123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- /*
- * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
- *
- * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
- *
- * This file add support for MD5 and SHA1.
- *
- * You could find the datasheet in Documentation/arm/sunxi.rst
- */
- #include "sun4i-ss.h"
- #include <linux/scatterlist.h>
- /* This is a totally arbitrary value */
- #define SS_TIMEOUT 100
- int sun4i_hash_crainit(struct crypto_tfm *tfm)
- {
- struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
- struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
- struct sun4i_ss_alg_template *algt;
- memset(op, 0, sizeof(struct sun4i_tfm_ctx));
- algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
- op->ss = algt->ss;
- crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
- sizeof(struct sun4i_req_ctx));
- return 0;
- }
- /* sun4i_hash_init: initialize request context */
- int sun4i_hash_init(struct ahash_request *areq)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
- struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
- struct sun4i_ss_alg_template *algt;
- memset(op, 0, sizeof(struct sun4i_req_ctx));
- algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
- op->mode = algt->mode;
- return 0;
- }
- int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- struct md5_state *octx = out;
- int i;
- octx->byte_count = op->byte_count + op->len;
- memcpy(octx->block, op->buf, op->len);
- if (op->byte_count) {
- for (i = 0; i < 4; i++)
- octx->hash[i] = op->hash[i];
- } else {
- octx->hash[0] = SHA1_H0;
- octx->hash[1] = SHA1_H1;
- octx->hash[2] = SHA1_H2;
- octx->hash[3] = SHA1_H3;
- }
- return 0;
- }
- int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- const struct md5_state *ictx = in;
- int i;
- sun4i_hash_init(areq);
- op->byte_count = ictx->byte_count & ~0x3F;
- op->len = ictx->byte_count & 0x3F;
- memcpy(op->buf, ictx->block, op->len);
- for (i = 0; i < 4; i++)
- op->hash[i] = ictx->hash[i];
- return 0;
- }
- int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- struct sha1_state *octx = out;
- int i;
- octx->count = op->byte_count + op->len;
- memcpy(octx->buffer, op->buf, op->len);
- if (op->byte_count) {
- for (i = 0; i < 5; i++)
- octx->state[i] = op->hash[i];
- } else {
- octx->state[0] = SHA1_H0;
- octx->state[1] = SHA1_H1;
- octx->state[2] = SHA1_H2;
- octx->state[3] = SHA1_H3;
- octx->state[4] = SHA1_H4;
- }
- return 0;
- }
- int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- const struct sha1_state *ictx = in;
- int i;
- sun4i_hash_init(areq);
- op->byte_count = ictx->count & ~0x3F;
- op->len = ictx->count & 0x3F;
- memcpy(op->buf, ictx->buffer, op->len);
- for (i = 0; i < 5; i++)
- op->hash[i] = ictx->state[i];
- return 0;
- }
- #define SS_HASH_UPDATE 1
- #define SS_HASH_FINAL 2
- /*
- * sun4i_hash_update: update hash engine
- *
- * Could be used for both SHA1 and MD5
- * Write data by step of 32bits and put then in the SS.
- *
- * Since we cannot leave partial data and hash state in the engine,
- * we need to get the hash state at the end of this function.
- * We can get the hash state every 64 bytes
- *
- * So the first work is to get the number of bytes to write to SS modulo 64
- * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
- *
- * So at the begin of update()
- * if op->len + areq->nbytes < 64
- * => all data will be written to wait buffer (op->buf) and end=0
- * if not, write all data from op->buf to the device and position end to
- * complete to 64bytes
- *
- * example 1:
- * update1 60o => op->len=60
- * update2 60o => need one more word to have 64 bytes
- * end=4
- * so write all data from op->buf and one word of SGs
- * write remaining data in op->buf
- * final state op->len=56
- */
- static int sun4i_hash(struct ahash_request *areq)
- {
- /*
- * i is the total bytes read from SGs, to be compared to areq->nbytes
- * i is important because we cannot rely on SG length since the sum of
- * SG->length could be greater than areq->nbytes
- *
- * end is the position when we need to stop writing to the device,
- * to be compared to i
- *
- * in_i: advancement in the current SG
- */
- unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
- unsigned int in_i = 0;
- u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
- struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
- struct sun4i_ss_ctx *ss = tfmctx->ss;
- struct scatterlist *in_sg = areq->src;
- struct sg_mapping_iter mi;
- int in_r, err = 0;
- size_t copied = 0;
- __le32 wb = 0;
- dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
- __func__, crypto_tfm_alg_name(areq->base.tfm),
- op->byte_count, areq->nbytes, op->mode,
- op->len, op->hash[0]);
- if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
- return 0;
- /* protect against overflow */
- if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
- dev_err(ss->dev, "Cannot process too large request\n");
- return -EINVAL;
- }
- if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
- /* linearize data to op->buf */
- copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
- op->buf + op->len, areq->nbytes, 0);
- op->len += copied;
- return 0;
- }
- spin_lock_bh(&ss->slock);
- /*
- * if some data have been processed before,
- * we need to restore the partial hash state
- */
- if (op->byte_count) {
- ivmode = SS_IV_ARBITRARY;
- for (i = 0; i < 5; i++)
- writel(op->hash[i], ss->base + SS_IV0 + i * 4);
- }
- /* Enable the device */
- writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
- if (!(op->flags & SS_HASH_UPDATE))
- goto hash_final;
- /* start of handling data */
- if (!(op->flags & SS_HASH_FINAL)) {
- end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
- if (end > areq->nbytes || areq->nbytes - end > 63) {
- dev_err(ss->dev, "ERROR: Bound error %u %u\n",
- end, areq->nbytes);
- err = -EINVAL;
- goto release_ss;
- }
- } else {
- /* Since we have the flag final, we can go up to modulo 4 */
- if (areq->nbytes < 4)
- end = 0;
- else
- end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
- }
- /* TODO if SGlen % 4 and !op->len then DMA */
- i = 1;
- while (in_sg && i == 1) {
- if (in_sg->length % 4)
- i = 0;
- in_sg = sg_next(in_sg);
- }
- if (i == 1 && !op->len && areq->nbytes)
- dev_dbg(ss->dev, "We can DMA\n");
- i = 0;
- sg_miter_start(&mi, areq->src, sg_nents(areq->src),
- SG_MITER_FROM_SG | SG_MITER_ATOMIC);
- sg_miter_next(&mi);
- in_i = 0;
- do {
- /*
- * we need to linearize in two case:
- * - the buffer is already used
- * - the SG does not have enough byte remaining ( < 4)
- */
- if (op->len || (mi.length - in_i) < 4) {
- /*
- * if we have entered here we have two reason to stop
- * - the buffer is full
- * - reach the end
- */
- while (op->len < 64 && i < end) {
- /* how many bytes we can read from current SG */
- in_r = min(end - i, 64 - op->len);
- in_r = min_t(size_t, mi.length - in_i, in_r);
- memcpy(op->buf + op->len, mi.addr + in_i, in_r);
- op->len += in_r;
- i += in_r;
- in_i += in_r;
- if (in_i == mi.length) {
- sg_miter_next(&mi);
- in_i = 0;
- }
- }
- if (op->len > 3 && !(op->len % 4)) {
- /* write buf to the device */
- writesl(ss->base + SS_RXFIFO, op->buf,
- op->len / 4);
- op->byte_count += op->len;
- op->len = 0;
- }
- }
- if (mi.length - in_i > 3 && i < end) {
- /* how many bytes we can read from current SG */
- in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
- in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
- /* how many bytes we can write in the device*/
- todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
- writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
- op->byte_count += todo * 4;
- i += todo * 4;
- in_i += todo * 4;
- rx_cnt -= todo;
- if (!rx_cnt) {
- spaces = readl(ss->base + SS_FCSR);
- rx_cnt = SS_RXFIFO_SPACES(spaces);
- }
- if (in_i == mi.length) {
- sg_miter_next(&mi);
- in_i = 0;
- }
- }
- } while (i < end);
- /*
- * Now we have written to the device all that we can,
- * store the remaining bytes in op->buf
- */
- if ((areq->nbytes - i) < 64) {
- while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
- /* how many bytes we can read from current SG */
- in_r = min(areq->nbytes - i, 64 - op->len);
- in_r = min_t(size_t, mi.length - in_i, in_r);
- memcpy(op->buf + op->len, mi.addr + in_i, in_r);
- op->len += in_r;
- i += in_r;
- in_i += in_r;
- if (in_i == mi.length) {
- sg_miter_next(&mi);
- in_i = 0;
- }
- }
- }
- sg_miter_stop(&mi);
- /*
- * End of data process
- * Now if we have the flag final go to finalize part
- * If not, store the partial hash
- */
- if (op->flags & SS_HASH_FINAL)
- goto hash_final;
- writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
- i = 0;
- do {
- v = readl(ss->base + SS_CTL);
- i++;
- } while (i < SS_TIMEOUT && (v & SS_DATA_END));
- if (unlikely(i >= SS_TIMEOUT)) {
- dev_err_ratelimited(ss->dev,
- "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
- i, SS_TIMEOUT, v, areq->nbytes);
- err = -EIO;
- goto release_ss;
- }
- /*
- * The datasheet isn't very clear about when to retrieve the digest. The
- * bit SS_DATA_END is cleared when the engine has processed the data and
- * when the digest is computed *but* it doesn't mean the digest is
- * available in the digest registers. Hence the delay to be sure we can
- * read it.
- */
- ndelay(1);
- for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
- op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
- goto release_ss;
- /*
- * hash_final: finalize hashing operation
- *
- * If we have some remaining bytes, we write them.
- * Then ask the SS for finalizing the hashing operation
- *
- * I do not check RX FIFO size in this function since the size is 32
- * after each enabling and this function neither write more than 32 words.
- * If we come from the update part, we cannot have more than
- * 3 remaining bytes to write and SS is fast enough to not care about it.
- */
- hash_final:
- /* write the remaining words of the wait buffer */
- if (op->len) {
- nwait = op->len / 4;
- if (nwait) {
- writesl(ss->base + SS_RXFIFO, op->buf, nwait);
- op->byte_count += 4 * nwait;
- }
- nbw = op->len - 4 * nwait;
- if (nbw) {
- wb = cpu_to_le32(*(u32 *)(op->buf + nwait * 4));
- wb &= GENMASK((nbw * 8) - 1, 0);
- op->byte_count += nbw;
- }
- }
- /* write the remaining bytes of the nbw buffer */
- wb |= ((1 << 7) << (nbw * 8));
- bf[j++] = le32_to_cpu(wb);
- /*
- * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
- * I take the operations from other MD5/SHA1 implementations
- */
- /* last block size */
- fill = 64 - (op->byte_count % 64);
- min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
- /* if we can't fill all data, jump to the next 64 block */
- if (fill < min_fill)
- fill += 64;
- j += (fill - min_fill) / sizeof(u32);
- /* write the length of data */
- if (op->mode == SS_OP_SHA1) {
- __be64 *bits = (__be64 *)&bf[j];
- *bits = cpu_to_be64(op->byte_count << 3);
- j += 2;
- } else {
- __le64 *bits = (__le64 *)&bf[j];
- *bits = cpu_to_le64(op->byte_count << 3);
- j += 2;
- }
- writesl(ss->base + SS_RXFIFO, bf, j);
- /* Tell the SS to stop the hashing */
- writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
- /*
- * Wait for SS to finish the hash.
- * The timeout could happen only in case of bad overclocking
- * or driver bug.
- */
- i = 0;
- do {
- v = readl(ss->base + SS_CTL);
- i++;
- } while (i < SS_TIMEOUT && (v & SS_DATA_END));
- if (unlikely(i >= SS_TIMEOUT)) {
- dev_err_ratelimited(ss->dev,
- "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
- i, SS_TIMEOUT, v, areq->nbytes);
- err = -EIO;
- goto release_ss;
- }
- /*
- * The datasheet isn't very clear about when to retrieve the digest. The
- * bit SS_DATA_END is cleared when the engine has processed the data and
- * when the digest is computed *but* it doesn't mean the digest is
- * available in the digest registers. Hence the delay to be sure we can
- * read it.
- */
- ndelay(1);
- /* Get the hash from the device */
- if (op->mode == SS_OP_SHA1) {
- for (i = 0; i < 5; i++) {
- v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
- memcpy(areq->result + i * 4, &v, 4);
- }
- } else {
- for (i = 0; i < 4; i++) {
- v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
- memcpy(areq->result + i * 4, &v, 4);
- }
- }
- release_ss:
- writel(0, ss->base + SS_CTL);
- spin_unlock_bh(&ss->slock);
- return err;
- }
- int sun4i_hash_final(struct ahash_request *areq)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- op->flags = SS_HASH_FINAL;
- return sun4i_hash(areq);
- }
- int sun4i_hash_update(struct ahash_request *areq)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- op->flags = SS_HASH_UPDATE;
- return sun4i_hash(areq);
- }
- /* sun4i_hash_finup: finalize hashing operation after an update */
- int sun4i_hash_finup(struct ahash_request *areq)
- {
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
- return sun4i_hash(areq);
- }
- /* combo of init/update/final functions */
- int sun4i_hash_digest(struct ahash_request *areq)
- {
- int err;
- struct sun4i_req_ctx *op = ahash_request_ctx(areq);
- err = sun4i_hash_init(areq);
- if (err)
- return err;
- op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
- return sun4i_hash(areq);
- }
|