1057. ret = 70;
  1058. *tune_state = CT_AGC_STEP_0;
  1059. break;
  1060. case CT_AGC_STEP_0:
  1061. //AGC initialization
  1062. if (state->cfg.agc_control)
  1063. state->cfg.agc_control(fe, 1);
  1064. dib8000_restart_agc(state);
  1065. // wait AGC rough lock time
  1066. ret = 50;
  1067. *tune_state = CT_AGC_STEP_1;
  1068. break;
  1069. case CT_AGC_STEP_1:
  1070. // wait AGC accurate lock time
  1071. ret = 70;
  1072. if (dib8000_update_lna(state))
  1073. // wait only AGC rough lock time
  1074. ret = 50;
  1075. else
  1076. *tune_state = CT_AGC_STEP_2;
  1077. break;
  1078. case CT_AGC_STEP_2:
  1079. dib8000_agc_soft_split(state);
  1080. if (state->cfg.agc_control)
  1081. state->cfg.agc_control(fe, 0);
  1082. *tune_state = CT_AGC_STOP;
  1083. break;
  1084. default:
  1085. ret = dib8000_agc_soft_split(state);
  1086. break;
  1087. }
  1088. return ret;
  1089. }
  1090. static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive)
  1091. {
  1092. u16 reg;
  1093. drive &= 0x7;
  1094. /* drive host bus 2, 3, 4 */
  1095. reg = dib8000_read_word(state, 1798) &
  1096. ~(0x7 | (0x7 << 6) | (0x7 << 12));
  1097. reg |= (drive<<12) | (drive<<6) | drive;
  1098. dib8000_write_word(state, 1798, reg);
  1099. /* drive host bus 5,6 */
  1100. reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
  1101. reg |= (drive<<8) | (drive<<2);
  1102. dib8000_write_word(state, 1799, reg);
  1103. /* drive host bus 7, 8, 9 */
  1104. reg = dib8000_read_word(state, 1800) &
  1105. ~(0x7 | (0x7 << 6) | (0x7 << 12));
  1106. reg |= (drive<<12) | (drive<<6) | drive;
  1107. dib8000_write_word(state, 1800, reg);
  1108. /* drive host bus 10, 11 */
  1109. reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
  1110. reg |= (drive<<8) | (drive<<2);
  1111. dib8000_write_word(state, 1801, reg);
  1112. /* drive host bus 12, 13, 14 */
  1113. reg = dib8000_read_word(state, 1802) &
  1114. ~(0x7 | (0x7 << 6) | (0x7 << 12));
  1115. reg |= (drive<<12) | (drive<<6) | drive;
  1116. dib8000_write_word(state, 1802, reg);
  1117. }
  1118. static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout,
  1119. u32 insertExtSynchro, u32 syncSize)
  1120. {
  1121. u32 quantif = 3;
  1122. u32 nom = (insertExtSynchro * P_Kin+syncSize);
  1123. u32 denom = P_Kout;
  1124. u32 syncFreq = ((nom << quantif) / denom);
  1125. if ((syncFreq & ((1 << quantif) - 1)) != 0)
  1126. syncFreq = (syncFreq >> quantif) + 1;
  1127. else
  1128. syncFreq = (syncFreq >> quantif);
  1129. if (syncFreq != 0)
  1130. syncFreq = syncFreq - 1;
  1131. return syncFreq;
  1132. }
  1133. static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin,
  1134. u32 P_Kout, u32 insertExtSynchro, u32 synchroMode,
  1135. u32 syncWord, u32 syncSize)
  1136. {
  1137. dprintk("Configure DibStream Tx\n");
  1138. dib8000_write_word(state, 1615, 1);
  1139. dib8000_write_word(state, 1603, P_Kin);
  1140. dib8000_write_word(state, 1605, P_Kout);
  1141. dib8000_write_word(state, 1606, insertExtSynchro);
  1142. dib8000_write_word(state, 1608, synchroMode);
  1143. dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff);
  1144. dib8000_write_word(state, 1610, syncWord & 0xffff);
  1145. dib8000_write_word(state, 1612, syncSize);
  1146. dib8000_write_word(state, 1615, 0);
  1147. }
  1148. static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin,
  1149. u32 P_Kout, u32 synchroMode, u32 insertExtSynchro,
  1150. u32 syncWord, u32 syncSize, u32 dataOutRate)
  1151. {
  1152. u32 syncFreq;
  1153. dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode);
  1154. if ((P_Kin != 0) && (P_Kout != 0)) {
  1155. syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout,
  1156. insertExtSynchro, syncSize);
  1157. dib8000_write_word(state, 1542, syncFreq);
  1158. }
  1159. dib8000_write_word(state, 1554, 1);
  1160. dib8000_write_word(state, 1536, P_Kin);
  1161. dib8000_write_word(state, 1537, P_Kout);
  1162. dib8000_write_word(state, 1539, synchroMode);
  1163. dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff);
  1164. dib8000_write_word(state, 1541, syncWord & 0xffff);
  1165. dib8000_write_word(state, 1543, syncSize);
  1166. dib8000_write_word(state, 1544, dataOutRate);
  1167. dib8000_write_word(state, 1554, 0);
  1168. }
  1169. static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff)
  1170. {
  1171. u16 reg_1287;
  1172. reg_1287 = dib8000_read_word(state, 1287);
  1173. switch (onoff) {
  1174. case 1:
  1175. reg_1287 &= ~(1 << 8);
  1176. break;
  1177. case 0:
  1178. reg_1287 |= (1 << 8);
  1179. break;
  1180. }
  1181. dib8000_write_word(state, 1287, reg_1287);
  1182. }
  1183. static void dib8096p_configMpegMux(struct dib8000_state *state,
  1184. u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
  1185. {
  1186. u16 reg_1287;
  1187. dprintk("Enable Mpeg mux\n");
  1188. dib8096p_enMpegMux(state, 0);
  1189. /* If the input mode is MPEG do not divide the serial clock */
  1190. if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
  1191. enSerialClkDiv2 = 0;
  1192. reg_1287 = ((pulseWidth & 0x1f) << 3) |
  1193. ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1);
  1194. dib8000_write_word(state, 1287, reg_1287);
  1195. dib8096p_enMpegMux(state, 1);
  1196. }
  1197. static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode)
  1198. {
  1199. u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7);
  1200. switch (mode) {
  1201. case MPEG_ON_DIBTX:
  1202. dprintk("SET MPEG ON DIBSTREAM TX\n");
  1203. dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
  1204. reg_1288 |= (1 << 9); break;
  1205. case DIV_ON_DIBTX:
  1206. dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
  1207. dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
  1208. reg_1288 |= (1 << 8); break;
  1209. case ADC_ON_DIBTX:
  1210. dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
  1211. dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
  1212. reg_1288 |= (1 << 7); break;
  1213. default:
  1214. break;
  1215. }
  1216. dib8000_write_word(state, 1288, reg_1288);
  1217. }
  1218. static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode)
  1219. {
  1220. u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4);
  1221. switch (mode) {
  1222. case DEMOUT_ON_HOSTBUS:
  1223. dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
  1224. dib8096p_enMpegMux(state, 0);
  1225. reg_1288 |= (1 << 6);
  1226. break;
  1227. case DIBTX_ON_HOSTBUS:
  1228. dprintk("SET DIBSTREAM TX ON HOST BUS\n");
  1229. dib8096p_enMpegMux(state, 0);
  1230. reg_1288 |= (1 << 5);
  1231. break;
  1232. case MPEG_ON_HOSTBUS:
  1233. dprintk("SET MPEG MUX ON HOST BUS\n");
  1234. reg_1288 |= (1 << 4);
  1235. break;
  1236. default:
  1237. break;
  1238. }
  1239. dib8000_write_word(state, 1288, reg_1288);
  1240. }
  1241. static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff)
  1242. {
  1243. struct dib8000_state *state = fe->demodulator_priv;
  1244. u16 reg_1287;
  1245. switch (onoff) {
  1246. case 0: /* only use the internal way - not the diversity input */
  1247. dprintk("%s mode OFF : by default Enable Mpeg INPUT\n",
  1248. __func__);
  1249. /* outputRate = 8 */
  1250. dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
  1251. /* Do not divide the serial clock of MPEG MUX in
  1252. SERIAL MODE in case input mode MPEG is used */
  1253. reg_1287 = dib8000_read_word(state, 1287);
  1254. /* enSerialClkDiv2 == 1 ? */
  1255. if ((reg_1287 & 0x1) == 1) {
  1256. /* force enSerialClkDiv2 = 0 */
  1257. reg_1287 &= ~0x1;
  1258. dib8000_write_word(state, 1287, reg_1287);
  1259. }
  1260. state->input_mode_mpeg = 1;
  1261. break;
  1262. case 1: /* both ways */
  1263. case 2: /* only the diversity input */
  1264. dprintk("%s ON : Enable diversity INPUT\n", __func__);
  1265. dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
  1266. state->input_mode_mpeg = 0;
  1267. break;
  1268. }
  1269. dib8000_set_diversity_in(state->fe[0], onoff);
  1270. return 0;
  1271. }
  1272. static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode)
  1273. {
  1274. struct dib8000_state *state = fe->demodulator_priv;
  1275. u16 outreg, smo_mode, fifo_threshold;
  1276. u8 prefer_mpeg_mux_use = 1;
  1277. int ret = 0;
  1278. state->output_mode = mode;
  1279. dib8096p_host_bus_drive(state, 1);
  1280. fifo_threshold = 1792;
  1281. smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
  1282. outreg = dib8000_read_word(state, 1286) &
  1283. ~((1 << 10) | (0x7 << 6) | (1 << 1));
  1284. switch (mode) {
  1285. case OUTMODE_HIGH_Z:
  1286. outreg = 0;
  1287. break;
  1288. case OUTMODE_MPEG2_SERIAL:
  1289. if (prefer_mpeg_mux_use) {
  1290. dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n");
  1291. dib8096p_configMpegMux(state, 3, 1, 1);
  1292. dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
  1293. } else {/* Use Smooth block */
  1294. dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n");
  1295. dib8096p_setHostBusMux(state,
  1296. DEMOUT_ON_HOSTBUS);
  1297. outreg |= (2 << 6) | (0 << 1);
  1298. }
  1299. break;
  1300. case OUTMODE_MPEG2_PAR_GATED_CLK:
  1301. if (prefer_mpeg_mux_use) {
  1302. dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
  1303. dib8096p_configMpegMux(state, 2, 0, 0);
  1304. dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
  1305. } else { /* Use Smooth block */
  1306. dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n");
  1307. dib8096p_setHostBusMux(state,
  1308. DEMOUT_ON_HOSTBUS);
  1309. outreg |= (0 << 6);
  1310. }
  1311. break;
  1312. case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
  1313. dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n");
  1314. dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
  1315. outreg |= (1 << 6);
  1316. break;
  1317. case OUTMODE_MPEG2_FIFO:
  1318. /* Using Smooth block because not supported
  1319. by new Mpeg Mux bloc */
  1320. dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n");
  1321. dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
  1322. outreg |= (5 << 6);
  1323. smo_mode |= (3 << 1);
  1324. fifo_threshold = 512;
  1325. break;
  1326. case OUTMODE_DIVERSITY:
  1327. dprintk("dib8096P setting output mode MODE_DIVERSITY\n");
  1328. dib8096p_setDibTxMux(state, DIV_ON_DIBTX);
  1329. dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
  1330. break;
  1331. case OUTMODE_ANALOG_ADC:
  1332. dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n");
  1333. dib8096p_setDibTxMux(state, ADC_ON_DIBTX);
  1334. dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
  1335. break;
  1336. }
  1337. if (mode != OUTMODE_HIGH_Z)
  1338. outreg |= (1<<10);
  1339. dprintk("output_mpeg2_in_188_bytes = %d\n",
  1340. state->cfg.output_mpeg2_in_188_bytes);
  1341. if (state->cfg.output_mpeg2_in_188_bytes)
  1342. smo_mode |= (1 << 5);
  1343. ret |= dib8000_write_word(state, 299, smo_mode);
  1344. /* synchronous fread */
  1345. ret |= dib8000_write_word(state, 299 + 1, fifo_threshold);
  1346. ret |= dib8000_write_word(state, 1286, outreg);
  1347. return ret;
  1348. }
  1349. static int map_addr_to_serpar_number(struct i2c_msg *msg)
  1350. {
  1351. if (msg->buf[0] <= 15)
  1352. msg->buf[0] -= 1;
  1353. else if (msg->buf[0] == 17)
  1354. msg->buf[0] = 15;
  1355. else if (msg->buf[0] == 16)
  1356. msg->buf[0] = 17;
  1357. else if (msg->buf[0] == 19)
  1358. msg->buf[0] = 16;
  1359. else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
  1360. msg->buf[0] -= 3;
  1361. else if (msg->buf[0] == 28)
  1362. msg->buf[0] = 23;
  1363. else if (msg->buf[0] == 99)
  1364. msg->buf[0] = 99;
  1365. else
  1366. return -EINVAL;
  1367. return 0;
  1368. }
  1369. static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap,
  1370. struct i2c_msg msg[], int num)
  1371. {
  1372. struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
  1373. u8 n_overflow = 1;
  1374. u16 i = 1000;
  1375. u16 serpar_num = msg[0].buf[0];
  1376. while (n_overflow == 1 && i) {
  1377. n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
  1378. i--;
  1379. if (i == 0)
  1380. dprintk("Tuner ITF: write busy (overflow)\n");
  1381. }
  1382. dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
  1383. dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
  1384. return num;
  1385. }
  1386. static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap,
  1387. struct i2c_msg msg[], int num)
  1388. {
  1389. struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
  1390. u8 n_overflow = 1, n_empty = 1;
  1391. u16 i = 1000;
  1392. u16 serpar_num = msg[0].buf[0];
  1393. u16 read_word;
  1394. while (n_overflow == 1 && i) {
  1395. n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
  1396. i--;
  1397. if (i == 0)
  1398. dprintk("TunerITF: read busy (overflow)\n");
  1399. }
  1400. dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f));
  1401. i = 1000;
  1402. while (n_empty == 1 && i) {
  1403. n_empty = dib8000_read_word(state, 1984)&0x1;
  1404. i--;
  1405. if (i == 0)
  1406. dprintk("TunerITF: read busy (empty)\n");
  1407. }
  1408. read_word = dib8000_read_word(state, 1987);
  1409. msg[1].buf[0] = (read_word >> 8) & 0xff;
  1410. msg[1].buf[1] = (read_word) & 0xff;
  1411. return num;
  1412. }
  1413. static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap,
  1414. struct i2c_msg msg[], int num)
  1415. {
  1416. if (map_addr_to_serpar_number(&msg[0]) == 0) {
  1417. if (num == 1) /* write */
  1418. return dib8096p_tuner_write_serpar(i2c_adap, msg, 1);
  1419. else /* read */
  1420. return dib8096p_tuner_read_serpar(i2c_adap, msg, 2);
  1421. }
  1422. return num;
  1423. }
  1424. static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap,
  1425. struct i2c_msg msg[], int num, u16 apb_address)
  1426. {
  1427. struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
  1428. u16 word;
  1429. if (num == 1) { /* write */
  1430. dib8000_write_word(state, apb_address,
  1431. ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
  1432. } else {
  1433. word = dib8000_read_word(state, apb_address);
  1434. msg[1].buf[0] = (word >> 8) & 0xff;
  1435. msg[1].buf[1] = (word) & 0xff;
  1436. }
  1437. return num;
  1438. }
  1439. static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap,
  1440. struct i2c_msg msg[], int num)
  1441. {
  1442. struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
  1443. u16 apb_address = 0, word;
  1444. int i = 0;
  1445. switch (msg[0].buf[0]) {
  1446. case 0x12:
  1447. apb_address = 1920;
  1448. break;
  1449. case 0x14:
  1450. apb_address = 1921;
  1451. break;
  1452. case 0x24:
  1453. apb_address = 1922;
  1454. break;
  1455. case 0x1a:
  1456. apb_address = 1923;
  1457. break;
  1458. case 0x22:
  1459. apb_address = 1924;
  1460. break;
  1461. case 0x33:
  1462. apb_address = 1926;
  1463. break;
  1464. case 0x34:
  1465. apb_address = 1927;
  1466. break;
  1467. case 0x35:
  1468. apb_address = 1928;
  1469. break;
  1470. case 0x36:
  1471. apb_address = 1929;
  1472. break;
  1473. case 0x37:
  1474. apb_address = 1930;
  1475. break;
  1476. case 0x38:
  1477. apb_address = 1931;
  1478. break;
  1479. case 0x39:
  1480. apb_address = 1932;
  1481. break;
  1482. case 0x2a:
  1483. apb_address = 1935;
  1484. break;
  1485. case 0x2b:
  1486. apb_address = 1936;
  1487. break;
  1488. case 0x2c:
  1489. apb_address = 1937;
  1490. break;
  1491. case 0x2d:
  1492. apb_address = 1938;
  1493. break;
  1494. case 0x2e:
  1495. apb_address = 1939;
  1496. break;
  1497. case 0x2f:
  1498. apb_address = 1940;
  1499. break;
  1500. case 0x30:
  1501. apb_address = 1941;
  1502. break;
  1503. case 0x31:
  1504. apb_address = 1942;
  1505. break;
  1506. case 0x32:
  1507. apb_address = 1943;
  1508. break;
  1509. case 0x3e:
  1510. apb_address = 1944;
  1511. break;
  1512. case 0x3f:
  1513. apb_address = 1945;
  1514. break;
  1515. case 0x40:
  1516. apb_address = 1948;
  1517. break;
  1518. case 0x25:
  1519. apb_address = 936;
  1520. break;
  1521. case 0x26:
  1522. apb_address = 937;
  1523. break;
  1524. case 0x27:
  1525. apb_address = 938;
  1526. break;
  1527. case 0x28:
  1528. apb_address = 939;
  1529. break;
  1530. case 0x1d:
  1531. /* get sad sel request */
  1532. i = ((dib8000_read_word(state, 921) >> 12)&0x3);
  1533. word = dib8000_read_word(state, 924+i);
  1534. msg[1].buf[0] = (word >> 8) & 0xff;
  1535. msg[1].buf[1] = (word) & 0xff;
  1536. return num;
  1537. case 0x1f:
  1538. if (num == 1) { /* write */
  1539. word = (u16) ((msg[0].buf[1] << 8) |
  1540. msg[0].buf[2]);
  1541. /* in the VGAMODE Sel are located on bit 0/1 */
  1542. word &= 0x3;
  1543. word = (dib8000_read_word(state, 921) &
  1544. ~(3<<12)) | (word<<12);
  1545. /* Set the proper input */
  1546. dib8000_write_word(state, 921, word);
  1547. return num;
  1548. }
  1549. }
  1550. if (apb_address != 0) /* R/W access via APB */
  1551. return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address);
  1552. else /* R/W access via SERPAR */
  1553. return dib8096p_tuner_rw_serpar(i2c_adap, msg, num);
  1554. return 0;
  1555. }
  1556. static u32 dib8096p_i2c_func(struct i2c_adapter *adapter)
  1557. {
  1558. return I2C_FUNC_I2C;
  1559. }
  1560. static const struct i2c_algorithm dib8096p_tuner_xfer_algo = {
  1561. .master_xfer = dib8096p_tuner_xfer,
  1562. .functionality = dib8096p_i2c_func,
  1563. };
  1564. static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe)
  1565. {
  1566. struct dib8000_state *st = fe->demodulator_priv;
  1567. return &st->dib8096p_tuner_adap;
  1568. }
  1569. static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff)
  1570. {
  1571. struct dib8000_state *state = fe->demodulator_priv;
  1572. u16 en_cur_state;
  1573. dprintk("sleep dib8096p: %d\n", onoff);
  1574. en_cur_state = dib8000_read_word(state, 1922);
  1575. /* LNAs and MIX are ON and therefore it is a valid configuration */
  1576. if (en_cur_state > 0xff)
  1577. state->tuner_enable = en_cur_state ;
  1578. if (onoff)
  1579. en_cur_state &= 0x00ff;
  1580. else {
  1581. if (state->tuner_enable != 0)
  1582. en_cur_state = state->tuner_enable;
  1583. }
  1584. dib8000_write_word(state, 1922, en_cur_state);
  1585. return 0;
  1586. }
  1587. static const s32 lut_1000ln_mant[] =
  1588. {
  1589. 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
  1590. };
  1591. static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
  1592. {
  1593. struct dib8000_state *state = fe->demodulator_priv;
  1594. u32 ix = 0, tmp_val = 0, exp = 0, mant = 0;
  1595. s32 val;
  1596. val = dib8000_read32(state, 384);
  1597. if (mode) {
  1598. tmp_val = val;
  1599. while (tmp_val >>= 1)
  1600. exp++;
  1601. mant = (val * 1000 / (1<<exp));
  1602. ix = (u8)((mant-1000)/100); /* index of the LUT */
  1603. val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
  1604. val = (val*256)/1000;
  1605. }
  1606. return val;
  1607. }
  1608. static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ)
  1609. {
  1610. struct dib8000_state *state = fe->demodulator_priv;
  1611. int val = 0;
  1612. switch (IQ) {
  1613. case 1:
  1614. val = dib8000_read_word(state, 403);
  1615. break;
  1616. case 0:
  1617. val = dib8000_read_word(state, 404);
  1618. break;
  1619. }
  1620. if (val & 0x200)
  1621. val -= 1024;
  1622. return val;
  1623. }
  1624. static void dib8000_update_timf(struct dib8000_state *state)
  1625. {
  1626. u32 timf = state->timf = dib8000_read32(state, 435);
  1627. dib8000_write_word(state, 29, (u16) (timf >> 16));
  1628. dib8000_write_word(state, 30, (u16) (timf & 0xffff));
  1629. dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default);
  1630. }
  1631. static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf)
  1632. {
  1633. struct dib8000_state *state = fe->demodulator_priv;
  1634. switch (op) {
  1635. case DEMOD_TIMF_SET:
  1636. state->timf = timf;
  1637. break;
  1638. case DEMOD_TIMF_UPDATE:
  1639. dib8000_update_timf(state);
  1640. break;
  1641. case DEMOD_TIMF_GET:
  1642. break;
  1643. }
  1644. dib8000_set_bandwidth(state->fe[0], 6000);
  1645. return state->timf;
  1646. }
  1647. static const u16 adc_target_16dB[11] = {
  1648. 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
  1649. };
  1650. static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
  1651. static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation)
  1652. {
  1653. u8 cr, constellation, time_intlv;
  1654. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  1655. switch (c->layer[layer_index].modulation) {
  1656. case DQPSK:
  1657. constellation = 0;
  1658. break;
  1659. case QPSK:
  1660. constellation = 1;
  1661. break;
  1662. case QAM_16:
  1663. constellation = 2;
  1664. break;
  1665. case QAM_64:
  1666. default:
  1667. constellation = 3;
  1668. break;
  1669. }
  1670. switch (c->layer[layer_index].fec) {
  1671. case FEC_1_2:
  1672. cr = 1;
  1673. break;
  1674. case FEC_2_3:
  1675. cr = 2;
  1676. break;
  1677. case FEC_3_4:
  1678. cr = 3;
  1679. break;
  1680. case FEC_5_6:
  1681. cr = 5;
  1682. break;
  1683. case FEC_7_8:
  1684. default:
  1685. cr = 7;
  1686. break;
  1687. }
  1688. time_intlv = fls(c->layer[layer_index].interleaving);
  1689. if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1))
  1690. time_intlv = 0;
  1691. dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv);
  1692. if (c->layer[layer_index].segment_count > 0) {
  1693. switch (max_constellation) {
  1694. case DQPSK:
  1695. case QPSK:
  1696. if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64)
  1697. max_constellation = c->layer[layer_index].modulation;
  1698. break;
  1699. case QAM_16:
  1700. if (c->layer[layer_index].modulation == QAM_64)
  1701. max_constellation = c->layer[layer_index].modulation;
  1702. break;
  1703. }
  1704. }
  1705. return max_constellation;
  1706. }
  1707. static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
  1708. static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
  1709. static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */
  1710. static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation)
  1711. {
  1712. u16 i, ana_gain = 0;
  1713. const u16 *adp;
  1714. /* channel estimation fine configuration */
  1715. switch (max_constellation) {
  1716. case QAM_64:
  1717. ana_gain = 0x7;
  1718. adp = &adp_Q64[0];
  1719. break;
  1720. case QAM_16:
  1721. ana_gain = 0x7;
  1722. adp = &adp_Q16[0];
  1723. break;
  1724. default:
  1725. ana_gain = 0;
  1726. adp = &adp_Qdefault[0];
  1727. break;
  1728. }
  1729. for (i = 0; i < 4; i++)
  1730. dib8000_write_word(state, 215 + i, adp[i]);
  1731. return ana_gain;
  1732. }
  1733. static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain)
  1734. {
  1735. u16 i;
  1736. dib8000_write_word(state, 116, ana_gain);
  1737. /* update ADC target depending on ana_gain */
  1738. if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */
  1739. for (i = 0; i < 10; i++)
  1740. dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
  1741. } else { /* set -22dB ADC target for ana_gain=0 */
  1742. for (i = 0; i < 10; i++)
  1743. dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
  1744. }
  1745. }
  1746. static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe)
  1747. {
  1748. u16 mode = 0;
  1749. if (state->isdbt_cfg_loaded == 0)
  1750. for (mode = 0; mode < 24; mode++)
  1751. dib8000_write_word(state, 117 + mode, ana_fe[mode]);
  1752. }
  1753. static const u16 lut_prbs_2k[13] = {
  1754. 0x423, 0x009, 0x5C7,
  1755. 0x7A6, 0x3D8, 0x527,
  1756. 0x7FF, 0x79B, 0x3D6,
  1757. 0x3A2, 0x53B, 0x2F4,
  1758. 0x213
  1759. };
  1760. static const u16 lut_prbs_4k[13] = {
  1761. 0x208, 0x0C3, 0x7B9,
  1762. 0x423, 0x5C7, 0x3D8,
  1763. 0x7FF, 0x3D6, 0x53B,
  1764. 0x213, 0x029, 0x0D0,
  1765. 0x48E
  1766. };
  1767. static const u16 lut_prbs_8k[13] = {
  1768. 0x740, 0x069, 0x7DD,
  1769. 0x208, 0x7B9, 0x5C7,
  1770. 0x7FF, 0x53B, 0x029,
  1771. 0x48E, 0x4C4, 0x367,
  1772. 0x684
  1773. };
  1774. static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel)
  1775. {
  1776. int sub_channel_prbs_group = 0;
  1777. int prbs_group;
  1778. sub_channel_prbs_group = subchannel / 3;
  1779. if (sub_channel_prbs_group >= ARRAY_SIZE(lut_prbs_2k))
  1780. return 0;
  1781. switch (state->fe[0]->dtv_property_cache.transmission_mode) {
  1782. case TRANSMISSION_MODE_2K:
  1783. prbs_group = lut_prbs_2k[sub_channel_prbs_group];
  1784. break;
  1785. case TRANSMISSION_MODE_4K:
  1786. prbs_group = lut_prbs_4k[sub_channel_prbs_group];
  1787. break;
  1788. default:
  1789. case TRANSMISSION_MODE_8K:
  1790. prbs_group = lut_prbs_8k[sub_channel_prbs_group];
  1791. }
  1792. dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n",
  1793. sub_channel_prbs_group, subchannel, prbs_group);
  1794. return prbs_group;
  1795. }
  1796. static void dib8000_set_13seg_channel(struct dib8000_state *state)
  1797. {
  1798. u16 i;
  1799. u16 coff_pow = 0x2800;
  1800. state->seg_mask = 0x1fff; /* All 13 segments enabled */
  1801. /* ---- COFF ---- Carloff, the most robust --- */
  1802. if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */
  1803. dib8000_write_word(state, 180, (16 << 6) | 9);
  1804. dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
  1805. coff_pow = 0x2800;
  1806. for (i = 0; i < 6; i++)
  1807. dib8000_write_word(state, 181+i, coff_pow);
  1808. /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
  1809. /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
  1810. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
  1811. /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
  1812. dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
  1813. /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
  1814. dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1815. dib8000_write_word(state, 228, 0); /* default value */
  1816. dib8000_write_word(state, 265, 31); /* default value */
  1817. dib8000_write_word(state, 205, 0x200f); /* init value */
  1818. }
  1819. /*
  1820. * make the cpil_coff_lock more robust but slower p_coff_winlen
  1821. * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
  1822. */
  1823. if (state->cfg.pll->ifreq == 0)
  1824. dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
  1825. dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg);
  1826. }
  1827. static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs)
  1828. {
  1829. u16 reg_1;
  1830. reg_1 = dib8000_read_word(state, 1);
  1831. dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */
  1832. }
  1833. static void dib8000_small_fine_tune(struct dib8000_state *state)
  1834. {
  1835. u16 i;
  1836. const s16 *ncoeff;
  1837. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  1838. dib8000_write_word(state, 352, state->seg_diff_mask);
  1839. dib8000_write_word(state, 353, state->seg_mask);
  1840. /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
  1841. dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5);
  1842. if (c->isdbt_sb_mode) {
  1843. /* ---- SMALL ---- */
  1844. switch (c->transmission_mode) {
  1845. case TRANSMISSION_MODE_2K:
  1846. if (c->isdbt_partial_reception == 0) { /* 1-seg */
  1847. if (c->layer[0].modulation == DQPSK) /* DQPSK */
  1848. ncoeff = coeff_2k_sb_1seg_dqpsk;
  1849. else /* QPSK or QAM */
  1850. ncoeff = coeff_2k_sb_1seg;
  1851. } else { /* 3-segments */
  1852. if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
  1853. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1854. ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
  1855. else /* QPSK or QAM on external segments */
  1856. ncoeff = coeff_2k_sb_3seg_0dqpsk;
  1857. } else { /* QPSK or QAM on central segment */
  1858. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1859. ncoeff = coeff_2k_sb_3seg_1dqpsk;
  1860. else /* QPSK or QAM on external segments */
  1861. ncoeff = coeff_2k_sb_3seg;
  1862. }
  1863. }
  1864. break;
  1865. case TRANSMISSION_MODE_4K:
  1866. if (c->isdbt_partial_reception == 0) { /* 1-seg */
  1867. if (c->layer[0].modulation == DQPSK) /* DQPSK */
  1868. ncoeff = coeff_4k_sb_1seg_dqpsk;
  1869. else /* QPSK or QAM */
  1870. ncoeff = coeff_4k_sb_1seg;
  1871. } else { /* 3-segments */
  1872. if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
  1873. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1874. ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
  1875. else /* QPSK or QAM on external segments */
  1876. ncoeff = coeff_4k_sb_3seg_0dqpsk;
  1877. } else { /* QPSK or QAM on central segment */
  1878. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1879. ncoeff = coeff_4k_sb_3seg_1dqpsk;
  1880. else /* QPSK or QAM on external segments */
  1881. ncoeff = coeff_4k_sb_3seg;
  1882. }
  1883. }
  1884. break;
  1885. case TRANSMISSION_MODE_AUTO:
  1886. case TRANSMISSION_MODE_8K:
  1887. default:
  1888. if (c->isdbt_partial_reception == 0) { /* 1-seg */
  1889. if (c->layer[0].modulation == DQPSK) /* DQPSK */
  1890. ncoeff = coeff_8k_sb_1seg_dqpsk;
  1891. else /* QPSK or QAM */
  1892. ncoeff = coeff_8k_sb_1seg;
  1893. } else { /* 3-segments */
  1894. if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
  1895. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1896. ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
  1897. else /* QPSK or QAM on external segments */
  1898. ncoeff = coeff_8k_sb_3seg_0dqpsk;
  1899. } else { /* QPSK or QAM on central segment */
  1900. if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
  1901. ncoeff = coeff_8k_sb_3seg_1dqpsk;
  1902. else /* QPSK or QAM on external segments */
  1903. ncoeff = coeff_8k_sb_3seg;
  1904. }
  1905. }
  1906. break;
  1907. }
  1908. for (i = 0; i < 8; i++)
  1909. dib8000_write_word(state, 343 + i, ncoeff[i]);
  1910. }
  1911. }
  1912. static const u16 coff_thres_1seg[3] = {300, 150, 80};
  1913. static const u16 coff_thres_3seg[3] = {350, 300, 250};
  1914. static void dib8000_set_sb_channel(struct dib8000_state *state)
  1915. {
  1916. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  1917. const u16 *coff;
  1918. u16 i;
  1919. if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) {
  1920. dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */
  1921. dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
  1922. } else {
  1923. dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */
  1924. dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
  1925. }
  1926. if (c->isdbt_partial_reception == 1) /* 3-segments */
  1927. state->seg_mask = 0x00E0;
  1928. else /* 1-segment */
  1929. state->seg_mask = 0x0040;
  1930. dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
  1931. /* ---- COFF ---- Carloff, the most robust --- */
  1932. /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
  1933. dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3);
  1934. dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
  1935. dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
  1936. /* Sound Broadcasting mode 1 seg */
  1937. if (c->isdbt_partial_reception == 0) {
  1938. /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
  1939. if (state->mode == 3)
  1940. dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14));
  1941. else
  1942. dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14));
  1943. /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
  1944. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
  1945. coff = &coff_thres_1seg[0];
  1946. } else { /* Sound Broadcasting mode 3 seg */
  1947. dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
  1948. /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
  1949. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
  1950. coff = &coff_thres_3seg[0];
  1951. }
  1952. dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */
  1953. dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
  1954. if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K)
  1955. dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */
  1956. /* Write COFF thres */
  1957. for (i = 0 ; i < 3; i++) {
  1958. dib8000_write_word(state, 181+i, coff[i]);
  1959. dib8000_write_word(state, 184+i, coff[i]);
  1960. }
  1961. /*
  1962. * make the cpil_coff_lock more robust but slower p_coff_winlen
  1963. * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
  1964. */
  1965. dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */
  1966. if (c->isdbt_partial_reception == 0)
  1967. dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */
  1968. else
  1969. dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
  1970. }
  1971. static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
  1972. {
  1973. u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0;
  1974. u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ;
  1975. u16 max_constellation = DQPSK;
  1976. int init_prbs;
  1977. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  1978. if (autosearching)
  1979. c->isdbt_partial_reception = 1;
  1980. /* P_mode */
  1981. dib8000_write_word(state, 10, (seq << 4));
  1982. /* init mode */
  1983. state->mode = fft_to_mode(state);
  1984. /* set guard */
  1985. tmp = dib8000_read_word(state, 1);
  1986. dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3));
  1987. dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4));
  1988. /* signal optimization parameter */
  1989. if (c->isdbt_partial_reception) {
  1990. state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0];
  1991. for (i = 1; i < 3; i++)
  1992. nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
  1993. for (i = 0; i < nbseg_diff; i++)
  1994. state->seg_diff_mask |= 1 << permu_seg[i+1];
  1995. } else {
  1996. for (i = 0; i < 3; i++)
  1997. nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
  1998. for (i = 0; i < nbseg_diff; i++)
  1999. state->seg_diff_mask |= 1 << permu_seg[i];
  2000. }
  2001. if (state->seg_diff_mask)
  2002. dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
  2003. else
  2004. dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */
  2005. for (i = 0; i < 3; i++)
  2006. max_constellation = dib8000_set_layer(state, i, max_constellation);
  2007. if (autosearching == 0) {
  2008. state->layer_b_nb_seg = c->layer[1].segment_count;
  2009. state->layer_c_nb_seg = c->layer[2].segment_count;
  2010. }
  2011. /* WRITE: Mode & Diff mask */
  2012. dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask);
  2013. state->differential_constellation = (state->seg_diff_mask != 0);
  2014. /* channel estimation fine configuration */
  2015. ana_gain = dib8000_adp_fine_tune(state, max_constellation);
  2016. /* update ana_gain depending on max constellation */
  2017. dib8000_update_ana_gain(state, ana_gain);
  2018. /* ---- ANA_FE ---- */
  2019. if (c->isdbt_partial_reception) /* 3-segments */
  2020. dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg);
  2021. else
  2022. dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */
  2023. /* TSB or ISDBT ? apply it now */
  2024. if (c->isdbt_sb_mode) {
  2025. dib8000_set_sb_channel(state);
  2026. init_prbs = dib8000_get_init_prbs(state,
  2027. c->isdbt_sb_subchannel);
  2028. } else {
  2029. dib8000_set_13seg_channel(state);
  2030. init_prbs = 0xfff;
  2031. }
  2032. /* SMALL */
  2033. dib8000_small_fine_tune(state);
  2034. dib8000_set_subchannel_prbs(state, init_prbs);
  2035. /* ---- CHAN_BLK ---- */
  2036. for (i = 0; i < 13; i++) {
  2037. if ((((~state->seg_diff_mask) >> i) & 1) == 1) {
  2038. p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0));
  2039. p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0));
  2040. }
  2041. }
  2042. dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */
  2043. dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */
  2044. /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
  2045. dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */
  2046. dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */
  2047. dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */
  2048. if (!autosearching)
  2049. dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
  2050. else
  2051. dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
  2052. dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */
  2053. dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */
  2054. dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
  2055. /* ---- TMCC ---- */
  2056. for (i = 0; i < 3; i++)
  2057. tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ;
  2058. /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
  2059. /* Threshold is set at 1/4 of max power. */
  2060. tmcc_pow *= (1 << (9-2));
  2061. dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */
  2062. dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */
  2063. dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */
  2064. /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
  2065. /* ---- PHA3 ---- */
  2066. if (state->isdbt_cfg_loaded == 0)
  2067. dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */
  2068. state->isdbt_cfg_loaded = 0;
  2069. }
  2070. static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal,
  2071. u32 wait0_ms, u32 wait1_ms, u32 wait2_ms)
  2072. {
  2073. u32 value = 0; /* P_search_end0 wait time */
  2074. u16 reg = 11; /* P_search_end0 start addr */
  2075. for (reg = 11; reg < 16; reg += 2) {
  2076. if (reg == 11) {
  2077. if (state->revision == 0x8090)
  2078. value = internal * wait1_ms;
  2079. else
  2080. value = internal * wait0_ms;
  2081. } else if (reg == 13)
  2082. value = internal * wait1_ms;
  2083. else if (reg == 15)
  2084. value = internal * wait2_ms;
  2085. dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff));
  2086. dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff));
  2087. }
  2088. return value;
  2089. }
  2090. static int dib8000_autosearch_start(struct dvb_frontend *fe)
  2091. {
  2092. struct dib8000_state *state = fe->demodulator_priv;
  2093. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2094. u8 slist = 0;
  2095. u32 value, internal = state->cfg.pll->internal;
  2096. if (state->revision == 0x8090)
  2097. internal = dib8000_read32(state, 23) / 1000;
  2098. if ((state->revision >= 0x8002) &&
  2099. (state->autosearch_state == AS_SEARCHING_FFT)) {
  2100. dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */
  2101. dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */
  2102. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
  2103. dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */
  2104. dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */
  2105. dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */
  2106. dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */
  2107. dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
  2108. if (state->revision == 0x8090)
  2109. value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2110. else
  2111. value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2112. dib8000_write_word(state, 17, 0);
  2113. dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */
  2114. dib8000_write_word(state, 19, 0);
  2115. dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */
  2116. dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */
  2117. dib8000_write_word(state, 22, value & 0xffff);
  2118. if (state->revision == 0x8090)
  2119. dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
  2120. else
  2121. dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
  2122. dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */
  2123. /* P_search_param_select = (1 | 1<<4 | 1 << 8) */
  2124. dib8000_write_word(state, 356, 0);
  2125. dib8000_write_word(state, 357, 0x111);
  2126. dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
  2127. dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
  2128. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
  2129. } else if ((state->revision >= 0x8002) &&
  2130. (state->autosearch_state == AS_SEARCHING_GUARD)) {
  2131. c->transmission_mode = TRANSMISSION_MODE_8K;
  2132. c->guard_interval = GUARD_INTERVAL_1_8;
  2133. c->inversion = 0;
  2134. c->layer[0].modulation = QAM_64;
  2135. c->layer[0].fec = FEC_2_3;
  2136. c->layer[0].interleaving = 0;
  2137. c->layer[0].segment_count = 13;
  2138. slist = 16;
  2139. c->transmission_mode = state->found_nfft;
  2140. dib8000_set_isdbt_common_channel(state, slist, 1);
  2141. /* set lock_mask values */
  2142. dib8000_write_word(state, 6, 0x4);
  2143. if (state->revision == 0x8090)
  2144. dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
  2145. else
  2146. dib8000_write_word(state, 7, 0x8);
  2147. dib8000_write_word(state, 8, 0x1000);
  2148. /* set lock_mask wait time values */
  2149. if (state->revision == 0x8090)
  2150. dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2151. else
  2152. dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2153. dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */
  2154. /* P_search_param_select = 0xf; look for the 4 different guard intervals */
  2155. dib8000_write_word(state, 356, 0);
  2156. dib8000_write_word(state, 357, 0xf);
  2157. value = dib8000_read_word(state, 0);
  2158. dib8000_write_word(state, 0, (u16)((1 << 15) | value));
  2159. dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
  2160. dib8000_write_word(state, 0, (u16)value);
  2161. } else {
  2162. c->inversion = 0;
  2163. c->layer[0].modulation = QAM_64;
  2164. c->layer[0].fec = FEC_2_3;
  2165. c->layer[0].interleaving = 0;
  2166. c->layer[0].segment_count = 13;
  2167. if (!c->isdbt_sb_mode)
  2168. c->layer[0].segment_count = 13;
  2169. /* choose the right list, in sb, always do everything */
  2170. if (c->isdbt_sb_mode) {
  2171. slist = 7;
  2172. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
  2173. } else {
  2174. if (c->guard_interval == GUARD_INTERVAL_AUTO) {
  2175. if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
  2176. c->transmission_mode = TRANSMISSION_MODE_8K;
  2177. c->guard_interval = GUARD_INTERVAL_1_8;
  2178. slist = 7;
  2179. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */
  2180. } else {
  2181. c->guard_interval = GUARD_INTERVAL_1_8;
  2182. slist = 3;
  2183. }
  2184. } else {
  2185. if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
  2186. c->transmission_mode = TRANSMISSION_MODE_8K;
  2187. slist = 2;
  2188. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */
  2189. } else
  2190. slist = 0;
  2191. }
  2192. }
  2193. dprintk("Using list for autosearch : %d\n", slist);
  2194. dib8000_set_isdbt_common_channel(state, slist, 1);
  2195. /* set lock_mask values */
  2196. dib8000_write_word(state, 6, 0x4);
  2197. if (state->revision == 0x8090)
  2198. dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10));
  2199. else
  2200. dib8000_write_word(state, 7, 0x8);
  2201. dib8000_write_word(state, 8, 0x1000);
  2202. /* set lock_mask wait time values */
  2203. if (state->revision == 0x8090)
  2204. dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2205. else
  2206. dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
  2207. value = dib8000_read_word(state, 0);
  2208. dib8000_write_word(state, 0, (u16)((1 << 15) | value));
  2209. dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
  2210. dib8000_write_word(state, 0, (u16)value);
  2211. }
  2212. return 0;
  2213. }
  2214. static int dib8000_autosearch_irq(struct dvb_frontend *fe)
  2215. {
  2216. struct dib8000_state *state = fe->demodulator_priv;
  2217. u16 irq_pending = dib8000_read_word(state, 1284);
  2218. if ((state->revision >= 0x8002) &&
  2219. (state->autosearch_state == AS_SEARCHING_FFT)) {
  2220. if (irq_pending & 0x1) {
  2221. dprintk("dib8000_autosearch_irq: max correlation result available\n");
  2222. return 3;
  2223. }
  2224. } else {
  2225. if (irq_pending & 0x1) { /* failed */
  2226. dprintk("dib8000_autosearch_irq failed\n");
  2227. return 1;
  2228. }
  2229. if (irq_pending & 0x2) { /* succeeded */
  2230. dprintk("dib8000_autosearch_irq succeeded\n");
  2231. return 2;
  2232. }
  2233. }
  2234. return 0; // still pending
  2235. }
  2236. static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff)
  2237. {
  2238. u16 tmp;
  2239. tmp = dib8000_read_word(state, 771);
  2240. if (onoff) /* start P_restart_chd : channel_decoder */
  2241. dib8000_write_word(state, 771, tmp & 0xfffd);
  2242. else /* stop P_restart_chd : channel_decoder */
  2243. dib8000_write_word(state, 771, tmp | (1<<1));
  2244. }
  2245. static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz)
  2246. {
  2247. s16 unit_khz_dds_val;
  2248. u32 abs_offset_khz = abs(offset_khz);
  2249. u32 dds = state->cfg.pll->ifreq & 0x1ffffff;
  2250. u8 invert = !!(state->cfg.pll->ifreq & (1 << 25));
  2251. u8 ratio;
  2252. if (state->revision == 0x8090) {
  2253. ratio = 4;
  2254. unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000);
  2255. if (offset_khz < 0)
  2256. dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val);
  2257. else
  2258. dds = (abs_offset_khz * unit_khz_dds_val);
  2259. if (invert)
  2260. dds = (1<<26) - dds;
  2261. } else {
  2262. ratio = 2;
  2263. unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal);
  2264. if (offset_khz < 0)
  2265. unit_khz_dds_val *= -1;
  2266. /* IF tuner */
  2267. if (invert)
  2268. dds -= abs_offset_khz * unit_khz_dds_val;
  2269. else
  2270. dds += abs_offset_khz * unit_khz_dds_val;
  2271. }
  2272. dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val);
  2273. if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) {
  2274. /* Max dds offset is the half of the demod freq */
  2275. dib8000_write_word(state, 26, invert);
  2276. dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff);
  2277. dib8000_write_word(state, 28, (u16)(dds & 0xffff));
  2278. }
  2279. }
  2280. static void dib8000_set_frequency_offset(struct dib8000_state *state)
  2281. {
  2282. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2283. int i;
  2284. u32 current_rf;
  2285. int total_dds_offset_khz;
  2286. if (state->fe[0]->ops.tuner_ops.get_frequency)
  2287. state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], &current_rf);
  2288. else
  2289. current_rf = c->frequency;
  2290. current_rf /= 1000;
  2291. total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000;
  2292. if (c->isdbt_sb_mode) {
  2293. state->subchannel = c->isdbt_sb_subchannel;
  2294. i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */
  2295. dib8000_write_word(state, 26, c->inversion ^ i);
  2296. if (state->cfg.pll->ifreq == 0) { /* low if tuner */
  2297. if ((c->inversion ^ i) == 0)
  2298. dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
  2299. } else {
  2300. if ((c->inversion ^ i) == 0)
  2301. total_dds_offset_khz *= -1;
  2302. }
  2303. }
  2304. dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz);
  2305. /* apply dds offset now */
  2306. dib8000_set_dds(state, total_dds_offset_khz);
  2307. }
  2308. static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 };
  2309. static u32 dib8000_get_symbol_duration(struct dib8000_state *state)
  2310. {
  2311. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2312. u16 i;
  2313. switch (c->transmission_mode) {
  2314. case TRANSMISSION_MODE_2K:
  2315. i = 0;
  2316. break;
  2317. case TRANSMISSION_MODE_4K:
  2318. i = 2;
  2319. break;
  2320. default:
  2321. case TRANSMISSION_MODE_AUTO:
  2322. case TRANSMISSION_MODE_8K:
  2323. i = 1;
  2324. break;
  2325. }
  2326. return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1;
  2327. }
  2328. static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step)
  2329. {
  2330. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2331. u16 reg_32 = 0, reg_37 = 0;
  2332. switch (loop_step) {
  2333. case LOOP_TUNE_1:
  2334. if (c->isdbt_sb_mode) {
  2335. if (c->isdbt_partial_reception == 0) {
  2336. reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
  2337. reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
  2338. } else { /* Sound Broadcasting mode 3 seg */
  2339. reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
  2340. reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */
  2341. }
  2342. } else { /* 13-seg start conf offset loop parameters */
  2343. reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
  2344. reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
  2345. }
  2346. break;
  2347. case LOOP_TUNE_2:
  2348. if (c->isdbt_sb_mode) {
  2349. if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */
  2350. reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
  2351. reg_37 = (12-state->mode) | ((5 + state->mode) << 5);
  2352. } else { /* Sound Broadcasting mode 3 seg */
  2353. reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
  2354. reg_37 = (11-state->mode) | ((5 + state->mode) << 5);
  2355. }
  2356. } else { /* 13 seg */
  2357. reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
  2358. reg_37 = ((5+state->mode) << 5) | (10 - state->mode);
  2359. }
  2360. break;
  2361. }
  2362. dib8000_write_word(state, 32, reg_32);
  2363. dib8000_write_word(state, 37, reg_37);
  2364. }
  2365. static void dib8000_demod_restart(struct dib8000_state *state)
  2366. {
  2367. dib8000_write_word(state, 770, 0x4000);
  2368. dib8000_write_word(state, 770, 0x0000);
  2369. return;
  2370. }
  2371. static void dib8000_set_sync_wait(struct dib8000_state *state)
  2372. {
  2373. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2374. u16 sync_wait = 64;
  2375. /* P_dvsy_sync_wait - reuse mode */
  2376. switch (c->transmission_mode) {
  2377. case TRANSMISSION_MODE_8K:
  2378. sync_wait = 256;
  2379. break;
  2380. case TRANSMISSION_MODE_4K:
  2381. sync_wait = 128;
  2382. break;
  2383. default:
  2384. case TRANSMISSION_MODE_2K:
  2385. sync_wait = 64;
  2386. break;
  2387. }
  2388. if (state->cfg.diversity_delay == 0)
  2389. sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
  2390. else
  2391. sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */
  2392. dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4));
  2393. }
  2394. static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode)
  2395. {
  2396. if (mode == SYMBOL_DEPENDENT_ON)
  2397. delay *= state->symbol_duration;
  2398. return jiffies + usecs_to_jiffies(delay * 100);
  2399. }
  2400. static s32 dib8000_get_status(struct dvb_frontend *fe)
  2401. {
  2402. struct dib8000_state *state = fe->demodulator_priv;
  2403. return state->status;
  2404. }
  2405. static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
  2406. {
  2407. struct dib8000_state *state = fe->demodulator_priv;
  2408. return state->tune_state;
  2409. }
  2410. static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
  2411. {
  2412. struct dib8000_state *state = fe->demodulator_priv;
  2413. state->tune_state = tune_state;
  2414. return 0;
  2415. }
  2416. static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe)
  2417. {
  2418. struct dib8000_state *state = fe->demodulator_priv;
  2419. state->status = FE_STATUS_TUNE_PENDING;
  2420. state->tune_state = CT_DEMOD_START;
  2421. return 0;
  2422. }
  2423. static u16 dib8000_read_lock(struct dvb_frontend *fe)
  2424. {
  2425. struct dib8000_state *state = fe->demodulator_priv;
  2426. if (state->revision == 0x8090)
  2427. return dib8000_read_word(state, 570);
  2428. return dib8000_read_word(state, 568);
  2429. }
  2430. static int dib8090p_init_sdram(struct dib8000_state *state)
  2431. {
  2432. u16 reg = 0;
  2433. dprintk("init sdram\n");
  2434. reg = dib8000_read_word(state, 274) & 0xfff0;
  2435. dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
  2436. dib8000_write_word(state, 1803, (7 << 2));
  2437. reg = dib8000_read_word(state, 1280);
  2438. dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */
  2439. dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */
  2440. return 0;
  2441. }
  2442. /**
  2443. * is_manual_mode - Check if TMCC should be used for parameters settings
  2444. * @c: struct dvb_frontend_properties
  2445. *
  2446. * By default, TMCC table should be used for parameter settings on most
  2447. * usercases. However, sometimes it is desirable to lock the demod to
  2448. * use the manual parameters.
  2449. *
  2450. * On manual mode, the current dib8000_tune state machine is very restrict:
  2451. * It requires that both per-layer and per-transponder parameters to be
  2452. * properly specified, otherwise the device won't lock.
  2453. *
  2454. * Check if all those conditions are properly satisfied before allowing
  2455. * the device to use the manual frequency lock mode.
  2456. */
  2457. static int is_manual_mode(struct dtv_frontend_properties *c)
  2458. {
  2459. int i, n_segs = 0;
  2460. /* Use auto mode on DVB-T compat mode */
  2461. if (c->delivery_system != SYS_ISDBT)
  2462. return 0;
  2463. /*
  2464. * Transmission mode is only detected on auto mode, currently
  2465. */
  2466. if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
  2467. dprintk("transmission mode auto\n");
  2468. return 0;
  2469. }
  2470. /*
  2471. * Guard interval is only detected on auto mode, currently
  2472. */
  2473. if (c->guard_interval == GUARD_INTERVAL_AUTO) {
  2474. dprintk("guard interval auto\n");
  2475. return 0;
  2476. }
  2477. /*
  2478. * If no layer is enabled, assume auto mode, as at least one
  2479. * layer should be enabled
  2480. */
  2481. if (!c->isdbt_layer_enabled) {
  2482. dprintk("no layer modulation specified\n");
  2483. return 0;
  2484. }
  2485. /*
  2486. * Check if the per-layer parameters aren't auto and
  2487. * disable a layer if segment count is 0 or invalid.
  2488. */
  2489. for (i = 0; i < 3; i++) {
  2490. if (!(c->isdbt_layer_enabled & 1 << i))
  2491. continue;
  2492. if ((c->layer[i].segment_count > 13) ||
  2493. (c->layer[i].segment_count == 0)) {
  2494. c->isdbt_layer_enabled &= ~(1 << i);
  2495. continue;
  2496. }
  2497. n_segs += c->layer[i].segment_count;
  2498. if ((c->layer[i].modulation == QAM_AUTO) ||
  2499. (c->layer[i].fec == FEC_AUTO)) {
  2500. dprintk("layer %c has either modulation or FEC auto\n",
  2501. 'A' + i);
  2502. return 0;
  2503. }
  2504. }
  2505. /*
  2506. * Userspace specified a wrong number of segments.
  2507. * fallback to auto mode.
  2508. */
  2509. if (n_segs == 0 || n_segs > 13) {
  2510. dprintk("number of segments is invalid\n");
  2511. return 0;
  2512. }
  2513. /* Everything looks ok for manual mode */
  2514. return 1;
  2515. }
  2516. static int dib8000_tune(struct dvb_frontend *fe)
  2517. {
  2518. struct dib8000_state *state = fe->demodulator_priv;
  2519. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  2520. enum frontend_tune_state *tune_state = &state->tune_state;
  2521. u16 locks, deeper_interleaver = 0, i;
  2522. int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */
  2523. unsigned long *timeout = &state->timeout;
  2524. unsigned long now = jiffies;
  2525. u16 init_prbs;
  2526. #ifdef DIB8000_AGC_FREEZE
  2527. u16 agc1, agc2;
  2528. #endif
  2529. u32 corm[4] = {0, 0, 0, 0};
  2530. u8 find_index, max_value;
  2531. #if 0
  2532. if (*tune_state < CT_DEMOD_STOP)
  2533. dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n",
  2534. state->channel_parameters_set, *tune_state, state->autosearch_state, now);
  2535. #endif
  2536. switch (*tune_state) {
  2537. case CT_DEMOD_START: /* 30 */
  2538. dib8000_reset_stats(fe);
  2539. if (state->revision == 0x8090)
  2540. dib8090p_init_sdram(state);
  2541. state->status = FE_STATUS_TUNE_PENDING;
  2542. state->channel_parameters_set = is_manual_mode(c);
  2543. dprintk("Tuning channel on %s search mode\n",
  2544. state->channel_parameters_set ? "manual" : "auto");
  2545. dib8000_viterbi_state(state, 0); /* force chan dec in restart */
  2546. /* Layer monitor */
  2547. dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
  2548. dib8000_set_frequency_offset(state);
  2549. dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000);
  2550. if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */
  2551. #ifdef DIB8000_AGC_FREEZE
  2552. if (state->revision != 0x8090) {
  2553. state->agc1_max = dib8000_read_word(state, 108);
  2554. state->agc1_min = dib8000_read_word(state, 109);
  2555. state->agc2_max = dib8000_read_word(state, 110);
  2556. state->agc2_min = dib8000_read_word(state, 111);
  2557. agc1 = dib8000_read_word(state, 388);
  2558. agc2 = dib8000_read_word(state, 389);
  2559. dib8000_write_word(state, 108, agc1);
  2560. dib8000_write_word(state, 109, agc1);
  2561. dib8000_write_word(state, 110, agc2);
  2562. dib8000_write_word(state, 111, agc2);
  2563. }
  2564. #endif
  2565. state->autosearch_state = AS_SEARCHING_FFT;
  2566. state->found_nfft = TRANSMISSION_MODE_AUTO;
  2567. state->found_guard = GUARD_INTERVAL_AUTO;
  2568. *tune_state = CT_DEMOD_SEARCH_NEXT;
  2569. } else { /* we already know the channel struct so TUNE only ! */
  2570. state->autosearch_state = AS_DONE;
  2571. *tune_state = CT_DEMOD_STEP_3;
  2572. }
  2573. state->symbol_duration = dib8000_get_symbol_duration(state);
  2574. break;
  2575. case CT_DEMOD_SEARCH_NEXT: /* 51 */
  2576. dib8000_autosearch_start(fe);
  2577. if (state->revision == 0x8090)
  2578. ret = 50;
  2579. else
  2580. ret = 15;
  2581. *tune_state = CT_DEMOD_STEP_1;
  2582. break;
  2583. case CT_DEMOD_STEP_1: /* 31 */
  2584. switch (dib8000_autosearch_irq(fe)) {
  2585. case 1: /* fail */
  2586. state->status = FE_STATUS_TUNE_FAILED;
  2587. state->autosearch_state = AS_DONE;
  2588. *tune_state = CT_DEMOD_STOP; /* else we are done here */
  2589. break;
  2590. case 2: /* Success */
  2591. state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */
  2592. *tune_state = CT_DEMOD_STEP_3;
  2593. if (state->autosearch_state == AS_SEARCHING_GUARD)
  2594. *tune_state = CT_DEMOD_STEP_2;
  2595. else
  2596. state->autosearch_state = AS_DONE;
  2597. break;
  2598. case 3: /* Autosearch FFT max correlation endded */
  2599. *tune_state = CT_DEMOD_STEP_2;
  2600. break;
  2601. }
  2602. break;
  2603. case CT_DEMOD_STEP_2:
  2604. switch (state->autosearch_state) {
  2605. case AS_SEARCHING_FFT:
  2606. /* searching for the correct FFT */
  2607. if (state->revision == 0x8090) {
  2608. corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
  2609. corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
  2610. corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601));
  2611. } else {
  2612. corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595));
  2613. corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
  2614. corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
  2615. }
  2616. /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */
  2617. max_value = 0;
  2618. for (find_index = 1 ; find_index < 3 ; find_index++) {
  2619. if (corm[max_value] < corm[find_index])
  2620. max_value = find_index ;
  2621. }
  2622. switch (max_value) {
  2623. case 0:
  2624. state->found_nfft = TRANSMISSION_MODE_2K;
  2625. break;
  2626. case 1:
  2627. state->found_nfft = TRANSMISSION_MODE_4K;
  2628. break;
  2629. case 2:
  2630. default:
  2631. state->found_nfft = TRANSMISSION_MODE_8K;
  2632. break;
  2633. }
  2634. /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */
  2635. *tune_state = CT_DEMOD_SEARCH_NEXT;
  2636. state->autosearch_state = AS_SEARCHING_GUARD;
  2637. if (state->revision == 0x8090)
  2638. ret = 50;
  2639. else
  2640. ret = 10;
  2641. break;
  2642. case AS_SEARCHING_GUARD:
  2643. /* searching for the correct guard interval */
  2644. if (state->revision == 0x8090)
  2645. state->found_guard = dib8000_read_word(state, 572) & 0x3;
  2646. else
  2647. state->found_guard = dib8000_read_word(state, 570) & 0x3;
  2648. /* dprintk("guard interval found=%i\n", state->found_guard); */
  2649. *tune_state = CT_DEMOD_STEP_3;
  2650. break;
  2651. default:
  2652. /* the demod should never be in this state */
  2653. state->status = FE_STATUS_TUNE_FAILED;
  2654. state->autosearch_state = AS_DONE;
  2655. *tune_state = CT_DEMOD_STOP; /* else we are done here */
  2656. break;
  2657. }
  2658. break;
  2659. case CT_DEMOD_STEP_3: /* 33 */
  2660. dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1);
  2661. dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */
  2662. *tune_state = CT_DEMOD_STEP_4;
  2663. break;
  2664. case CT_DEMOD_STEP_4: /* (34) */
  2665. dib8000_demod_restart(state);
  2666. dib8000_set_sync_wait(state);
  2667. dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
  2668. locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
  2669. /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
  2670. *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON);
  2671. *tune_state = CT_DEMOD_STEP_5;
  2672. break;
  2673. case CT_DEMOD_STEP_5: /* (35) */
  2674. locks = dib8000_read_lock(fe);
  2675. if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
  2676. dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */
  2677. if (!state->differential_constellation) {
  2678. /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
  2679. *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON);
  2680. *tune_state = CT_DEMOD_STEP_7;
  2681. } else {
  2682. *tune_state = CT_DEMOD_STEP_8;
  2683. }
  2684. } else if (time_after(now, *timeout)) {
  2685. *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
  2686. }
  2687. break;
  2688. case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */
  2689. if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) {
  2690. /* if there is a diversity fe in input and this fe is has not already failed : wait here until this this fe has succedeed or failed */
  2691. if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */
  2692. *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */
  2693. else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failed also, break the current one */
  2694. *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
  2695. dib8000_viterbi_state(state, 1); /* start viterbi chandec */
  2696. dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
  2697. state->status = FE_STATUS_TUNE_FAILED;
  2698. }
  2699. } else {
  2700. dib8000_viterbi_state(state, 1); /* start viterbi chandec */
  2701. dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
  2702. *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
  2703. state->status = FE_STATUS_TUNE_FAILED;
  2704. }
  2705. break;
  2706. case CT_DEMOD_STEP_7: /* 37 */
  2707. locks = dib8000_read_lock(fe);
  2708. if (locks & (1<<10)) { /* lmod4_lock */
  2709. ret = 14; /* wait for 14 symbols */
  2710. *tune_state = CT_DEMOD_STEP_8;
  2711. } else if (time_after(now, *timeout))
  2712. *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
  2713. break;
  2714. case CT_DEMOD_STEP_8: /* 38 */
  2715. dib8000_viterbi_state(state, 1); /* start viterbi chandec */
  2716. dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
  2717. /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
  2718. if (c->isdbt_sb_mode
  2719. && c->isdbt_sb_subchannel < 14
  2720. && !state->differential_constellation) {
  2721. state->subchannel = 0;
  2722. *tune_state = CT_DEMOD_STEP_11;
  2723. } else {
  2724. *tune_state = CT_DEMOD_STEP_9;
  2725. state->status = FE_STATUS_LOCKED;
  2726. }
  2727. break;
  2728. case CT_DEMOD_STEP_9: /* 39 */
  2729. if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
  2730. /* defines timeout for mpeg lock depending on interleaver length of longest layer */
  2731. for (i = 0; i < 3; i++) {
  2732. if (c->layer[i].interleaving >= deeper_interleaver) {
  2733. dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving);
  2734. if (c->layer[i].segment_count > 0) { /* valid layer */
  2735. deeper_interleaver = c->layer[0].interleaving;
  2736. state->longest_intlv_layer = i;
  2737. }
  2738. }
  2739. }
  2740. if (deeper_interleaver == 0)
  2741. locks = 2; /* locks is the tmp local variable name */
  2742. else if (deeper_interleaver == 3)
  2743. locks = 8;
  2744. else
  2745. locks = 2 * deeper_interleaver;
  2746. if (state->diversity_onoff != 0) /* because of diversity sync */
  2747. locks *= 2;
  2748. *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */
  2749. dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n",
  2750. deeper_interleaver, state->longest_intlv_layer, locks, *timeout);
  2751. *tune_state = CT_DEMOD_STEP_10;
  2752. } else
  2753. *tune_state = CT_DEMOD_STOP;
  2754. break;
  2755. case CT_DEMOD_STEP_10: /* 40 */
  2756. locks = dib8000_read_lock(fe);
  2757. if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */
  2758. dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n",
  2759. c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
  2760. c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
  2761. c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
  2762. if (c->isdbt_sb_mode
  2763. && c->isdbt_sb_subchannel < 14
  2764. && !state->differential_constellation)
  2765. /* signal to the upper layer, that there was a channel found and the parameters can be read */
  2766. state->status = FE_STATUS_DEMOD_SUCCESS;
  2767. else
  2768. state->status = FE_STATUS_DATA_LOCKED;
  2769. *tune_state = CT_DEMOD_STOP;
  2770. } else if (time_after(now, *timeout)) {
  2771. if (c->isdbt_sb_mode
  2772. && c->isdbt_sb_subchannel < 14
  2773. && !state->differential_constellation) { /* continue to try init prbs autosearch */
  2774. state->subchannel += 3;
  2775. *tune_state = CT_DEMOD_STEP_11;
  2776. } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
  2777. if (locks & (0x7 << 5)) {
  2778. dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n",
  2779. jiffies_to_msecs(now - *timeout),
  2780. c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
  2781. c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
  2782. c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
  2783. state->status = FE_STATUS_DATA_LOCKED;
  2784. } else
  2785. state->status = FE_STATUS_TUNE_FAILED;
  2786. *tune_state = CT_DEMOD_STOP;
  2787. }
  2788. }
  2789. break;
  2790. case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */
  2791. init_prbs = dib8000_get_init_prbs(state, state->subchannel);
  2792. if (init_prbs) {
  2793. dib8000_set_subchannel_prbs(state, init_prbs);
  2794. *tune_state = CT_DEMOD_STEP_9;
  2795. } else {
  2796. *tune_state = CT_DEMOD_STOP;
  2797. state->status = FE_STATUS_TUNE_FAILED;
  2798. }
  2799. break;
  2800. default:
  2801. break;
  2802. }
  2803. /* tuning is finished - cleanup the demod */
  2804. switch (*tune_state) {
  2805. case CT_DEMOD_STOP: /* (42) */
  2806. #ifdef DIB8000_AGC_FREEZE
  2807. if ((state->revision != 0x8090) && (state->agc1_max != 0)) {
  2808. dib8000_write_word(state, 108, state->agc1_max);
  2809. dib8000_write_word(state, 109, state->agc1_min);
  2810. dib8000_write_word(state, 110, state->agc2_max);
  2811. dib8000_write_word(state, 111, state->agc2_min);
  2812. state->agc1_max = 0;
  2813. state->agc1_min = 0;
  2814. state->agc2_max = 0;
  2815. state->agc2_min = 0;
  2816. }
  2817. #endif
  2818. ret = 0;
  2819. break;
  2820. default:
  2821. break;
  2822. }
  2823. if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3))
  2824. return ret * state->symbol_duration;
  2825. if ((ret > 0) && (ret < state->symbol_duration))
  2826. return state->symbol_duration; /* at least one symbol */
  2827. return ret;
  2828. }
  2829. static int dib8000_wakeup(struct dvb_frontend *fe)
  2830. {
  2831. struct dib8000_state *state = fe->demodulator_priv;
  2832. u8 index_frontend;
  2833. int ret;
  2834. dib8000_set_power_mode(state, DIB8000_POWER_ALL);
  2835. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  2836. if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
  2837. dprintk("could not start Slow ADC\n");
  2838. if (state->revision == 0x8090)
  2839. dib8000_sad_calib(state);
  2840. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  2841. ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
  2842. if (ret < 0)
  2843. return ret;
  2844. }
  2845. return 0;
  2846. }
  2847. static int dib8000_sleep(struct dvb_frontend *fe)
  2848. {
  2849. struct dib8000_state *state = fe->demodulator_priv;
  2850. u8 index_frontend;
  2851. int ret;
  2852. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  2853. ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
  2854. if (ret < 0)
  2855. return ret;
  2856. }
  2857. if (state->revision != 0x8090)
  2858. dib8000_set_output_mode(fe, OUTMODE_HIGH_Z);
  2859. dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
  2860. return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF);
  2861. }
  2862. static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat);
  2863. static int dib8000_get_frontend(struct dvb_frontend *fe,
  2864. struct dtv_frontend_properties *c)
  2865. {
  2866. struct dib8000_state *state = fe->demodulator_priv;
  2867. u16 i, val = 0;
  2868. enum fe_status stat = 0;
  2869. u8 index_frontend, sub_index_frontend;
  2870. c->bandwidth_hz = 6000000;
  2871. /*
  2872. * If called to early, get_frontend makes dib8000_tune to either
  2873. * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
  2874. * So, let's just return if frontend 0 has not locked.
  2875. */
  2876. dib8000_read_status(fe, &stat);
  2877. if (!(stat & FE_HAS_SYNC))
  2878. return 0;
  2879. dprintk("dib8000_get_frontend: TMCC lock\n");
  2880. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  2881. state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
  2882. if (stat&FE_HAS_SYNC) {
  2883. dprintk("TMCC lock on the slave%i\n", index_frontend);
  2884. /* synchronize the cache with the other frontends */
  2885. state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
  2886. for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
  2887. if (sub_index_frontend != index_frontend) {
  2888. state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
  2889. state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
  2890. state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
  2891. state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
  2892. state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
  2893. for (i = 0; i < 3; i++) {
  2894. state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
  2895. state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
  2896. state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
  2897. state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
  2898. }
  2899. }
  2900. }
  2901. return 0;
  2902. }
  2903. }
  2904. c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
  2905. if (state->revision == 0x8090)
  2906. val = dib8000_read_word(state, 572);
  2907. else
  2908. val = dib8000_read_word(state, 570);
  2909. c->inversion = (val & 0x40) >> 6;
  2910. switch ((val & 0x30) >> 4) {
  2911. case 1:
  2912. c->transmission_mode = TRANSMISSION_MODE_2K;
  2913. dprintk("dib8000_get_frontend: transmission mode 2K\n");
  2914. break;
  2915. case 2:
  2916. c->transmission_mode = TRANSMISSION_MODE_4K;
  2917. dprintk("dib8000_get_frontend: transmission mode 4K\n");
  2918. break;
  2919. case 3:
  2920. default:
  2921. c->transmission_mode = TRANSMISSION_MODE_8K;
  2922. dprintk("dib8000_get_frontend: transmission mode 8K\n");
  2923. break;
  2924. }
  2925. switch (val & 0x3) {
  2926. case 0:
  2927. c->guard_interval = GUARD_INTERVAL_1_32;
  2928. dprintk("dib8000_get_frontend: Guard Interval = 1/32\n");
  2929. break;
  2930. case 1:
  2931. c->guard_interval = GUARD_INTERVAL_1_16;
  2932. dprintk("dib8000_get_frontend: Guard Interval = 1/16\n");
  2933. break;
  2934. case 2:
  2935. dprintk("dib8000_get_frontend: Guard Interval = 1/8\n");
  2936. c->guard_interval = GUARD_INTERVAL_1_8;
  2937. break;
  2938. case 3:
  2939. dprintk("dib8000_get_frontend: Guard Interval = 1/4\n");
  2940. c->guard_interval = GUARD_INTERVAL_1_4;
  2941. break;
  2942. }
  2943. val = dib8000_read_word(state, 505);
  2944. c->isdbt_partial_reception = val & 1;
  2945. dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception);
  2946. for (i = 0; i < 3; i++) {
  2947. int show;
  2948. val = dib8000_read_word(state, 493 + i) & 0x0f;
  2949. c->layer[i].segment_count = val;
  2950. if (val == 0 || val > 13)
  2951. show = 0;
  2952. else
  2953. show = 1;
  2954. if (show)
  2955. dprintk("dib8000_get_frontend: Layer %d segments = %d\n",
  2956. i, c->layer[i].segment_count);
  2957. val = dib8000_read_word(state, 499 + i) & 0x3;
  2958. /* Interleaving can be 0, 1, 2 or 4 */
  2959. if (val == 3)
  2960. val = 4;
  2961. c->layer[i].interleaving = val;
  2962. if (show)
  2963. dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n",
  2964. i, c->layer[i].interleaving);
  2965. val = dib8000_read_word(state, 481 + i);
  2966. switch (val & 0x7) {
  2967. case 1:
  2968. c->layer[i].fec = FEC_1_2;
  2969. if (show)
  2970. dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i);
  2971. break;
  2972. case 2:
  2973. c->layer[i].fec = FEC_2_3;
  2974. if (show)
  2975. dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i);
  2976. break;
  2977. case 3:
  2978. c->layer[i].fec = FEC_3_4;
  2979. if (show)
  2980. dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i);
  2981. break;
  2982. case 5:
  2983. c->layer[i].fec = FEC_5_6;
  2984. if (show)
  2985. dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i);
  2986. break;
  2987. default:
  2988. c->layer[i].fec = FEC_7_8;
  2989. if (show)
  2990. dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i);
  2991. break;
  2992. }
  2993. val = dib8000_read_word(state, 487 + i);
  2994. switch (val & 0x3) {
  2995. case 0:
  2996. c->layer[i].modulation = DQPSK;
  2997. if (show)
  2998. dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i);
  2999. break;
  3000. case 1:
  3001. c->layer[i].modulation = QPSK;
  3002. if (show)
  3003. dprintk("dib8000_get_frontend: Layer %d QPSK\n", i);
  3004. break;
  3005. case 2:
  3006. c->layer[i].modulation = QAM_16;
  3007. if (show)
  3008. dprintk("dib8000_get_frontend: Layer %d QAM16\n", i);
  3009. break;
  3010. case 3:
  3011. default:
  3012. c->layer[i].modulation = QAM_64;
  3013. if (show)
  3014. dprintk("dib8000_get_frontend: Layer %d QAM64\n", i);
  3015. break;
  3016. }
  3017. }
  3018. /* synchronize the cache with the other frontends */
  3019. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3020. state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode;
  3021. state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
  3022. state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
  3023. state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
  3024. state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception;
  3025. for (i = 0; i < 3; i++) {
  3026. state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count;
  3027. state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving;
  3028. state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec;
  3029. state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation;
  3030. }
  3031. }
  3032. return 0;
  3033. }
  3034. static int dib8000_set_frontend(struct dvb_frontend *fe)
  3035. {
  3036. struct dib8000_state *state = fe->demodulator_priv;
  3037. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  3038. int l, i, active, time, time_slave = 0;
  3039. u8 exit_condition, index_frontend;
  3040. unsigned long delay, callback_time;
  3041. if (c->frequency == 0) {
  3042. dprintk("dib8000: must at least specify frequency\n");
  3043. return 0;
  3044. }
  3045. if (c->bandwidth_hz == 0) {
  3046. dprintk("dib8000: no bandwidth specified, set to default\n");
  3047. c->bandwidth_hz = 6000000;
  3048. }
  3049. for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3050. /* synchronization of the cache */
  3051. state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
  3052. memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
  3053. /* set output mode and diversity input */
  3054. if (state->revision != 0x8090) {
  3055. dib8000_set_diversity_in(state->fe[index_frontend], 1);
  3056. if (index_frontend != 0)
  3057. dib8000_set_output_mode(state->fe[index_frontend],
  3058. OUTMODE_DIVERSITY);
  3059. else
  3060. dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
  3061. } else {
  3062. dib8096p_set_diversity_in(state->fe[index_frontend], 1);
  3063. if (index_frontend != 0)
  3064. dib8096p_set_output_mode(state->fe[index_frontend],
  3065. OUTMODE_DIVERSITY);
  3066. else
  3067. dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
  3068. }
  3069. /* tune the tuner */
  3070. if (state->fe[index_frontend]->ops.tuner_ops.set_params)
  3071. state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]);
  3072. dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START);
  3073. }
  3074. /* turn off the diversity of the last chip */
  3075. if (state->revision != 0x8090)
  3076. dib8000_set_diversity_in(state->fe[index_frontend - 1], 0);
  3077. else
  3078. dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0);
  3079. /* start up the AGC */
  3080. do {
  3081. time = dib8000_agc_startup(state->fe[0]);
  3082. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3083. time_slave = dib8000_agc_startup(state->fe[index_frontend]);
  3084. if (time == 0)
  3085. time = time_slave;
  3086. else if ((time_slave != 0) && (time_slave > time))
  3087. time = time_slave;
  3088. }
  3089. if (time == 0)
  3090. break;
  3091. /*
  3092. * Despite dib8000_agc_startup returns time at a 0.1 ms range,
  3093. * the actual sleep time depends on CONFIG_HZ. The worse case
  3094. * is when CONFIG_HZ=100. In such case, the minimum granularity
  3095. * is 10ms. On some real field tests, the tuner sometimes don't
  3096. * lock when this timer is lower than 10ms. So, enforce a 10ms
  3097. * granularity.
  3098. */
  3099. time = 10 * (time + 99)/100;
  3100. usleep_range(time * 1000, (time + 1) * 1000);
  3101. exit_condition = 1;
  3102. for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3103. if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
  3104. exit_condition = 0;
  3105. break;
  3106. }
  3107. }
  3108. } while (exit_condition == 0);
  3109. for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
  3110. dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
  3111. active = 1;
  3112. do {
  3113. callback_time = 0;
  3114. for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3115. delay = dib8000_tune(state->fe[index_frontend]);
  3116. if (delay != 0) {
  3117. delay = jiffies + usecs_to_jiffies(100 * delay);
  3118. if (!callback_time || delay < callback_time)
  3119. callback_time = delay;
  3120. }
  3121. /* we are in autosearch */
  3122. if (state->channel_parameters_set == 0) { /* searching */
  3123. if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) {
  3124. dprintk("autosearch succeeded on fe%i\n", index_frontend);
  3125. dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */
  3126. state->channel_parameters_set = 1;
  3127. for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) {
  3128. if (l != index_frontend) { /* and for all frontend except the successful one */
  3129. dprintk("Restarting frontend %d\n", l);
  3130. dib8000_tune_restart_from_demod(state->fe[l]);
  3131. state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
  3132. state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
  3133. state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
  3134. state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
  3135. state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
  3136. for (i = 0; i < 3; i++) {
  3137. state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
  3138. state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
  3139. state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
  3140. state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
  3141. }
  3142. }
  3143. }
  3144. }
  3145. }
  3146. }
  3147. /* tuning is done when the master frontend is done (failed or success) */
  3148. if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED ||
  3149. dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED ||
  3150. dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) {
  3151. active = 0;
  3152. /* we need to wait for all frontends to be finished */
  3153. for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3154. if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP)
  3155. active = 1;
  3156. }
  3157. if (active == 0)
  3158. dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0]));
  3159. }
  3160. if ((active == 1) && (callback_time == 0)) {
  3161. dprintk("strange callback time something went wrong\n");
  3162. active = 0;
  3163. }
  3164. while ((active == 1) && (time_before(jiffies, callback_time)))
  3165. msleep(100);
  3166. } while (active);
  3167. /* set output mode */
  3168. if (state->revision != 0x8090)
  3169. dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
  3170. else {
  3171. dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode);
  3172. if (state->cfg.enMpegOutput == 0) {
  3173. dib8096p_setDibTxMux(state, MPEG_ON_DIBTX);
  3174. dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
  3175. }
  3176. }
  3177. return 0;
  3178. }
  3179. static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat);
  3180. static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
  3181. {
  3182. struct dib8000_state *state = fe->demodulator_priv;
  3183. u16 lock_slave = 0, lock;
  3184. u8 index_frontend;
  3185. lock = dib8000_read_lock(fe);
  3186. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
  3187. lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
  3188. *stat = 0;
  3189. if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1))
  3190. *stat |= FE_HAS_SIGNAL;
  3191. if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */
  3192. *stat |= FE_HAS_CARRIER;
  3193. if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
  3194. *stat |= FE_HAS_SYNC;
  3195. if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */
  3196. *stat |= FE_HAS_LOCK;
  3197. if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) {
  3198. lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
  3199. if (lock & 0x01)
  3200. *stat |= FE_HAS_VITERBI;
  3201. lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
  3202. if (lock & 0x01)
  3203. *stat |= FE_HAS_VITERBI;
  3204. lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
  3205. if (lock & 0x01)
  3206. *stat |= FE_HAS_VITERBI;
  3207. }
  3208. dib8000_get_stats(fe, *stat);
  3209. return 0;
  3210. }
  3211. static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
  3212. {
  3213. struct dib8000_state *state = fe->demodulator_priv;
  3214. /* 13 segments */
  3215. if (state->revision == 0x8090)
  3216. *ber = (dib8000_read_word(state, 562) << 16) |
  3217. dib8000_read_word(state, 563);
  3218. else
  3219. *ber = (dib8000_read_word(state, 560) << 16) |
  3220. dib8000_read_word(state, 561);
  3221. return 0;
  3222. }
  3223. static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
  3224. {
  3225. struct dib8000_state *state = fe->demodulator_priv;
  3226. /* packet error on 13 seg */
  3227. if (state->revision == 0x8090)
  3228. *unc = dib8000_read_word(state, 567);
  3229. else
  3230. *unc = dib8000_read_word(state, 565);
  3231. return 0;
  3232. }
  3233. static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  3234. {
  3235. struct dib8000_state *state = fe->demodulator_priv;
  3236. u8 index_frontend;
  3237. u16 val;
  3238. *strength = 0;
  3239. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
  3240. state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
  3241. if (val > 65535 - *strength)
  3242. *strength = 65535;
  3243. else
  3244. *strength += val;
  3245. }
  3246. val = 65535 - dib8000_read_word(state, 390);
  3247. if (val > 65535 - *strength)
  3248. *strength = 65535;
  3249. else
  3250. *strength += val;
  3251. return 0;
  3252. }
  3253. static u32 dib8000_get_snr(struct dvb_frontend *fe)
  3254. {
  3255. struct dib8000_state *state = fe->demodulator_priv;
  3256. u32 n, s, exp;
  3257. u16 val;
  3258. if (state->revision != 0x8090)
  3259. val = dib8000_read_word(state, 542);
  3260. else
  3261. val = dib8000_read_word(state, 544);
  3262. n = (val >> 6) & 0xff;
  3263. exp = (val & 0x3f);
  3264. if ((exp & 0x20) != 0)
  3265. exp -= 0x40;
  3266. n <<= exp+16;
  3267. if (state->revision != 0x8090)
  3268. val = dib8000_read_word(state, 543);
  3269. else
  3270. val = dib8000_read_word(state, 545);
  3271. s = (val >> 6) & 0xff;
  3272. exp = (val & 0x3f);
  3273. if ((exp & 0x20) != 0)
  3274. exp -= 0x40;
  3275. s <<= exp+16;
  3276. if (n > 0) {
  3277. u32 t = (s/n) << 16;
  3278. return t + ((s << 16) - n*t) / n;
  3279. }
  3280. return 0xffffffff;
  3281. }
  3282. static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
  3283. {
  3284. struct dib8000_state *state = fe->demodulator_priv;
  3285. u8 index_frontend;
  3286. u32 snr_master;
  3287. snr_master = dib8000_get_snr(fe);
  3288. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
  3289. snr_master += dib8000_get_snr(state->fe[index_frontend]);
  3290. if ((snr_master >> 16) != 0) {
  3291. snr_master = 10*intlog10(snr_master>>16);
  3292. *snr = snr_master / ((1 << 24) / 10);
  3293. }
  3294. else
  3295. *snr = 0;
  3296. return 0;
  3297. }
  3298. struct per_layer_regs {
  3299. u16 lock, ber, per;
  3300. };
  3301. static const struct per_layer_regs per_layer_regs[] = {
  3302. { 554, 560, 562 },
  3303. { 555, 576, 578 },
  3304. { 556, 581, 583 },
  3305. };
  3306. struct linear_segments {
  3307. unsigned x;
  3308. signed y;
  3309. };
  3310. /*
  3311. * Table to estimate signal strength in dBm.
  3312. * This table was empirically determinated by measuring the signal
  3313. * strength generated by a DTA-2111 RF generator directly connected into
  3314. * a dib8076 device (a PixelView PV-D231U stick), using a good quality
  3315. * 3 meters RC6 cable and good RC6 connectors.
  3316. * The real value can actually be different on other devices, depending
  3317. * on several factors, like if LNA is enabled or not, if diversity is
  3318. * enabled, type of connectors, etc.
  3319. * Yet, it is better to use this measure in dB than a random non-linear
  3320. * percentage value, especially for antenna adjustments.
  3321. * On my tests, the precision of the measure using this table is about
  3322. * 0.5 dB, with sounds reasonable enough.
  3323. */
  3324. static struct linear_segments strength_to_db_table[] = {
  3325. { 55953, 108500 }, /* -22.5 dBm */
  3326. { 55394, 108000 },
  3327. { 53834, 107000 },
  3328. { 52863, 106000 },
  3329. { 52239, 105000 },
  3330. { 52012, 104000 },
  3331. { 51803, 103000 },
  3332. { 51566, 102000 },
  3333. { 51356, 101000 },
  3334. { 51112, 100000 },
  3335. { 50869, 99000 },
  3336. { 50600, 98000 },
  3337. { 50363, 97000 },
  3338. { 50117, 96000 }, /* -35 dBm */
  3339. { 49889, 95000 },
  3340. { 49680, 94000 },
  3341. { 49493, 93000 },
  3342. { 49302, 92000 },
  3343. { 48929, 91000 },
  3344. { 48416, 90000 },
  3345. { 48035, 89000 },
  3346. { 47593, 88000 },
  3347. { 47282, 87000 },
  3348. { 46953, 86000 },
  3349. { 46698, 85000 },
  3350. { 45617, 84000 },
  3351. { 44773, 83000 },
  3352. { 43845, 82000 },
  3353. { 43020, 81000 },
  3354. { 42010, 80000 }, /* -51 dBm */
  3355. { 0, 0 },
  3356. };
  3357. static u32 interpolate_value(u32 value, struct linear_segments *segments,
  3358. unsigned len)
  3359. {
  3360. u64 tmp64;
  3361. u32 dx;
  3362. s32 dy;
  3363. int i, ret;
  3364. if (value >= segments[0].x)
  3365. return segments[0].y;
  3366. if (value < segments[len-1].x)
  3367. return segments[len-1].y;
  3368. for (i = 1; i < len - 1; i++) {
  3369. /* If value is identical, no need to interpolate */
  3370. if (value == segments[i].x)
  3371. return segments[i].y;
  3372. if (value > segments[i].x)
  3373. break;
  3374. }
  3375. /* Linear interpolation between the two (x,y) points */
  3376. dy = segments[i - 1].y - segments[i].y;
  3377. dx = segments[i - 1].x - segments[i].x;
  3378. tmp64 = value - segments[i].x;
  3379. tmp64 *= dy;
  3380. do_div(tmp64, dx);
  3381. ret = segments[i].y + tmp64;
  3382. return ret;
  3383. }
  3384. static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer)
  3385. {
  3386. struct dib8000_state *state = fe->demodulator_priv;
  3387. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  3388. int ini_layer, end_layer, i;
  3389. u64 time_us, tmp64;
  3390. u32 tmp, denom;
  3391. int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs;
  3392. int interleaving = 0, fft_div;
  3393. if (layer >= 0) {
  3394. ini_layer = layer;
  3395. end_layer = layer + 1;
  3396. } else {
  3397. ini_layer = 0;
  3398. end_layer = 3;
  3399. }
  3400. switch (c->guard_interval) {
  3401. case GUARD_INTERVAL_1_4:
  3402. guard = 4;
  3403. break;
  3404. case GUARD_INTERVAL_1_8:
  3405. guard = 8;
  3406. break;
  3407. case GUARD_INTERVAL_1_16:
  3408. guard = 16;
  3409. break;
  3410. default:
  3411. case GUARD_INTERVAL_1_32:
  3412. guard = 32;
  3413. break;
  3414. }
  3415. switch (c->transmission_mode) {
  3416. case TRANSMISSION_MODE_2K:
  3417. fft_div = 4;
  3418. break;
  3419. case TRANSMISSION_MODE_4K:
  3420. fft_div = 2;
  3421. break;
  3422. default:
  3423. case TRANSMISSION_MODE_8K:
  3424. fft_div = 1;
  3425. break;
  3426. }
  3427. denom = 0;
  3428. for (i = ini_layer; i < end_layer; i++) {
  3429. nsegs = c->layer[i].segment_count;
  3430. if (nsegs == 0 || nsegs > 13)
  3431. continue;
  3432. switch (c->layer[i].modulation) {
  3433. case DQPSK:
  3434. case QPSK:
  3435. bits_per_symbol = 2;
  3436. break;
  3437. case QAM_16:
  3438. bits_per_symbol = 4;
  3439. break;
  3440. default:
  3441. case QAM_64:
  3442. bits_per_symbol = 6;
  3443. break;
  3444. }
  3445. switch (c->layer[i].fec) {
  3446. case FEC_1_2:
  3447. rate_num = 1;
  3448. rate_denum = 2;
  3449. break;
  3450. case FEC_2_3:
  3451. rate_num = 2;
  3452. rate_denum = 3;
  3453. break;
  3454. case FEC_3_4:
  3455. rate_num = 3;
  3456. rate_denum = 4;
  3457. break;
  3458. case FEC_5_6:
  3459. rate_num = 5;
  3460. rate_denum = 6;
  3461. break;
  3462. default:
  3463. case FEC_7_8:
  3464. rate_num = 7;
  3465. rate_denum = 8;
  3466. break;
  3467. }
  3468. interleaving = c->layer[i].interleaving;
  3469. denom += bits_per_symbol * rate_num * fft_div * nsegs * 384;
  3470. }
  3471. /* If all goes wrong, wait for 1s for the next stats */
  3472. if (!denom)
  3473. return 0;
  3474. /* Estimate the period for the total bit rate */
  3475. time_us = rate_denum * (1008 * 1562500L);
  3476. tmp64 = time_us;
  3477. do_div(tmp64, guard);
  3478. time_us = time_us + tmp64;
  3479. time_us += denom / 2;
  3480. do_div(time_us, denom);
  3481. tmp = 1008 * 96 * interleaving;
  3482. time_us += tmp + tmp / guard;
  3483. return time_us;
  3484. }
  3485. static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat)
  3486. {
  3487. struct dib8000_state *state = fe->demodulator_priv;
  3488. struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
  3489. int i;
  3490. int show_per_stats = 0;
  3491. u32 time_us = 0, snr, val;
  3492. u64 blocks;
  3493. s32 db;
  3494. u16 strength;
  3495. /* Get Signal strength */
  3496. dib8000_read_signal_strength(fe, &strength);
  3497. val = strength;
  3498. db = interpolate_value(val,
  3499. strength_to_db_table,
  3500. ARRAY_SIZE(strength_to_db_table)) - 131000;
  3501. c->strength.stat[0].svalue = db;
  3502. /* UCB/BER/CNR measures require lock */
  3503. if (!(stat & FE_HAS_LOCK)) {
  3504. c->cnr.len = 1;
  3505. c->block_count.len = 1;
  3506. c->block_error.len = 1;
  3507. c->post_bit_error.len = 1;
  3508. c->post_bit_count.len = 1;
  3509. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  3510. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  3511. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  3512. c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  3513. c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  3514. return 0;
  3515. }
  3516. /* Check if time for stats was elapsed */
  3517. if (time_after(jiffies, state->per_jiffies_stats)) {
  3518. state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
  3519. /* Get SNR */
  3520. snr = dib8000_get_snr(fe);
  3521. for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) {
  3522. if (state->fe[i])
  3523. snr += dib8000_get_snr(state->fe[i]);
  3524. }
  3525. snr = snr >> 16;
  3526. if (snr) {
  3527. snr = 10 * intlog10(snr);
  3528. snr = (1000L * snr) >> 24;
  3529. } else {
  3530. snr = 0;
  3531. }
  3532. c->cnr.stat[0].svalue = snr;
  3533. c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
  3534. /* Get UCB measures */
  3535. dib8000_read_unc_blocks(fe, &val);
  3536. if (val < state->init_ucb)
  3537. state->init_ucb += 0x100000000LL;
  3538. c->block_error.stat[0].scale = FE_SCALE_COUNTER;
  3539. c->block_error.stat[0].uvalue = val + state->init_ucb;
  3540. /* Estimate the number of packets based on bitrate */
  3541. if (!time_us)
  3542. time_us = dib8000_get_time_us(fe, -1);
  3543. if (time_us) {
  3544. blocks = 1250000ULL * 1000000ULL;
  3545. do_div(blocks, time_us * 8 * 204);
  3546. c->block_count.stat[0].scale = FE_SCALE_COUNTER;
  3547. c->block_count.stat[0].uvalue += blocks;
  3548. }
  3549. show_per_stats = 1;
  3550. }
  3551. /* Get post-BER measures */
  3552. if (time_after(jiffies, state->ber_jiffies_stats)) {
  3553. time_us = dib8000_get_time_us(fe, -1);
  3554. state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
  3555. dprintk("Next all layers stats available in %u us.\n", time_us);
  3556. dib8000_read_ber(fe, &val);
  3557. c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
  3558. c->post_bit_error.stat[0].uvalue += val;
  3559. c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
  3560. c->post_bit_count.stat[0].uvalue += 100000000;
  3561. }
  3562. if (state->revision < 0x8002)
  3563. return 0;
  3564. c->block_error.len = 4;
  3565. c->post_bit_error.len = 4;
  3566. c->post_bit_count.len = 4;
  3567. for (i = 0; i < 3; i++) {
  3568. unsigned nsegs = c->layer[i].segment_count;
  3569. if (nsegs == 0 || nsegs > 13)
  3570. continue;
  3571. time_us = 0;
  3572. if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) {
  3573. time_us = dib8000_get_time_us(fe, i);
  3574. state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
  3575. dprintk("Next layer %c stats will be available in %u us\n",
  3576. 'A' + i, time_us);
  3577. val = dib8000_read_word(state, per_layer_regs[i].ber);
  3578. c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
  3579. c->post_bit_error.stat[1 + i].uvalue += val;
  3580. c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
  3581. c->post_bit_count.stat[1 + i].uvalue += 100000000;
  3582. }
  3583. if (show_per_stats) {
  3584. val = dib8000_read_word(state, per_layer_regs[i].per);
  3585. c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
  3586. c->block_error.stat[1 + i].uvalue += val;
  3587. if (!time_us)
  3588. time_us = dib8000_get_time_us(fe, i);
  3589. if (time_us) {
  3590. blocks = 1250000ULL * 1000000ULL;
  3591. do_div(blocks, time_us * 8 * 204);
  3592. c->block_count.stat[0].scale = FE_SCALE_COUNTER;
  3593. c->block_count.stat[0].uvalue += blocks;
  3594. }
  3595. }
  3596. }
  3597. return 0;
  3598. }
  3599. static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
  3600. {
  3601. struct dib8000_state *state = fe->demodulator_priv;
  3602. u8 index_frontend = 1;
  3603. while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
  3604. index_frontend++;
  3605. if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
  3606. dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend);
  3607. state->fe[index_frontend] = fe_slave;
  3608. return 0;
  3609. }
  3610. dprintk("too many slave frontend\n");
  3611. return -ENOMEM;
  3612. }
  3613. static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
  3614. {
  3615. struct dib8000_state *state = fe->demodulator_priv;
  3616. if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
  3617. return NULL;
  3618. return state->fe[slave_index];
  3619. }
  3620. static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods,
  3621. u8 default_addr, u8 first_addr, u8 is_dib8096p)
  3622. {
  3623. int k = 0, ret = 0;
  3624. u8 new_addr = 0;
  3625. struct i2c_device client = {.adap = host };
  3626. client.i2c_write_buffer = kzalloc(4, GFP_KERNEL);
  3627. if (!client.i2c_write_buffer) {
  3628. dprintk("%s: not enough memory\n", __func__);
  3629. return -ENOMEM;
  3630. }
  3631. client.i2c_read_buffer = kzalloc(4, GFP_KERNEL);
  3632. if (!client.i2c_read_buffer) {
  3633. dprintk("%s: not enough memory\n", __func__);
  3634. ret = -ENOMEM;
  3635. goto error_memory_read;
  3636. }
  3637. client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL);
  3638. if (!client.i2c_buffer_lock) {
  3639. dprintk("%s: not enough memory\n", __func__);
  3640. ret = -ENOMEM;
  3641. goto error_memory_lock;
  3642. }
  3643. mutex_init(client.i2c_buffer_lock);
  3644. for (k = no_of_demods - 1; k >= 0; k--) {
  3645. /* designated i2c address */
  3646. new_addr = first_addr + (k << 1);
  3647. client.addr = new_addr;
  3648. if (!is_dib8096p)
  3649. dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
  3650. if (dib8000_identify(&client) == 0) {
  3651. /* sram lead in, rdy */
  3652. if (!is_dib8096p)
  3653. dib8000_i2c_write16(&client, 1287, 0x0003);
  3654. client.addr = default_addr;
  3655. if (dib8000_identify(&client) == 0) {
  3656. dprintk("#%d: not identified\n", k);
  3657. ret = -EINVAL;
  3658. goto error;
  3659. }
  3660. }
  3661. /* start diversity to pull_down div_str - just for i2c-enumeration */
  3662. dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
  3663. /* set new i2c address and force divstart */
  3664. dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
  3665. client.addr = new_addr;
  3666. dib8000_identify(&client);
  3667. dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
  3668. }
  3669. for (k = 0; k < no_of_demods; k++) {
  3670. new_addr = first_addr | (k << 1);
  3671. client.addr = new_addr;
  3672. // unforce divstr
  3673. dib8000_i2c_write16(&client, 1285, new_addr << 2);
  3674. /* deactivate div - it was just for i2c-enumeration */
  3675. dib8000_i2c_write16(&client, 1286, 0);
  3676. }
  3677. error:
  3678. kfree(client.i2c_buffer_lock);
  3679. error_memory_lock:
  3680. kfree(client.i2c_read_buffer);
  3681. error_memory_read:
  3682. kfree(client.i2c_write_buffer);
  3683. return ret;
  3684. }
  3685. static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
  3686. {
  3687. tune->min_delay_ms = 1000;
  3688. tune->step_size = 0;
  3689. tune->max_drift = 0;
  3690. return 0;
  3691. }
  3692. static void dib8000_release(struct dvb_frontend *fe)
  3693. {
  3694. struct dib8000_state *st = fe->demodulator_priv;
  3695. u8 index_frontend;
  3696. for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
  3697. dvb_frontend_detach(st->fe[index_frontend]);
  3698. dibx000_exit_i2c_master(&st->i2c_master);
  3699. i2c_del_adapter(&st->dib8096p_tuner_adap);
  3700. kfree(st->fe[0]);
  3701. kfree(st);
  3702. }
  3703. static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
  3704. {
  3705. struct dib8000_state *st = fe->demodulator_priv;
  3706. return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
  3707. }
  3708. static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
  3709. {
  3710. struct dib8000_state *st = fe->demodulator_priv;
  3711. u16 val = dib8000_read_word(st, 299) & 0xffef;
  3712. val |= (onoff & 0x1) << 4;
  3713. dprintk("pid filter enabled %d\n", onoff);
  3714. return dib8000_write_word(st, 299, val);
  3715. }
  3716. static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
  3717. {
  3718. struct dib8000_state *st = fe->demodulator_priv;
  3719. dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff);
  3720. return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
  3721. }
  3722. static const struct dvb_frontend_ops dib8000_ops = {
  3723. .delsys = { SYS_ISDBT },
  3724. .info = {
  3725. .name = "DiBcom 8000 ISDB-T",
  3726. .frequency_min_hz = 44250 * kHz,
  3727. .frequency_max_hz = 867250 * kHz,
  3728. .frequency_stepsize_hz = 62500,
  3729. .caps = FE_CAN_INVERSION_AUTO |
  3730. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  3731. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  3732. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  3733. FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
  3734. },
  3735. .release = dib8000_release,
  3736. .init = dib8000_wakeup,
  3737. .sleep = dib8000_sleep,
  3738. .set_frontend = dib8000_set_frontend,
  3739. .get_tune_settings = dib8000_fe_get_tune_settings,
  3740. .get_frontend = dib8000_get_frontend,
  3741. .read_status = dib8000_read_status,
  3742. .read_ber = dib8000_read_ber,
  3743. .read_signal_strength = dib8000_read_signal_strength,
  3744. .read_snr = dib8000_read_snr,
  3745. .read_ucblocks = dib8000_read_unc_blocks,
  3746. };
  3747. static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
  3748. {
  3749. struct dvb_frontend *fe;
  3750. struct dib8000_state *state;
  3751. dprintk("dib8000_init\n");
  3752. state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
  3753. if (state == NULL)
  3754. return NULL;
  3755. fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
  3756. if (fe == NULL)
  3757. goto error;
  3758. memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
  3759. state->i2c.adap = i2c_adap;
  3760. state->i2c.addr = i2c_addr;
  3761. state->i2c.i2c_write_buffer = state->i2c_write_buffer;
  3762. state->i2c.i2c_read_buffer = state->i2c_read_buffer;
  3763. mutex_init(&state->i2c_buffer_lock);
  3764. state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock;
  3765. state->gpio_val = cfg->gpio_val;
  3766. state->gpio_dir = cfg->gpio_dir;
  3767. /* Ensure the output mode remains at the previous default if it's
  3768. * not specifically set by the caller.
  3769. */
  3770. if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
  3771. state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
  3772. state->fe[0] = fe;
  3773. fe->demodulator_priv = state;
  3774. memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
  3775. state->timf_default = cfg->pll->timf;
  3776. if (dib8000_identify(&state->i2c) == 0)
  3777. goto error;
  3778. dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
  3779. /* init 8096p tuner adapter */
  3780. strscpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface",
  3781. sizeof(state->dib8096p_tuner_adap.name));
  3782. state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo;
  3783. state->dib8096p_tuner_adap.algo_data = NULL;
  3784. state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent;
  3785. i2c_set_adapdata(&state->dib8096p_tuner_adap, state);
  3786. i2c_add_adapter(&state->dib8096p_tuner_adap);
  3787. dib8000_reset(fe);
  3788. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
  3789. state->current_demod_bw = 6000;
  3790. return fe;
  3791. error:
  3792. kfree(state);
  3793. return NULL;
  3794. }
  3795. void *dib8000_attach(struct dib8000_ops *ops)
  3796. {
  3797. if (!ops)
  3798. return NULL;
  3799. ops->pwm_agc_reset = dib8000_pwm_agc_reset;
  3800. ops->get_dc_power = dib8090p_get_dc_power;
  3801. ops->set_gpio = dib8000_set_gpio;
  3802. ops->get_slave_frontend = dib8000_get_slave_frontend;
  3803. ops->set_tune_state = dib8000_set_tune_state;
  3804. ops->pid_filter_ctrl = dib8000_pid_filter_ctrl;
  3805. ops->get_adc_power = dib8000_get_adc_power;
  3806. ops->update_pll = dib8000_update_pll;
  3807. ops->tuner_sleep = dib8096p_tuner_sleep;
  3808. ops->get_tune_state = dib8000_get_tune_state;
  3809. ops->get_i2c_tuner = dib8096p_get_i2c_tuner;
  3810. ops->set_slave_frontend = dib8000_set_slave_frontend;
  3811. ops->pid_filter = dib8000_pid_filter;
  3812. ops->ctrl_timf = dib8000_ctrl_timf;
  3813. ops->init = dib8000_init;
  3814. ops->get_i2c_master = dib8000_get_i2c_master;
  3815. ops->i2c_enumeration = dib8000_i2c_enumeration;
  3816. ops->set_wbd_ref = dib8000_set_wbd_ref;
  3817. return ops;
  3818. }
  3819. EXPORT_SYMBOL(dib8000_attach);
  3820. MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
  3821. MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
  3822. MODULE_LICENSE("GPL");