dm-writecache.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2018 Red Hat. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include <linux/device-mapper.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/vmalloc.h>
  11. #include <linux/kthread.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/dm-kcopyd.h>
  14. #include <linux/dax.h>
  15. #include <linux/pfn_t.h>
  16. #include <linux/libnvdimm.h>
  17. #define DM_MSG_PREFIX "writecache"
  18. #define HIGH_WATERMARK 50
  19. #define LOW_WATERMARK 45
  20. #define MAX_WRITEBACK_JOBS 0
  21. #define ENDIO_LATENCY 16
  22. #define WRITEBACK_LATENCY 64
  23. #define AUTOCOMMIT_BLOCKS_SSD 65536
  24. #define AUTOCOMMIT_BLOCKS_PMEM 64
  25. #define AUTOCOMMIT_MSEC 1000
  26. #define BITMAP_GRANULARITY 65536
  27. #if BITMAP_GRANULARITY < PAGE_SIZE
  28. #undef BITMAP_GRANULARITY
  29. #define BITMAP_GRANULARITY PAGE_SIZE
  30. #endif
  31. #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  32. #define DM_WRITECACHE_HAS_PMEM
  33. #endif
  34. #ifdef DM_WRITECACHE_HAS_PMEM
  35. #define pmem_assign(dest, src) \
  36. do { \
  37. typeof(dest) uniq = (src); \
  38. memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
  39. } while (0)
  40. #else
  41. #define pmem_assign(dest, src) ((dest) = (src))
  42. #endif
  43. #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  44. #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  45. #endif
  46. #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
  47. #define MEMORY_SUPERBLOCK_VERSION 1
  48. struct wc_memory_entry {
  49. __le64 original_sector;
  50. __le64 seq_count;
  51. };
  52. struct wc_memory_superblock {
  53. union {
  54. struct {
  55. __le32 magic;
  56. __le32 version;
  57. __le32 block_size;
  58. __le32 pad;
  59. __le64 n_blocks;
  60. __le64 seq_count;
  61. };
  62. __le64 padding[8];
  63. };
  64. struct wc_memory_entry entries[0];
  65. };
  66. struct wc_entry {
  67. struct rb_node rb_node;
  68. struct list_head lru;
  69. unsigned short wc_list_contiguous;
  70. bool write_in_progress
  71. #if BITS_PER_LONG == 64
  72. :1
  73. #endif
  74. ;
  75. unsigned long index
  76. #if BITS_PER_LONG == 64
  77. :47
  78. #endif
  79. ;
  80. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  81. uint64_t original_sector;
  82. uint64_t seq_count;
  83. #endif
  84. };
  85. #ifdef DM_WRITECACHE_HAS_PMEM
  86. #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
  87. #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
  88. #else
  89. #define WC_MODE_PMEM(wc) false
  90. #define WC_MODE_FUA(wc) false
  91. #endif
  92. #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
  93. struct dm_writecache {
  94. struct mutex lock;
  95. struct list_head lru;
  96. union {
  97. struct list_head freelist;
  98. struct {
  99. struct rb_root freetree;
  100. struct wc_entry *current_free;
  101. };
  102. };
  103. struct rb_root tree;
  104. size_t freelist_size;
  105. size_t writeback_size;
  106. size_t freelist_high_watermark;
  107. size_t freelist_low_watermark;
  108. unsigned uncommitted_blocks;
  109. unsigned autocommit_blocks;
  110. unsigned max_writeback_jobs;
  111. int error;
  112. unsigned long autocommit_jiffies;
  113. struct timer_list autocommit_timer;
  114. struct wait_queue_head freelist_wait;
  115. atomic_t bio_in_progress[2];
  116. struct wait_queue_head bio_in_progress_wait[2];
  117. struct dm_target *ti;
  118. struct dm_dev *dev;
  119. struct dm_dev *ssd_dev;
  120. sector_t start_sector;
  121. void *memory_map;
  122. uint64_t memory_map_size;
  123. size_t metadata_sectors;
  124. size_t n_blocks;
  125. uint64_t seq_count;
  126. sector_t data_device_sectors;
  127. void *block_start;
  128. struct wc_entry *entries;
  129. unsigned block_size;
  130. unsigned char block_size_bits;
  131. bool pmem_mode:1;
  132. bool writeback_fua:1;
  133. bool overwrote_committed:1;
  134. bool memory_vmapped:1;
  135. bool start_sector_set:1;
  136. bool high_wm_percent_set:1;
  137. bool low_wm_percent_set:1;
  138. bool max_writeback_jobs_set:1;
  139. bool autocommit_blocks_set:1;
  140. bool autocommit_time_set:1;
  141. bool writeback_fua_set:1;
  142. bool flush_on_suspend:1;
  143. unsigned high_wm_percent_value;
  144. unsigned low_wm_percent_value;
  145. unsigned autocommit_time_value;
  146. unsigned writeback_all;
  147. struct workqueue_struct *writeback_wq;
  148. struct work_struct writeback_work;
  149. struct work_struct flush_work;
  150. struct dm_io_client *dm_io;
  151. raw_spinlock_t endio_list_lock;
  152. struct list_head endio_list;
  153. struct task_struct *endio_thread;
  154. struct task_struct *flush_thread;
  155. struct bio_list flush_list;
  156. struct dm_kcopyd_client *dm_kcopyd;
  157. unsigned long *dirty_bitmap;
  158. unsigned dirty_bitmap_size;
  159. struct bio_set bio_set;
  160. mempool_t copy_pool;
  161. };
  162. #define WB_LIST_INLINE 16
  163. struct writeback_struct {
  164. struct list_head endio_entry;
  165. struct dm_writecache *wc;
  166. struct wc_entry **wc_list;
  167. unsigned wc_list_n;
  168. struct wc_entry *wc_list_inline[WB_LIST_INLINE];
  169. struct bio bio;
  170. };
  171. struct copy_struct {
  172. struct list_head endio_entry;
  173. struct dm_writecache *wc;
  174. struct wc_entry *e;
  175. unsigned n_entries;
  176. int error;
  177. };
  178. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
  179. "A percentage of time allocated for data copying");
  180. static void wc_lock(struct dm_writecache *wc)
  181. {
  182. mutex_lock(&wc->lock);
  183. }
  184. static void wc_unlock(struct dm_writecache *wc)
  185. {
  186. mutex_unlock(&wc->lock);
  187. }
  188. #ifdef DM_WRITECACHE_HAS_PMEM
  189. static int persistent_memory_claim(struct dm_writecache *wc)
  190. {
  191. int r;
  192. loff_t s;
  193. long p, da;
  194. pfn_t pfn;
  195. int id;
  196. struct page **pages;
  197. sector_t offset;
  198. wc->memory_vmapped = false;
  199. if (!wc->ssd_dev->dax_dev) {
  200. r = -EOPNOTSUPP;
  201. goto err1;
  202. }
  203. s = wc->memory_map_size;
  204. p = s >> PAGE_SHIFT;
  205. if (!p) {
  206. r = -EINVAL;
  207. goto err1;
  208. }
  209. if (p != s >> PAGE_SHIFT) {
  210. r = -EOVERFLOW;
  211. goto err1;
  212. }
  213. offset = get_start_sect(wc->ssd_dev->bdev);
  214. if (offset & (PAGE_SIZE / 512 - 1)) {
  215. r = -EINVAL;
  216. goto err1;
  217. }
  218. offset >>= PAGE_SHIFT - 9;
  219. id = dax_read_lock();
  220. da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
  221. if (da < 0) {
  222. wc->memory_map = NULL;
  223. r = da;
  224. goto err2;
  225. }
  226. if (!pfn_t_has_page(pfn)) {
  227. wc->memory_map = NULL;
  228. r = -EOPNOTSUPP;
  229. goto err2;
  230. }
  231. if (da != p) {
  232. long i;
  233. wc->memory_map = NULL;
  234. pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
  235. if (!pages) {
  236. r = -ENOMEM;
  237. goto err2;
  238. }
  239. i = 0;
  240. do {
  241. long daa;
  242. daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
  243. NULL, &pfn);
  244. if (daa <= 0) {
  245. r = daa ? daa : -EINVAL;
  246. goto err3;
  247. }
  248. if (!pfn_t_has_page(pfn)) {
  249. r = -EOPNOTSUPP;
  250. goto err3;
  251. }
  252. while (daa-- && i < p) {
  253. pages[i++] = pfn_t_to_page(pfn);
  254. pfn.val++;
  255. if (!(i & 15))
  256. cond_resched();
  257. }
  258. } while (i < p);
  259. wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
  260. if (!wc->memory_map) {
  261. r = -ENOMEM;
  262. goto err3;
  263. }
  264. kvfree(pages);
  265. wc->memory_vmapped = true;
  266. }
  267. dax_read_unlock(id);
  268. wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
  269. wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
  270. return 0;
  271. err3:
  272. kvfree(pages);
  273. err2:
  274. dax_read_unlock(id);
  275. err1:
  276. return r;
  277. }
  278. #else
  279. static int persistent_memory_claim(struct dm_writecache *wc)
  280. {
  281. return -EOPNOTSUPP;
  282. }
  283. #endif
  284. static void persistent_memory_release(struct dm_writecache *wc)
  285. {
  286. if (wc->memory_vmapped)
  287. vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
  288. }
  289. static struct page *persistent_memory_page(void *addr)
  290. {
  291. if (is_vmalloc_addr(addr))
  292. return vmalloc_to_page(addr);
  293. else
  294. return virt_to_page(addr);
  295. }
  296. static unsigned persistent_memory_page_offset(void *addr)
  297. {
  298. return (unsigned long)addr & (PAGE_SIZE - 1);
  299. }
  300. static void persistent_memory_flush_cache(void *ptr, size_t size)
  301. {
  302. if (is_vmalloc_addr(ptr))
  303. flush_kernel_vmap_range(ptr, size);
  304. }
  305. static void persistent_memory_invalidate_cache(void *ptr, size_t size)
  306. {
  307. if (is_vmalloc_addr(ptr))
  308. invalidate_kernel_vmap_range(ptr, size);
  309. }
  310. static struct wc_memory_superblock *sb(struct dm_writecache *wc)
  311. {
  312. return wc->memory_map;
  313. }
  314. static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
  315. {
  316. return &sb(wc)->entries[e->index];
  317. }
  318. static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
  319. {
  320. return (char *)wc->block_start + (e->index << wc->block_size_bits);
  321. }
  322. static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
  323. {
  324. return wc->start_sector + wc->metadata_sectors +
  325. ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
  326. }
  327. static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
  328. {
  329. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  330. return e->original_sector;
  331. #else
  332. return le64_to_cpu(memory_entry(wc, e)->original_sector);
  333. #endif
  334. }
  335. static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  336. {
  337. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  338. return e->seq_count;
  339. #else
  340. return le64_to_cpu(memory_entry(wc, e)->seq_count);
  341. #endif
  342. }
  343. static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  344. {
  345. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  346. e->seq_count = -1;
  347. #endif
  348. pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
  349. }
  350. static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
  351. uint64_t original_sector, uint64_t seq_count)
  352. {
  353. struct wc_memory_entry me;
  354. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  355. e->original_sector = original_sector;
  356. e->seq_count = seq_count;
  357. #endif
  358. me.original_sector = cpu_to_le64(original_sector);
  359. me.seq_count = cpu_to_le64(seq_count);
  360. pmem_assign(*memory_entry(wc, e), me);
  361. }
  362. #define writecache_error(wc, err, msg, arg...) \
  363. do { \
  364. if (!cmpxchg(&(wc)->error, 0, err)) \
  365. DMERR(msg, ##arg); \
  366. wake_up(&(wc)->freelist_wait); \
  367. } while (0)
  368. #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
  369. static void writecache_flush_all_metadata(struct dm_writecache *wc)
  370. {
  371. if (!WC_MODE_PMEM(wc))
  372. memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
  373. }
  374. static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
  375. {
  376. if (!WC_MODE_PMEM(wc))
  377. __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
  378. wc->dirty_bitmap);
  379. }
  380. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
  381. struct io_notify {
  382. struct dm_writecache *wc;
  383. struct completion c;
  384. atomic_t count;
  385. };
  386. static void writecache_notify_io(unsigned long error, void *context)
  387. {
  388. struct io_notify *endio = context;
  389. if (unlikely(error != 0))
  390. writecache_error(endio->wc, -EIO, "error writing metadata");
  391. BUG_ON(atomic_read(&endio->count) <= 0);
  392. if (atomic_dec_and_test(&endio->count))
  393. complete(&endio->c);
  394. }
  395. static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
  396. {
  397. wait_event(wc->bio_in_progress_wait[direction],
  398. !atomic_read(&wc->bio_in_progress[direction]));
  399. }
  400. static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
  401. {
  402. struct dm_io_region region;
  403. struct dm_io_request req;
  404. struct io_notify endio = {
  405. wc,
  406. COMPLETION_INITIALIZER_ONSTACK(endio.c),
  407. ATOMIC_INIT(1),
  408. };
  409. unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
  410. unsigned i = 0;
  411. while (1) {
  412. unsigned j;
  413. i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
  414. if (unlikely(i == bitmap_bits))
  415. break;
  416. j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
  417. region.bdev = wc->ssd_dev->bdev;
  418. region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  419. region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  420. if (unlikely(region.sector >= wc->metadata_sectors))
  421. break;
  422. if (unlikely(region.sector + region.count > wc->metadata_sectors))
  423. region.count = wc->metadata_sectors - region.sector;
  424. region.sector += wc->start_sector;
  425. atomic_inc(&endio.count);
  426. req.bi_op = REQ_OP_WRITE;
  427. req.bi_op_flags = REQ_SYNC;
  428. req.mem.type = DM_IO_VMA;
  429. req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
  430. req.client = wc->dm_io;
  431. req.notify.fn = writecache_notify_io;
  432. req.notify.context = &endio;
  433. /* writing via async dm-io (implied by notify.fn above) won't return an error */
  434. (void) dm_io(&req, 1, &region, NULL);
  435. i = j;
  436. }
  437. writecache_notify_io(0, &endio);
  438. wait_for_completion_io(&endio.c);
  439. if (wait_for_ios)
  440. writecache_wait_for_ios(wc, WRITE);
  441. writecache_disk_flush(wc, wc->ssd_dev);
  442. memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
  443. }
  444. static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
  445. {
  446. if (WC_MODE_PMEM(wc))
  447. wmb();
  448. else
  449. ssd_commit_flushed(wc, wait_for_ios);
  450. }
  451. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
  452. {
  453. int r;
  454. struct dm_io_region region;
  455. struct dm_io_request req;
  456. region.bdev = dev->bdev;
  457. region.sector = 0;
  458. region.count = 0;
  459. req.bi_op = REQ_OP_WRITE;
  460. req.bi_op_flags = REQ_PREFLUSH;
  461. req.mem.type = DM_IO_KMEM;
  462. req.mem.ptr.addr = NULL;
  463. req.client = wc->dm_io;
  464. req.notify.fn = NULL;
  465. r = dm_io(&req, 1, &region, NULL);
  466. if (unlikely(r))
  467. writecache_error(wc, r, "error flushing metadata: %d", r);
  468. }
  469. #define WFE_RETURN_FOLLOWING 1
  470. #define WFE_LOWEST_SEQ 2
  471. static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
  472. uint64_t block, int flags)
  473. {
  474. struct wc_entry *e;
  475. struct rb_node *node = wc->tree.rb_node;
  476. if (unlikely(!node))
  477. return NULL;
  478. while (1) {
  479. e = container_of(node, struct wc_entry, rb_node);
  480. if (read_original_sector(wc, e) == block)
  481. break;
  482. node = (read_original_sector(wc, e) >= block ?
  483. e->rb_node.rb_left : e->rb_node.rb_right);
  484. if (unlikely(!node)) {
  485. if (!(flags & WFE_RETURN_FOLLOWING))
  486. return NULL;
  487. if (read_original_sector(wc, e) >= block) {
  488. return e;
  489. } else {
  490. node = rb_next(&e->rb_node);
  491. if (unlikely(!node))
  492. return NULL;
  493. e = container_of(node, struct wc_entry, rb_node);
  494. return e;
  495. }
  496. }
  497. }
  498. while (1) {
  499. struct wc_entry *e2;
  500. if (flags & WFE_LOWEST_SEQ)
  501. node = rb_prev(&e->rb_node);
  502. else
  503. node = rb_next(&e->rb_node);
  504. if (unlikely(!node))
  505. return e;
  506. e2 = container_of(node, struct wc_entry, rb_node);
  507. if (read_original_sector(wc, e2) != block)
  508. return e;
  509. e = e2;
  510. }
  511. }
  512. static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
  513. {
  514. struct wc_entry *e;
  515. struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
  516. while (*node) {
  517. e = container_of(*node, struct wc_entry, rb_node);
  518. parent = &e->rb_node;
  519. if (read_original_sector(wc, e) > read_original_sector(wc, ins))
  520. node = &parent->rb_left;
  521. else
  522. node = &parent->rb_right;
  523. }
  524. rb_link_node(&ins->rb_node, parent, node);
  525. rb_insert_color(&ins->rb_node, &wc->tree);
  526. list_add(&ins->lru, &wc->lru);
  527. }
  528. static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
  529. {
  530. list_del(&e->lru);
  531. rb_erase(&e->rb_node, &wc->tree);
  532. }
  533. static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
  534. {
  535. if (WC_MODE_SORT_FREELIST(wc)) {
  536. struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
  537. if (unlikely(!*node))
  538. wc->current_free = e;
  539. while (*node) {
  540. parent = *node;
  541. if (&e->rb_node < *node)
  542. node = &parent->rb_left;
  543. else
  544. node = &parent->rb_right;
  545. }
  546. rb_link_node(&e->rb_node, parent, node);
  547. rb_insert_color(&e->rb_node, &wc->freetree);
  548. } else {
  549. list_add_tail(&e->lru, &wc->freelist);
  550. }
  551. wc->freelist_size++;
  552. }
  553. static inline void writecache_verify_watermark(struct dm_writecache *wc)
  554. {
  555. if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
  556. queue_work(wc->writeback_wq, &wc->writeback_work);
  557. }
  558. static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
  559. {
  560. struct wc_entry *e;
  561. if (WC_MODE_SORT_FREELIST(wc)) {
  562. struct rb_node *next;
  563. if (unlikely(!wc->current_free))
  564. return NULL;
  565. e = wc->current_free;
  566. next = rb_next(&e->rb_node);
  567. rb_erase(&e->rb_node, &wc->freetree);
  568. if (unlikely(!next))
  569. next = rb_first(&wc->freetree);
  570. wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
  571. } else {
  572. if (unlikely(list_empty(&wc->freelist)))
  573. return NULL;
  574. e = container_of(wc->freelist.next, struct wc_entry, lru);
  575. list_del(&e->lru);
  576. }
  577. wc->freelist_size--;
  578. writecache_verify_watermark(wc);
  579. return e;
  580. }
  581. static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
  582. {
  583. writecache_unlink(wc, e);
  584. writecache_add_to_freelist(wc, e);
  585. clear_seq_count(wc, e);
  586. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  587. if (unlikely(waitqueue_active(&wc->freelist_wait)))
  588. wake_up(&wc->freelist_wait);
  589. }
  590. static void writecache_wait_on_freelist(struct dm_writecache *wc)
  591. {
  592. DEFINE_WAIT(wait);
  593. prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
  594. wc_unlock(wc);
  595. io_schedule();
  596. finish_wait(&wc->freelist_wait, &wait);
  597. wc_lock(wc);
  598. }
  599. static void writecache_poison_lists(struct dm_writecache *wc)
  600. {
  601. /*
  602. * Catch incorrect access to these values while the device is suspended.
  603. */
  604. memset(&wc->tree, -1, sizeof wc->tree);
  605. wc->lru.next = LIST_POISON1;
  606. wc->lru.prev = LIST_POISON2;
  607. wc->freelist.next = LIST_POISON1;
  608. wc->freelist.prev = LIST_POISON2;
  609. }
  610. static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
  611. {
  612. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  613. if (WC_MODE_PMEM(wc))
  614. writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
  615. }
  616. static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
  617. {
  618. return read_seq_count(wc, e) < wc->seq_count;
  619. }
  620. static void writecache_flush(struct dm_writecache *wc)
  621. {
  622. struct wc_entry *e, *e2;
  623. bool need_flush_after_free;
  624. wc->uncommitted_blocks = 0;
  625. del_timer(&wc->autocommit_timer);
  626. if (list_empty(&wc->lru))
  627. return;
  628. e = container_of(wc->lru.next, struct wc_entry, lru);
  629. if (writecache_entry_is_committed(wc, e)) {
  630. if (wc->overwrote_committed) {
  631. writecache_wait_for_ios(wc, WRITE);
  632. writecache_disk_flush(wc, wc->ssd_dev);
  633. wc->overwrote_committed = false;
  634. }
  635. return;
  636. }
  637. while (1) {
  638. writecache_flush_entry(wc, e);
  639. if (unlikely(e->lru.next == &wc->lru))
  640. break;
  641. e2 = container_of(e->lru.next, struct wc_entry, lru);
  642. if (writecache_entry_is_committed(wc, e2))
  643. break;
  644. e = e2;
  645. cond_resched();
  646. }
  647. writecache_commit_flushed(wc, true);
  648. wc->seq_count++;
  649. pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
  650. writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
  651. writecache_commit_flushed(wc, false);
  652. wc->overwrote_committed = false;
  653. need_flush_after_free = false;
  654. while (1) {
  655. /* Free another committed entry with lower seq-count */
  656. struct rb_node *rb_node = rb_prev(&e->rb_node);
  657. if (rb_node) {
  658. e2 = container_of(rb_node, struct wc_entry, rb_node);
  659. if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
  660. likely(!e2->write_in_progress)) {
  661. writecache_free_entry(wc, e2);
  662. need_flush_after_free = true;
  663. }
  664. }
  665. if (unlikely(e->lru.prev == &wc->lru))
  666. break;
  667. e = container_of(e->lru.prev, struct wc_entry, lru);
  668. cond_resched();
  669. }
  670. if (need_flush_after_free)
  671. writecache_commit_flushed(wc, false);
  672. }
  673. static void writecache_flush_work(struct work_struct *work)
  674. {
  675. struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
  676. wc_lock(wc);
  677. writecache_flush(wc);
  678. wc_unlock(wc);
  679. }
  680. static void writecache_autocommit_timer(struct timer_list *t)
  681. {
  682. struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
  683. if (!writecache_has_error(wc))
  684. queue_work(wc->writeback_wq, &wc->flush_work);
  685. }
  686. static void writecache_schedule_autocommit(struct dm_writecache *wc)
  687. {
  688. if (!timer_pending(&wc->autocommit_timer))
  689. mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
  690. }
  691. static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
  692. {
  693. struct wc_entry *e;
  694. bool discarded_something = false;
  695. e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
  696. if (unlikely(!e))
  697. return;
  698. while (read_original_sector(wc, e) < end) {
  699. struct rb_node *node = rb_next(&e->rb_node);
  700. if (likely(!e->write_in_progress)) {
  701. if (!discarded_something) {
  702. writecache_wait_for_ios(wc, READ);
  703. writecache_wait_for_ios(wc, WRITE);
  704. discarded_something = true;
  705. }
  706. if (!writecache_entry_is_committed(wc, e))
  707. wc->uncommitted_blocks--;
  708. writecache_free_entry(wc, e);
  709. }
  710. if (unlikely(!node))
  711. break;
  712. e = container_of(node, struct wc_entry, rb_node);
  713. }
  714. if (discarded_something)
  715. writecache_commit_flushed(wc, false);
  716. }
  717. static bool writecache_wait_for_writeback(struct dm_writecache *wc)
  718. {
  719. if (wc->writeback_size) {
  720. writecache_wait_on_freelist(wc);
  721. return true;
  722. }
  723. return false;
  724. }
  725. static void writecache_suspend(struct dm_target *ti)
  726. {
  727. struct dm_writecache *wc = ti->private;
  728. bool flush_on_suspend;
  729. del_timer_sync(&wc->autocommit_timer);
  730. wc_lock(wc);
  731. writecache_flush(wc);
  732. flush_on_suspend = wc->flush_on_suspend;
  733. if (flush_on_suspend) {
  734. wc->flush_on_suspend = false;
  735. wc->writeback_all++;
  736. queue_work(wc->writeback_wq, &wc->writeback_work);
  737. }
  738. wc_unlock(wc);
  739. drain_workqueue(wc->writeback_wq);
  740. wc_lock(wc);
  741. if (flush_on_suspend)
  742. wc->writeback_all--;
  743. while (writecache_wait_for_writeback(wc));
  744. if (WC_MODE_PMEM(wc))
  745. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  746. writecache_poison_lists(wc);
  747. wc_unlock(wc);
  748. }
  749. static int writecache_alloc_entries(struct dm_writecache *wc)
  750. {
  751. size_t b;
  752. if (wc->entries)
  753. return 0;
  754. wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
  755. if (!wc->entries)
  756. return -ENOMEM;
  757. for (b = 0; b < wc->n_blocks; b++) {
  758. struct wc_entry *e = &wc->entries[b];
  759. e->index = b;
  760. e->write_in_progress = false;
  761. cond_resched();
  762. }
  763. return 0;
  764. }
  765. static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
  766. {
  767. struct dm_io_region region;
  768. struct dm_io_request req;
  769. region.bdev = wc->ssd_dev->bdev;
  770. region.sector = wc->start_sector;
  771. region.count = n_sectors;
  772. req.bi_op = REQ_OP_READ;
  773. req.bi_op_flags = REQ_SYNC;
  774. req.mem.type = DM_IO_VMA;
  775. req.mem.ptr.vma = (char *)wc->memory_map;
  776. req.client = wc->dm_io;
  777. req.notify.fn = NULL;
  778. return dm_io(&req, 1, &region, NULL);
  779. }
  780. static void writecache_resume(struct dm_target *ti)
  781. {
  782. struct dm_writecache *wc = ti->private;
  783. size_t b;
  784. bool need_flush = false;
  785. __le64 sb_seq_count;
  786. int r;
  787. wc_lock(wc);
  788. wc->data_device_sectors = i_size_read(wc->dev->bdev->bd_inode) >> SECTOR_SHIFT;
  789. if (WC_MODE_PMEM(wc)) {
  790. persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
  791. } else {
  792. r = writecache_read_metadata(wc, wc->metadata_sectors);
  793. if (r) {
  794. size_t sb_entries_offset;
  795. writecache_error(wc, r, "unable to read metadata: %d", r);
  796. sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
  797. memset((char *)wc->memory_map + sb_entries_offset, -1,
  798. (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
  799. }
  800. }
  801. wc->tree = RB_ROOT;
  802. INIT_LIST_HEAD(&wc->lru);
  803. if (WC_MODE_SORT_FREELIST(wc)) {
  804. wc->freetree = RB_ROOT;
  805. wc->current_free = NULL;
  806. } else {
  807. INIT_LIST_HEAD(&wc->freelist);
  808. }
  809. wc->freelist_size = 0;
  810. r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
  811. if (r) {
  812. writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
  813. sb_seq_count = cpu_to_le64(0);
  814. }
  815. wc->seq_count = le64_to_cpu(sb_seq_count);
  816. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  817. for (b = 0; b < wc->n_blocks; b++) {
  818. struct wc_entry *e = &wc->entries[b];
  819. struct wc_memory_entry wme;
  820. if (writecache_has_error(wc)) {
  821. e->original_sector = -1;
  822. e->seq_count = -1;
  823. continue;
  824. }
  825. r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  826. if (r) {
  827. writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
  828. (unsigned long)b, r);
  829. e->original_sector = -1;
  830. e->seq_count = -1;
  831. } else {
  832. e->original_sector = le64_to_cpu(wme.original_sector);
  833. e->seq_count = le64_to_cpu(wme.seq_count);
  834. }
  835. cond_resched();
  836. }
  837. #endif
  838. for (b = 0; b < wc->n_blocks; b++) {
  839. struct wc_entry *e = &wc->entries[b];
  840. if (!writecache_entry_is_committed(wc, e)) {
  841. if (read_seq_count(wc, e) != -1) {
  842. erase_this:
  843. clear_seq_count(wc, e);
  844. need_flush = true;
  845. }
  846. writecache_add_to_freelist(wc, e);
  847. } else {
  848. struct wc_entry *old;
  849. old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
  850. if (!old) {
  851. writecache_insert_entry(wc, e);
  852. } else {
  853. if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
  854. writecache_error(wc, -EINVAL,
  855. "two identical entries, position %llu, sector %llu, sequence %llu",
  856. (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
  857. (unsigned long long)read_seq_count(wc, e));
  858. }
  859. if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
  860. goto erase_this;
  861. } else {
  862. writecache_free_entry(wc, old);
  863. writecache_insert_entry(wc, e);
  864. need_flush = true;
  865. }
  866. }
  867. }
  868. cond_resched();
  869. }
  870. if (need_flush) {
  871. writecache_flush_all_metadata(wc);
  872. writecache_commit_flushed(wc, false);
  873. }
  874. writecache_verify_watermark(wc);
  875. wc_unlock(wc);
  876. }
  877. static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  878. {
  879. if (argc != 1)
  880. return -EINVAL;
  881. wc_lock(wc);
  882. if (dm_suspended(wc->ti)) {
  883. wc_unlock(wc);
  884. return -EBUSY;
  885. }
  886. if (writecache_has_error(wc)) {
  887. wc_unlock(wc);
  888. return -EIO;
  889. }
  890. writecache_flush(wc);
  891. wc->writeback_all++;
  892. queue_work(wc->writeback_wq, &wc->writeback_work);
  893. wc_unlock(wc);
  894. flush_workqueue(wc->writeback_wq);
  895. wc_lock(wc);
  896. wc->writeback_all--;
  897. if (writecache_has_error(wc)) {
  898. wc_unlock(wc);
  899. return -EIO;
  900. }
  901. wc_unlock(wc);
  902. return 0;
  903. }
  904. static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  905. {
  906. if (argc != 1)
  907. return -EINVAL;
  908. wc_lock(wc);
  909. wc->flush_on_suspend = true;
  910. wc_unlock(wc);
  911. return 0;
  912. }
  913. static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
  914. char *result, unsigned maxlen)
  915. {
  916. int r = -EINVAL;
  917. struct dm_writecache *wc = ti->private;
  918. if (!strcasecmp(argv[0], "flush"))
  919. r = process_flush_mesg(argc, argv, wc);
  920. else if (!strcasecmp(argv[0], "flush_on_suspend"))
  921. r = process_flush_on_suspend_mesg(argc, argv, wc);
  922. else
  923. DMERR("unrecognised message received: %s", argv[0]);
  924. return r;
  925. }
  926. static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
  927. {
  928. void *buf;
  929. unsigned long flags;
  930. unsigned size;
  931. int rw = bio_data_dir(bio);
  932. unsigned remaining_size = wc->block_size;
  933. do {
  934. struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
  935. buf = bvec_kmap_irq(&bv, &flags);
  936. size = bv.bv_len;
  937. if (unlikely(size > remaining_size))
  938. size = remaining_size;
  939. if (rw == READ) {
  940. int r;
  941. r = memcpy_mcsafe(buf, data, size);
  942. flush_dcache_page(bio_page(bio));
  943. if (unlikely(r)) {
  944. writecache_error(wc, r, "hardware memory error when reading data: %d", r);
  945. bio->bi_status = BLK_STS_IOERR;
  946. }
  947. } else {
  948. flush_dcache_page(bio_page(bio));
  949. memcpy_flushcache(data, buf, size);
  950. }
  951. bvec_kunmap_irq(buf, &flags);
  952. data = (char *)data + size;
  953. remaining_size -= size;
  954. bio_advance(bio, size);
  955. } while (unlikely(remaining_size));
  956. }
  957. static int writecache_flush_thread(void *data)
  958. {
  959. struct dm_writecache *wc = data;
  960. while (1) {
  961. struct bio *bio;
  962. wc_lock(wc);
  963. bio = bio_list_pop(&wc->flush_list);
  964. if (!bio) {
  965. set_current_state(TASK_INTERRUPTIBLE);
  966. wc_unlock(wc);
  967. if (unlikely(kthread_should_stop())) {
  968. set_current_state(TASK_RUNNING);
  969. break;
  970. }
  971. schedule();
  972. continue;
  973. }
  974. if (bio_op(bio) == REQ_OP_DISCARD) {
  975. writecache_discard(wc, bio->bi_iter.bi_sector,
  976. bio_end_sector(bio));
  977. wc_unlock(wc);
  978. bio_set_dev(bio, wc->dev->bdev);
  979. generic_make_request(bio);
  980. } else {
  981. writecache_flush(wc);
  982. wc_unlock(wc);
  983. if (writecache_has_error(wc))
  984. bio->bi_status = BLK_STS_IOERR;
  985. bio_endio(bio);
  986. }
  987. }
  988. return 0;
  989. }
  990. static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
  991. {
  992. if (bio_list_empty(&wc->flush_list))
  993. wake_up_process(wc->flush_thread);
  994. bio_list_add(&wc->flush_list, bio);
  995. }
  996. static int writecache_map(struct dm_target *ti, struct bio *bio)
  997. {
  998. struct wc_entry *e;
  999. struct dm_writecache *wc = ti->private;
  1000. bio->bi_private = NULL;
  1001. wc_lock(wc);
  1002. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1003. if (writecache_has_error(wc))
  1004. goto unlock_error;
  1005. if (WC_MODE_PMEM(wc)) {
  1006. writecache_flush(wc);
  1007. if (writecache_has_error(wc))
  1008. goto unlock_error;
  1009. goto unlock_submit;
  1010. } else {
  1011. writecache_offload_bio(wc, bio);
  1012. goto unlock_return;
  1013. }
  1014. }
  1015. bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  1016. if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
  1017. (wc->block_size / 512 - 1)) != 0)) {
  1018. DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
  1019. (unsigned long long)bio->bi_iter.bi_sector,
  1020. bio->bi_iter.bi_size, wc->block_size);
  1021. goto unlock_error;
  1022. }
  1023. if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
  1024. if (writecache_has_error(wc))
  1025. goto unlock_error;
  1026. if (WC_MODE_PMEM(wc)) {
  1027. writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
  1028. goto unlock_remap_origin;
  1029. } else {
  1030. writecache_offload_bio(wc, bio);
  1031. goto unlock_return;
  1032. }
  1033. }
  1034. if (bio_data_dir(bio) == READ) {
  1035. read_next_block:
  1036. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
  1037. if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
  1038. if (WC_MODE_PMEM(wc)) {
  1039. bio_copy_block(wc, bio, memory_data(wc, e));
  1040. if (bio->bi_iter.bi_size)
  1041. goto read_next_block;
  1042. goto unlock_submit;
  1043. } else {
  1044. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1045. bio_set_dev(bio, wc->ssd_dev->bdev);
  1046. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1047. if (!writecache_entry_is_committed(wc, e))
  1048. writecache_wait_for_ios(wc, WRITE);
  1049. goto unlock_remap;
  1050. }
  1051. } else {
  1052. if (e) {
  1053. sector_t next_boundary =
  1054. read_original_sector(wc, e) - bio->bi_iter.bi_sector;
  1055. if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
  1056. dm_accept_partial_bio(bio, next_boundary);
  1057. }
  1058. }
  1059. goto unlock_remap_origin;
  1060. }
  1061. } else {
  1062. do {
  1063. if (writecache_has_error(wc))
  1064. goto unlock_error;
  1065. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
  1066. if (e) {
  1067. if (!writecache_entry_is_committed(wc, e))
  1068. goto bio_copy;
  1069. if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
  1070. wc->overwrote_committed = true;
  1071. goto bio_copy;
  1072. }
  1073. }
  1074. e = writecache_pop_from_freelist(wc);
  1075. if (unlikely(!e)) {
  1076. writecache_wait_on_freelist(wc);
  1077. continue;
  1078. }
  1079. write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
  1080. writecache_insert_entry(wc, e);
  1081. wc->uncommitted_blocks++;
  1082. bio_copy:
  1083. if (WC_MODE_PMEM(wc)) {
  1084. bio_copy_block(wc, bio, memory_data(wc, e));
  1085. } else {
  1086. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1087. bio_set_dev(bio, wc->ssd_dev->bdev);
  1088. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1089. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
  1090. wc->uncommitted_blocks = 0;
  1091. queue_work(wc->writeback_wq, &wc->flush_work);
  1092. } else {
  1093. writecache_schedule_autocommit(wc);
  1094. }
  1095. goto unlock_remap;
  1096. }
  1097. } while (bio->bi_iter.bi_size);
  1098. if (unlikely(bio->bi_opf & REQ_FUA ||
  1099. wc->uncommitted_blocks >= wc->autocommit_blocks))
  1100. writecache_flush(wc);
  1101. else
  1102. writecache_schedule_autocommit(wc);
  1103. goto unlock_submit;
  1104. }
  1105. unlock_remap_origin:
  1106. bio_set_dev(bio, wc->dev->bdev);
  1107. wc_unlock(wc);
  1108. return DM_MAPIO_REMAPPED;
  1109. unlock_remap:
  1110. /* make sure that writecache_end_io decrements bio_in_progress: */
  1111. bio->bi_private = (void *)1;
  1112. atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
  1113. wc_unlock(wc);
  1114. return DM_MAPIO_REMAPPED;
  1115. unlock_submit:
  1116. wc_unlock(wc);
  1117. bio_endio(bio);
  1118. return DM_MAPIO_SUBMITTED;
  1119. unlock_return:
  1120. wc_unlock(wc);
  1121. return DM_MAPIO_SUBMITTED;
  1122. unlock_error:
  1123. wc_unlock(wc);
  1124. bio_io_error(bio);
  1125. return DM_MAPIO_SUBMITTED;
  1126. }
  1127. static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
  1128. {
  1129. struct dm_writecache *wc = ti->private;
  1130. if (bio->bi_private != NULL) {
  1131. int dir = bio_data_dir(bio);
  1132. if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
  1133. if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
  1134. wake_up(&wc->bio_in_progress_wait[dir]);
  1135. }
  1136. return 0;
  1137. }
  1138. static int writecache_iterate_devices(struct dm_target *ti,
  1139. iterate_devices_callout_fn fn, void *data)
  1140. {
  1141. struct dm_writecache *wc = ti->private;
  1142. return fn(ti, wc->dev, 0, ti->len, data);
  1143. }
  1144. static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
  1145. {
  1146. struct dm_writecache *wc = ti->private;
  1147. if (limits->logical_block_size < wc->block_size)
  1148. limits->logical_block_size = wc->block_size;
  1149. if (limits->physical_block_size < wc->block_size)
  1150. limits->physical_block_size = wc->block_size;
  1151. if (limits->io_min < wc->block_size)
  1152. limits->io_min = wc->block_size;
  1153. }
  1154. static void writecache_writeback_endio(struct bio *bio)
  1155. {
  1156. struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
  1157. struct dm_writecache *wc = wb->wc;
  1158. unsigned long flags;
  1159. raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
  1160. if (unlikely(list_empty(&wc->endio_list)))
  1161. wake_up_process(wc->endio_thread);
  1162. list_add_tail(&wb->endio_entry, &wc->endio_list);
  1163. raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
  1164. }
  1165. static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
  1166. {
  1167. struct copy_struct *c = ptr;
  1168. struct dm_writecache *wc = c->wc;
  1169. c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
  1170. raw_spin_lock_irq(&wc->endio_list_lock);
  1171. if (unlikely(list_empty(&wc->endio_list)))
  1172. wake_up_process(wc->endio_thread);
  1173. list_add_tail(&c->endio_entry, &wc->endio_list);
  1174. raw_spin_unlock_irq(&wc->endio_list_lock);
  1175. }
  1176. static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
  1177. {
  1178. unsigned i;
  1179. struct writeback_struct *wb;
  1180. struct wc_entry *e;
  1181. unsigned long n_walked = 0;
  1182. do {
  1183. wb = list_entry(list->next, struct writeback_struct, endio_entry);
  1184. list_del(&wb->endio_entry);
  1185. if (unlikely(wb->bio.bi_status != BLK_STS_OK))
  1186. writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
  1187. "write error %d", wb->bio.bi_status);
  1188. i = 0;
  1189. do {
  1190. e = wb->wc_list[i];
  1191. BUG_ON(!e->write_in_progress);
  1192. e->write_in_progress = false;
  1193. INIT_LIST_HEAD(&e->lru);
  1194. if (!writecache_has_error(wc))
  1195. writecache_free_entry(wc, e);
  1196. BUG_ON(!wc->writeback_size);
  1197. wc->writeback_size--;
  1198. n_walked++;
  1199. if (unlikely(n_walked >= ENDIO_LATENCY)) {
  1200. writecache_commit_flushed(wc, false);
  1201. wc_unlock(wc);
  1202. wc_lock(wc);
  1203. n_walked = 0;
  1204. }
  1205. } while (++i < wb->wc_list_n);
  1206. if (wb->wc_list != wb->wc_list_inline)
  1207. kfree(wb->wc_list);
  1208. bio_put(&wb->bio);
  1209. } while (!list_empty(list));
  1210. }
  1211. static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
  1212. {
  1213. struct copy_struct *c;
  1214. struct wc_entry *e;
  1215. do {
  1216. c = list_entry(list->next, struct copy_struct, endio_entry);
  1217. list_del(&c->endio_entry);
  1218. if (unlikely(c->error))
  1219. writecache_error(wc, c->error, "copy error");
  1220. e = c->e;
  1221. do {
  1222. BUG_ON(!e->write_in_progress);
  1223. e->write_in_progress = false;
  1224. INIT_LIST_HEAD(&e->lru);
  1225. if (!writecache_has_error(wc))
  1226. writecache_free_entry(wc, e);
  1227. BUG_ON(!wc->writeback_size);
  1228. wc->writeback_size--;
  1229. e++;
  1230. } while (--c->n_entries);
  1231. mempool_free(c, &wc->copy_pool);
  1232. } while (!list_empty(list));
  1233. }
  1234. static int writecache_endio_thread(void *data)
  1235. {
  1236. struct dm_writecache *wc = data;
  1237. while (1) {
  1238. struct list_head list;
  1239. raw_spin_lock_irq(&wc->endio_list_lock);
  1240. if (!list_empty(&wc->endio_list))
  1241. goto pop_from_list;
  1242. set_current_state(TASK_INTERRUPTIBLE);
  1243. raw_spin_unlock_irq(&wc->endio_list_lock);
  1244. if (unlikely(kthread_should_stop())) {
  1245. set_current_state(TASK_RUNNING);
  1246. break;
  1247. }
  1248. schedule();
  1249. continue;
  1250. pop_from_list:
  1251. list = wc->endio_list;
  1252. list.next->prev = list.prev->next = &list;
  1253. INIT_LIST_HEAD(&wc->endio_list);
  1254. raw_spin_unlock_irq(&wc->endio_list_lock);
  1255. if (!WC_MODE_FUA(wc))
  1256. writecache_disk_flush(wc, wc->dev);
  1257. wc_lock(wc);
  1258. if (WC_MODE_PMEM(wc)) {
  1259. __writecache_endio_pmem(wc, &list);
  1260. } else {
  1261. __writecache_endio_ssd(wc, &list);
  1262. writecache_wait_for_ios(wc, READ);
  1263. }
  1264. writecache_commit_flushed(wc, false);
  1265. wc_unlock(wc);
  1266. }
  1267. return 0;
  1268. }
  1269. static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
  1270. {
  1271. struct dm_writecache *wc = wb->wc;
  1272. unsigned block_size = wc->block_size;
  1273. void *address = memory_data(wc, e);
  1274. persistent_memory_flush_cache(address, block_size);
  1275. if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
  1276. return true;
  1277. return bio_add_page(&wb->bio, persistent_memory_page(address),
  1278. block_size, persistent_memory_page_offset(address)) != 0;
  1279. }
  1280. struct writeback_list {
  1281. struct list_head list;
  1282. size_t size;
  1283. };
  1284. static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
  1285. {
  1286. if (unlikely(wc->max_writeback_jobs)) {
  1287. if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
  1288. wc_lock(wc);
  1289. while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
  1290. writecache_wait_on_freelist(wc);
  1291. wc_unlock(wc);
  1292. }
  1293. }
  1294. cond_resched();
  1295. }
  1296. static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
  1297. {
  1298. struct wc_entry *e, *f;
  1299. struct bio *bio;
  1300. struct writeback_struct *wb;
  1301. unsigned max_pages;
  1302. while (wbl->size) {
  1303. wbl->size--;
  1304. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1305. list_del(&e->lru);
  1306. max_pages = e->wc_list_contiguous;
  1307. bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
  1308. wb = container_of(bio, struct writeback_struct, bio);
  1309. wb->wc = wc;
  1310. bio->bi_end_io = writecache_writeback_endio;
  1311. bio_set_dev(bio, wc->dev->bdev);
  1312. bio->bi_iter.bi_sector = read_original_sector(wc, e);
  1313. if (max_pages <= WB_LIST_INLINE ||
  1314. unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
  1315. GFP_NOIO | __GFP_NORETRY |
  1316. __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
  1317. wb->wc_list = wb->wc_list_inline;
  1318. max_pages = WB_LIST_INLINE;
  1319. }
  1320. BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
  1321. wb->wc_list[0] = e;
  1322. wb->wc_list_n = 1;
  1323. while (wbl->size && wb->wc_list_n < max_pages) {
  1324. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1325. if (read_original_sector(wc, f) !=
  1326. read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
  1327. break;
  1328. if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
  1329. break;
  1330. wbl->size--;
  1331. list_del(&f->lru);
  1332. wb->wc_list[wb->wc_list_n++] = f;
  1333. e = f;
  1334. }
  1335. bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
  1336. if (writecache_has_error(wc)) {
  1337. bio->bi_status = BLK_STS_IOERR;
  1338. bio_endio(bio);
  1339. } else if (unlikely(!bio_sectors(bio))) {
  1340. bio->bi_status = BLK_STS_OK;
  1341. bio_endio(bio);
  1342. } else {
  1343. submit_bio(bio);
  1344. }
  1345. __writeback_throttle(wc, wbl);
  1346. }
  1347. }
  1348. static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
  1349. {
  1350. struct wc_entry *e, *f;
  1351. struct dm_io_region from, to;
  1352. struct copy_struct *c;
  1353. while (wbl->size) {
  1354. unsigned n_sectors;
  1355. wbl->size--;
  1356. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1357. list_del(&e->lru);
  1358. n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
  1359. from.bdev = wc->ssd_dev->bdev;
  1360. from.sector = cache_sector(wc, e);
  1361. from.count = n_sectors;
  1362. to.bdev = wc->dev->bdev;
  1363. to.sector = read_original_sector(wc, e);
  1364. to.count = n_sectors;
  1365. c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
  1366. c->wc = wc;
  1367. c->e = e;
  1368. c->n_entries = e->wc_list_contiguous;
  1369. while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
  1370. wbl->size--;
  1371. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1372. BUG_ON(f != e + 1);
  1373. list_del(&f->lru);
  1374. e = f;
  1375. }
  1376. if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
  1377. if (to.sector >= wc->data_device_sectors) {
  1378. writecache_copy_endio(0, 0, c);
  1379. continue;
  1380. }
  1381. from.count = to.count = wc->data_device_sectors - to.sector;
  1382. }
  1383. dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
  1384. __writeback_throttle(wc, wbl);
  1385. }
  1386. }
  1387. static void writecache_writeback(struct work_struct *work)
  1388. {
  1389. struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
  1390. struct blk_plug plug;
  1391. struct wc_entry *f, *g, *e = NULL;
  1392. struct rb_node *node, *next_node;
  1393. struct list_head skipped;
  1394. struct writeback_list wbl;
  1395. unsigned long n_walked;
  1396. wc_lock(wc);
  1397. restart:
  1398. if (writecache_has_error(wc)) {
  1399. wc_unlock(wc);
  1400. return;
  1401. }
  1402. if (unlikely(wc->writeback_all)) {
  1403. if (writecache_wait_for_writeback(wc))
  1404. goto restart;
  1405. }
  1406. if (wc->overwrote_committed) {
  1407. writecache_wait_for_ios(wc, WRITE);
  1408. }
  1409. n_walked = 0;
  1410. INIT_LIST_HEAD(&skipped);
  1411. INIT_LIST_HEAD(&wbl.list);
  1412. wbl.size = 0;
  1413. while (!list_empty(&wc->lru) &&
  1414. (wc->writeback_all ||
  1415. wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
  1416. n_walked++;
  1417. if (unlikely(n_walked > WRITEBACK_LATENCY) &&
  1418. likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
  1419. queue_work(wc->writeback_wq, &wc->writeback_work);
  1420. break;
  1421. }
  1422. if (unlikely(wc->writeback_all)) {
  1423. if (unlikely(!e)) {
  1424. writecache_flush(wc);
  1425. e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
  1426. } else
  1427. e = g;
  1428. } else
  1429. e = container_of(wc->lru.prev, struct wc_entry, lru);
  1430. BUG_ON(e->write_in_progress);
  1431. if (unlikely(!writecache_entry_is_committed(wc, e))) {
  1432. writecache_flush(wc);
  1433. }
  1434. node = rb_prev(&e->rb_node);
  1435. if (node) {
  1436. f = container_of(node, struct wc_entry, rb_node);
  1437. if (unlikely(read_original_sector(wc, f) ==
  1438. read_original_sector(wc, e))) {
  1439. BUG_ON(!f->write_in_progress);
  1440. list_del(&e->lru);
  1441. list_add(&e->lru, &skipped);
  1442. cond_resched();
  1443. continue;
  1444. }
  1445. }
  1446. wc->writeback_size++;
  1447. list_del(&e->lru);
  1448. list_add(&e->lru, &wbl.list);
  1449. wbl.size++;
  1450. e->write_in_progress = true;
  1451. e->wc_list_contiguous = 1;
  1452. f = e;
  1453. while (1) {
  1454. next_node = rb_next(&f->rb_node);
  1455. if (unlikely(!next_node))
  1456. break;
  1457. g = container_of(next_node, struct wc_entry, rb_node);
  1458. if (unlikely(read_original_sector(wc, g) ==
  1459. read_original_sector(wc, f))) {
  1460. f = g;
  1461. continue;
  1462. }
  1463. if (read_original_sector(wc, g) !=
  1464. read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
  1465. break;
  1466. if (unlikely(g->write_in_progress))
  1467. break;
  1468. if (unlikely(!writecache_entry_is_committed(wc, g)))
  1469. break;
  1470. if (!WC_MODE_PMEM(wc)) {
  1471. if (g != f + 1)
  1472. break;
  1473. }
  1474. n_walked++;
  1475. //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
  1476. // break;
  1477. wc->writeback_size++;
  1478. list_del(&g->lru);
  1479. list_add(&g->lru, &wbl.list);
  1480. wbl.size++;
  1481. g->write_in_progress = true;
  1482. g->wc_list_contiguous = BIO_MAX_PAGES;
  1483. f = g;
  1484. e->wc_list_contiguous++;
  1485. if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
  1486. if (unlikely(wc->writeback_all)) {
  1487. next_node = rb_next(&f->rb_node);
  1488. if (likely(next_node))
  1489. g = container_of(next_node, struct wc_entry, rb_node);
  1490. }
  1491. break;
  1492. }
  1493. }
  1494. cond_resched();
  1495. }
  1496. if (!list_empty(&skipped)) {
  1497. list_splice_tail(&skipped, &wc->lru);
  1498. /*
  1499. * If we didn't do any progress, we must wait until some
  1500. * writeback finishes to avoid burning CPU in a loop
  1501. */
  1502. if (unlikely(!wbl.size))
  1503. writecache_wait_for_writeback(wc);
  1504. }
  1505. wc_unlock(wc);
  1506. blk_start_plug(&plug);
  1507. if (WC_MODE_PMEM(wc))
  1508. __writecache_writeback_pmem(wc, &wbl);
  1509. else
  1510. __writecache_writeback_ssd(wc, &wbl);
  1511. blk_finish_plug(&plug);
  1512. if (unlikely(wc->writeback_all)) {
  1513. wc_lock(wc);
  1514. while (writecache_wait_for_writeback(wc));
  1515. wc_unlock(wc);
  1516. }
  1517. }
  1518. static int calculate_memory_size(uint64_t device_size, unsigned block_size,
  1519. size_t *n_blocks_p, size_t *n_metadata_blocks_p)
  1520. {
  1521. uint64_t n_blocks, offset;
  1522. struct wc_entry e;
  1523. n_blocks = device_size;
  1524. do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
  1525. while (1) {
  1526. if (!n_blocks)
  1527. return -ENOSPC;
  1528. /* Verify the following entries[n_blocks] won't overflow */
  1529. if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
  1530. sizeof(struct wc_memory_entry)))
  1531. return -EFBIG;
  1532. offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
  1533. offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
  1534. if (offset + n_blocks * block_size <= device_size)
  1535. break;
  1536. n_blocks--;
  1537. }
  1538. /* check if the bit field overflows */
  1539. e.index = n_blocks;
  1540. if (e.index != n_blocks)
  1541. return -EFBIG;
  1542. if (n_blocks_p)
  1543. *n_blocks_p = n_blocks;
  1544. if (n_metadata_blocks_p)
  1545. *n_metadata_blocks_p = offset >> __ffs(block_size);
  1546. return 0;
  1547. }
  1548. static int init_memory(struct dm_writecache *wc)
  1549. {
  1550. size_t b;
  1551. int r;
  1552. r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
  1553. if (r)
  1554. return r;
  1555. r = writecache_alloc_entries(wc);
  1556. if (r)
  1557. return r;
  1558. for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
  1559. pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
  1560. pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
  1561. pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
  1562. pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
  1563. pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
  1564. for (b = 0; b < wc->n_blocks; b++) {
  1565. write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
  1566. cond_resched();
  1567. }
  1568. writecache_flush_all_metadata(wc);
  1569. writecache_commit_flushed(wc, false);
  1570. pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
  1571. writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
  1572. writecache_commit_flushed(wc, false);
  1573. return 0;
  1574. }
  1575. static void writecache_dtr(struct dm_target *ti)
  1576. {
  1577. struct dm_writecache *wc = ti->private;
  1578. if (!wc)
  1579. return;
  1580. if (wc->endio_thread)
  1581. kthread_stop(wc->endio_thread);
  1582. if (wc->flush_thread)
  1583. kthread_stop(wc->flush_thread);
  1584. bioset_exit(&wc->bio_set);
  1585. mempool_exit(&wc->copy_pool);
  1586. if (wc->writeback_wq)
  1587. destroy_workqueue(wc->writeback_wq);
  1588. if (wc->dev)
  1589. dm_put_device(ti, wc->dev);
  1590. if (wc->ssd_dev)
  1591. dm_put_device(ti, wc->ssd_dev);
  1592. if (wc->entries)
  1593. vfree(wc->entries);
  1594. if (wc->memory_map) {
  1595. if (WC_MODE_PMEM(wc))
  1596. persistent_memory_release(wc);
  1597. else
  1598. vfree(wc->memory_map);
  1599. }
  1600. if (wc->dm_kcopyd)
  1601. dm_kcopyd_client_destroy(wc->dm_kcopyd);
  1602. if (wc->dm_io)
  1603. dm_io_client_destroy(wc->dm_io);
  1604. if (wc->dirty_bitmap)
  1605. vfree(wc->dirty_bitmap);
  1606. kfree(wc);
  1607. }
  1608. static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1609. {
  1610. struct dm_writecache *wc;
  1611. struct dm_arg_set as;
  1612. const char *string;
  1613. unsigned opt_params;
  1614. size_t offset, data_size;
  1615. int i, r;
  1616. char dummy;
  1617. int high_wm_percent = HIGH_WATERMARK;
  1618. int low_wm_percent = LOW_WATERMARK;
  1619. uint64_t x;
  1620. struct wc_memory_superblock s;
  1621. static struct dm_arg _args[] = {
  1622. {0, 16, "Invalid number of feature args"},
  1623. };
  1624. as.argc = argc;
  1625. as.argv = argv;
  1626. wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
  1627. if (!wc) {
  1628. ti->error = "Cannot allocate writecache structure";
  1629. r = -ENOMEM;
  1630. goto bad;
  1631. }
  1632. ti->private = wc;
  1633. wc->ti = ti;
  1634. mutex_init(&wc->lock);
  1635. writecache_poison_lists(wc);
  1636. init_waitqueue_head(&wc->freelist_wait);
  1637. timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
  1638. for (i = 0; i < 2; i++) {
  1639. atomic_set(&wc->bio_in_progress[i], 0);
  1640. init_waitqueue_head(&wc->bio_in_progress_wait[i]);
  1641. }
  1642. wc->dm_io = dm_io_client_create();
  1643. if (IS_ERR(wc->dm_io)) {
  1644. r = PTR_ERR(wc->dm_io);
  1645. ti->error = "Unable to allocate dm-io client";
  1646. wc->dm_io = NULL;
  1647. goto bad;
  1648. }
  1649. wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
  1650. if (!wc->writeback_wq) {
  1651. r = -ENOMEM;
  1652. ti->error = "Could not allocate writeback workqueue";
  1653. goto bad;
  1654. }
  1655. INIT_WORK(&wc->writeback_work, writecache_writeback);
  1656. INIT_WORK(&wc->flush_work, writecache_flush_work);
  1657. raw_spin_lock_init(&wc->endio_list_lock);
  1658. INIT_LIST_HEAD(&wc->endio_list);
  1659. wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
  1660. if (IS_ERR(wc->endio_thread)) {
  1661. r = PTR_ERR(wc->endio_thread);
  1662. wc->endio_thread = NULL;
  1663. ti->error = "Couldn't spawn endio thread";
  1664. goto bad;
  1665. }
  1666. wake_up_process(wc->endio_thread);
  1667. /*
  1668. * Parse the mode (pmem or ssd)
  1669. */
  1670. string = dm_shift_arg(&as);
  1671. if (!string)
  1672. goto bad_arguments;
  1673. if (!strcasecmp(string, "s")) {
  1674. wc->pmem_mode = false;
  1675. } else if (!strcasecmp(string, "p")) {
  1676. #ifdef DM_WRITECACHE_HAS_PMEM
  1677. wc->pmem_mode = true;
  1678. wc->writeback_fua = true;
  1679. #else
  1680. /*
  1681. * If the architecture doesn't support persistent memory or
  1682. * the kernel doesn't support any DAX drivers, this driver can
  1683. * only be used in SSD-only mode.
  1684. */
  1685. r = -EOPNOTSUPP;
  1686. ti->error = "Persistent memory or DAX not supported on this system";
  1687. goto bad;
  1688. #endif
  1689. } else {
  1690. goto bad_arguments;
  1691. }
  1692. if (WC_MODE_PMEM(wc)) {
  1693. r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
  1694. offsetof(struct writeback_struct, bio),
  1695. BIOSET_NEED_BVECS);
  1696. if (r) {
  1697. ti->error = "Could not allocate bio set";
  1698. goto bad;
  1699. }
  1700. } else {
  1701. r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
  1702. if (r) {
  1703. ti->error = "Could not allocate mempool";
  1704. goto bad;
  1705. }
  1706. }
  1707. /*
  1708. * Parse the origin data device
  1709. */
  1710. string = dm_shift_arg(&as);
  1711. if (!string)
  1712. goto bad_arguments;
  1713. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
  1714. if (r) {
  1715. ti->error = "Origin data device lookup failed";
  1716. goto bad;
  1717. }
  1718. /*
  1719. * Parse cache data device (be it pmem or ssd)
  1720. */
  1721. string = dm_shift_arg(&as);
  1722. if (!string)
  1723. goto bad_arguments;
  1724. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
  1725. if (r) {
  1726. ti->error = "Cache data device lookup failed";
  1727. goto bad;
  1728. }
  1729. wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
  1730. /*
  1731. * Parse the cache block size
  1732. */
  1733. string = dm_shift_arg(&as);
  1734. if (!string)
  1735. goto bad_arguments;
  1736. if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
  1737. wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
  1738. (wc->block_size & (wc->block_size - 1))) {
  1739. r = -EINVAL;
  1740. ti->error = "Invalid block size";
  1741. goto bad;
  1742. }
  1743. if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
  1744. wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
  1745. r = -EINVAL;
  1746. ti->error = "Block size is smaller than device logical block size";
  1747. goto bad;
  1748. }
  1749. wc->block_size_bits = __ffs(wc->block_size);
  1750. wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
  1751. wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
  1752. wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
  1753. /*
  1754. * Parse optional arguments
  1755. */
  1756. r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
  1757. if (r)
  1758. goto bad;
  1759. while (opt_params) {
  1760. string = dm_shift_arg(&as), opt_params--;
  1761. if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
  1762. unsigned long long start_sector;
  1763. string = dm_shift_arg(&as), opt_params--;
  1764. if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
  1765. goto invalid_optional;
  1766. wc->start_sector = start_sector;
  1767. wc->start_sector_set = true;
  1768. if (wc->start_sector != start_sector ||
  1769. wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
  1770. goto invalid_optional;
  1771. } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
  1772. string = dm_shift_arg(&as), opt_params--;
  1773. if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
  1774. goto invalid_optional;
  1775. if (high_wm_percent < 0 || high_wm_percent > 100)
  1776. goto invalid_optional;
  1777. wc->high_wm_percent_value = high_wm_percent;
  1778. wc->high_wm_percent_set = true;
  1779. } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
  1780. string = dm_shift_arg(&as), opt_params--;
  1781. if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
  1782. goto invalid_optional;
  1783. if (low_wm_percent < 0 || low_wm_percent > 100)
  1784. goto invalid_optional;
  1785. wc->low_wm_percent_value = low_wm_percent;
  1786. wc->low_wm_percent_set = true;
  1787. } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
  1788. string = dm_shift_arg(&as), opt_params--;
  1789. if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
  1790. goto invalid_optional;
  1791. wc->max_writeback_jobs_set = true;
  1792. } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
  1793. string = dm_shift_arg(&as), opt_params--;
  1794. if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
  1795. goto invalid_optional;
  1796. wc->autocommit_blocks_set = true;
  1797. } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
  1798. unsigned autocommit_msecs;
  1799. string = dm_shift_arg(&as), opt_params--;
  1800. if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
  1801. goto invalid_optional;
  1802. if (autocommit_msecs > 3600000)
  1803. goto invalid_optional;
  1804. wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
  1805. wc->autocommit_time_value = autocommit_msecs;
  1806. wc->autocommit_time_set = true;
  1807. } else if (!strcasecmp(string, "fua")) {
  1808. if (WC_MODE_PMEM(wc)) {
  1809. wc->writeback_fua = true;
  1810. wc->writeback_fua_set = true;
  1811. } else goto invalid_optional;
  1812. } else if (!strcasecmp(string, "nofua")) {
  1813. if (WC_MODE_PMEM(wc)) {
  1814. wc->writeback_fua = false;
  1815. wc->writeback_fua_set = true;
  1816. } else goto invalid_optional;
  1817. } else {
  1818. invalid_optional:
  1819. r = -EINVAL;
  1820. ti->error = "Invalid optional argument";
  1821. goto bad;
  1822. }
  1823. }
  1824. if (high_wm_percent < low_wm_percent) {
  1825. r = -EINVAL;
  1826. ti->error = "High watermark must be greater than or equal to low watermark";
  1827. goto bad;
  1828. }
  1829. if (WC_MODE_PMEM(wc)) {
  1830. if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
  1831. r = -EOPNOTSUPP;
  1832. ti->error = "Asynchronous persistent memory not supported as pmem cache";
  1833. goto bad;
  1834. }
  1835. r = persistent_memory_claim(wc);
  1836. if (r) {
  1837. ti->error = "Unable to map persistent memory for cache";
  1838. goto bad;
  1839. }
  1840. } else {
  1841. size_t n_blocks, n_metadata_blocks;
  1842. uint64_t n_bitmap_bits;
  1843. wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
  1844. bio_list_init(&wc->flush_list);
  1845. wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
  1846. if (IS_ERR(wc->flush_thread)) {
  1847. r = PTR_ERR(wc->flush_thread);
  1848. wc->flush_thread = NULL;
  1849. ti->error = "Couldn't spawn flush thread";
  1850. goto bad;
  1851. }
  1852. wake_up_process(wc->flush_thread);
  1853. r = calculate_memory_size(wc->memory_map_size, wc->block_size,
  1854. &n_blocks, &n_metadata_blocks);
  1855. if (r) {
  1856. ti->error = "Invalid device size";
  1857. goto bad;
  1858. }
  1859. n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
  1860. BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
  1861. /* this is limitation of test_bit functions */
  1862. if (n_bitmap_bits > 1U << 31) {
  1863. r = -EFBIG;
  1864. ti->error = "Invalid device size";
  1865. goto bad;
  1866. }
  1867. wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
  1868. if (!wc->memory_map) {
  1869. r = -ENOMEM;
  1870. ti->error = "Unable to allocate memory for metadata";
  1871. goto bad;
  1872. }
  1873. wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1874. if (IS_ERR(wc->dm_kcopyd)) {
  1875. r = PTR_ERR(wc->dm_kcopyd);
  1876. ti->error = "Unable to allocate dm-kcopyd client";
  1877. wc->dm_kcopyd = NULL;
  1878. goto bad;
  1879. }
  1880. wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
  1881. wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
  1882. BITS_PER_LONG * sizeof(unsigned long);
  1883. wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
  1884. if (!wc->dirty_bitmap) {
  1885. r = -ENOMEM;
  1886. ti->error = "Unable to allocate dirty bitmap";
  1887. goto bad;
  1888. }
  1889. r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
  1890. if (r) {
  1891. ti->error = "Unable to read first block of metadata";
  1892. goto bad;
  1893. }
  1894. }
  1895. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1896. if (r) {
  1897. ti->error = "Hardware memory error when reading superblock";
  1898. goto bad;
  1899. }
  1900. if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
  1901. r = init_memory(wc);
  1902. if (r) {
  1903. ti->error = "Unable to initialize device";
  1904. goto bad;
  1905. }
  1906. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1907. if (r) {
  1908. ti->error = "Hardware memory error when reading superblock";
  1909. goto bad;
  1910. }
  1911. }
  1912. if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
  1913. ti->error = "Invalid magic in the superblock";
  1914. r = -EINVAL;
  1915. goto bad;
  1916. }
  1917. if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
  1918. ti->error = "Invalid version in the superblock";
  1919. r = -EINVAL;
  1920. goto bad;
  1921. }
  1922. if (le32_to_cpu(s.block_size) != wc->block_size) {
  1923. ti->error = "Block size does not match superblock";
  1924. r = -EINVAL;
  1925. goto bad;
  1926. }
  1927. wc->n_blocks = le64_to_cpu(s.n_blocks);
  1928. offset = wc->n_blocks * sizeof(struct wc_memory_entry);
  1929. if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
  1930. overflow:
  1931. ti->error = "Overflow in size calculation";
  1932. r = -EINVAL;
  1933. goto bad;
  1934. }
  1935. offset += sizeof(struct wc_memory_superblock);
  1936. if (offset < sizeof(struct wc_memory_superblock))
  1937. goto overflow;
  1938. offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
  1939. data_size = wc->n_blocks * (size_t)wc->block_size;
  1940. if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
  1941. (offset + data_size < offset))
  1942. goto overflow;
  1943. if (offset + data_size > wc->memory_map_size) {
  1944. ti->error = "Memory area is too small";
  1945. r = -EINVAL;
  1946. goto bad;
  1947. }
  1948. wc->metadata_sectors = offset >> SECTOR_SHIFT;
  1949. wc->block_start = (char *)sb(wc) + offset;
  1950. x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
  1951. x += 50;
  1952. do_div(x, 100);
  1953. wc->freelist_high_watermark = x;
  1954. x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
  1955. x += 50;
  1956. do_div(x, 100);
  1957. wc->freelist_low_watermark = x;
  1958. r = writecache_alloc_entries(wc);
  1959. if (r) {
  1960. ti->error = "Cannot allocate memory";
  1961. goto bad;
  1962. }
  1963. ti->num_flush_bios = 1;
  1964. ti->flush_supported = true;
  1965. ti->num_discard_bios = 1;
  1966. if (WC_MODE_PMEM(wc))
  1967. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  1968. return 0;
  1969. bad_arguments:
  1970. r = -EINVAL;
  1971. ti->error = "Bad arguments";
  1972. bad:
  1973. writecache_dtr(ti);
  1974. return r;
  1975. }
  1976. static void writecache_status(struct dm_target *ti, status_type_t type,
  1977. unsigned status_flags, char *result, unsigned maxlen)
  1978. {
  1979. struct dm_writecache *wc = ti->private;
  1980. unsigned extra_args;
  1981. unsigned sz = 0;
  1982. switch (type) {
  1983. case STATUSTYPE_INFO:
  1984. DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
  1985. (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
  1986. (unsigned long long)wc->writeback_size);
  1987. break;
  1988. case STATUSTYPE_TABLE:
  1989. DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
  1990. wc->dev->name, wc->ssd_dev->name, wc->block_size);
  1991. extra_args = 0;
  1992. if (wc->start_sector_set)
  1993. extra_args += 2;
  1994. if (wc->high_wm_percent_set)
  1995. extra_args += 2;
  1996. if (wc->low_wm_percent_set)
  1997. extra_args += 2;
  1998. if (wc->max_writeback_jobs_set)
  1999. extra_args += 2;
  2000. if (wc->autocommit_blocks_set)
  2001. extra_args += 2;
  2002. if (wc->autocommit_time_set)
  2003. extra_args += 2;
  2004. if (wc->writeback_fua_set)
  2005. extra_args++;
  2006. DMEMIT("%u", extra_args);
  2007. if (wc->start_sector_set)
  2008. DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
  2009. if (wc->high_wm_percent_set)
  2010. DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
  2011. if (wc->low_wm_percent_set)
  2012. DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
  2013. if (wc->max_writeback_jobs_set)
  2014. DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
  2015. if (wc->autocommit_blocks_set)
  2016. DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
  2017. if (wc->autocommit_time_set)
  2018. DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
  2019. if (wc->writeback_fua_set)
  2020. DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
  2021. break;
  2022. }
  2023. }
  2024. static struct target_type writecache_target = {
  2025. .name = "writecache",
  2026. .version = {1, 1, 1},
  2027. .module = THIS_MODULE,
  2028. .ctr = writecache_ctr,
  2029. .dtr = writecache_dtr,
  2030. .status = writecache_status,
  2031. .postsuspend = writecache_suspend,
  2032. .resume = writecache_resume,
  2033. .message = writecache_message,
  2034. .map = writecache_map,
  2035. .end_io = writecache_end_io,
  2036. .iterate_devices = writecache_iterate_devices,
  2037. .io_hints = writecache_io_hints,
  2038. };
  2039. static int __init dm_writecache_init(void)
  2040. {
  2041. int r;
  2042. r = dm_register_target(&writecache_target);
  2043. if (r < 0) {
  2044. DMERR("register failed %d", r);
  2045. return r;
  2046. }
  2047. return 0;
  2048. }
  2049. static void __exit dm_writecache_exit(void)
  2050. {
  2051. dm_unregister_target(&writecache_target);
  2052. }
  2053. module_init(dm_writecache_init);
  2054. module_exit(dm_writecache_exit);
  2055. MODULE_DESCRIPTION(DM_NAME " writecache target");
  2056. MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
  2057. MODULE_LICENSE("GPL");