mtk-sha.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Cryptographic API.
  4. *
  5. * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
  6. *
  7. * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  8. *
  9. * Some ideas are from atmel-sha.c and omap-sham.c drivers.
  10. */
  11. #include <crypto/hmac.h>
  12. #include <crypto/sha.h>
  13. #include "mtk-platform.h"
  14. #define SHA_ALIGN_MSK (sizeof(u32) - 1)
  15. #define SHA_QUEUE_SIZE 512
  16. #define SHA_BUF_SIZE ((u32)PAGE_SIZE)
  17. #define SHA_OP_UPDATE 1
  18. #define SHA_OP_FINAL 2
  19. #define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
  20. #define SHA_MAX_DIGEST_BUF_SIZE 32
  21. /* SHA command token */
  22. #define SHA_CT_SIZE 5
  23. #define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000)
  24. #define SHA_CMD0 cpu_to_le32(0x03020000)
  25. #define SHA_CMD1 cpu_to_le32(0x21060000)
  26. #define SHA_CMD2 cpu_to_le32(0xe0e63802)
  27. /* SHA transform information */
  28. #define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
  29. #define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
  30. #define SHA_TFM_START cpu_to_le32(0x1 << 4)
  31. #define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
  32. #define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19)
  33. #define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23)
  34. #define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23)
  35. #define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23)
  36. #define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23)
  37. #define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23)
  38. #define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
  39. /* SHA flags */
  40. #define SHA_FLAGS_BUSY BIT(0)
  41. #define SHA_FLAGS_FINAL BIT(1)
  42. #define SHA_FLAGS_FINUP BIT(2)
  43. #define SHA_FLAGS_SG BIT(3)
  44. #define SHA_FLAGS_ALGO_MSK GENMASK(8, 4)
  45. #define SHA_FLAGS_SHA1 BIT(4)
  46. #define SHA_FLAGS_SHA224 BIT(5)
  47. #define SHA_FLAGS_SHA256 BIT(6)
  48. #define SHA_FLAGS_SHA384 BIT(7)
  49. #define SHA_FLAGS_SHA512 BIT(8)
  50. #define SHA_FLAGS_HMAC BIT(9)
  51. #define SHA_FLAGS_PAD BIT(10)
  52. /**
  53. * mtk_sha_info - hardware information of AES
  54. * @cmd: command token, hardware instruction
  55. * @tfm: transform state of cipher algorithm.
  56. * @state: contains keys and initial vectors.
  57. *
  58. */
  59. struct mtk_sha_info {
  60. __le32 ctrl[2];
  61. __le32 cmd[3];
  62. __le32 tfm[2];
  63. __le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
  64. };
  65. struct mtk_sha_reqctx {
  66. struct mtk_sha_info info;
  67. unsigned long flags;
  68. unsigned long op;
  69. u64 digcnt;
  70. size_t bufcnt;
  71. dma_addr_t dma_addr;
  72. __le32 ct_hdr;
  73. u32 ct_size;
  74. dma_addr_t ct_dma;
  75. dma_addr_t tfm_dma;
  76. /* Walk state */
  77. struct scatterlist *sg;
  78. u32 offset; /* Offset in current sg */
  79. u32 total; /* Total request */
  80. size_t ds;
  81. size_t bs;
  82. u8 *buffer;
  83. };
  84. struct mtk_sha_hmac_ctx {
  85. struct crypto_shash *shash;
  86. u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  87. u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  88. };
  89. struct mtk_sha_ctx {
  90. struct mtk_cryp *cryp;
  91. unsigned long flags;
  92. u8 id;
  93. u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
  94. struct mtk_sha_hmac_ctx base[0];
  95. };
  96. struct mtk_sha_drv {
  97. struct list_head dev_list;
  98. /* Device list lock */
  99. spinlock_t lock;
  100. };
  101. static struct mtk_sha_drv mtk_sha = {
  102. .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
  103. .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
  104. };
  105. static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
  106. struct ahash_request *req);
  107. static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
  108. {
  109. return readl_relaxed(cryp->base + offset);
  110. }
  111. static inline void mtk_sha_write(struct mtk_cryp *cryp,
  112. u32 offset, u32 value)
  113. {
  114. writel_relaxed(value, cryp->base + offset);
  115. }
  116. static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
  117. struct mtk_desc **cmd_curr,
  118. struct mtk_desc **res_curr,
  119. int *count)
  120. {
  121. *cmd_curr = ring->cmd_next++;
  122. *res_curr = ring->res_next++;
  123. (*count)++;
  124. if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
  125. ring->cmd_next = ring->cmd_base;
  126. ring->res_next = ring->res_base;
  127. }
  128. }
  129. static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
  130. {
  131. struct mtk_cryp *cryp = NULL;
  132. struct mtk_cryp *tmp;
  133. spin_lock_bh(&mtk_sha.lock);
  134. if (!tctx->cryp) {
  135. list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
  136. cryp = tmp;
  137. break;
  138. }
  139. tctx->cryp = cryp;
  140. } else {
  141. cryp = tctx->cryp;
  142. }
  143. /*
  144. * Assign record id to tfm in round-robin fashion, and this
  145. * will help tfm to bind to corresponding descriptor rings.
  146. */
  147. tctx->id = cryp->rec;
  148. cryp->rec = !cryp->rec;
  149. spin_unlock_bh(&mtk_sha.lock);
  150. return cryp;
  151. }
  152. static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
  153. {
  154. size_t count;
  155. while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
  156. count = min(ctx->sg->length - ctx->offset, ctx->total);
  157. count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
  158. if (count <= 0) {
  159. /*
  160. * Check if count <= 0 because the buffer is full or
  161. * because the sg length is 0. In the latest case,
  162. * check if there is another sg in the list, a 0 length
  163. * sg doesn't necessarily mean the end of the sg list.
  164. */
  165. if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
  166. ctx->sg = sg_next(ctx->sg);
  167. continue;
  168. } else {
  169. break;
  170. }
  171. }
  172. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  173. ctx->offset, count, 0);
  174. ctx->bufcnt += count;
  175. ctx->offset += count;
  176. ctx->total -= count;
  177. if (ctx->offset == ctx->sg->length) {
  178. ctx->sg = sg_next(ctx->sg);
  179. if (ctx->sg)
  180. ctx->offset = 0;
  181. else
  182. ctx->total = 0;
  183. }
  184. }
  185. return 0;
  186. }
  187. /*
  188. * The purpose of this padding is to ensure that the padded message is a
  189. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  190. * The bit "1" is appended at the end of the message followed by
  191. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  192. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  193. * is appended.
  194. *
  195. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  196. * - if message length < 56 bytes then padlen = 56 - message length
  197. * - else padlen = 64 + 56 - message length
  198. *
  199. * For SHA384/SHA512, padlen is calculated as followed:
  200. * - if message length < 112 bytes then padlen = 112 - message length
  201. * - else padlen = 128 + 112 - message length
  202. */
  203. static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
  204. {
  205. u32 index, padlen;
  206. u64 bits[2];
  207. u64 size = ctx->digcnt;
  208. size += ctx->bufcnt;
  209. size += len;
  210. bits[1] = cpu_to_be64(size << 3);
  211. bits[0] = cpu_to_be64(size >> 61);
  212. switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
  213. case SHA_FLAGS_SHA384:
  214. case SHA_FLAGS_SHA512:
  215. index = ctx->bufcnt & 0x7f;
  216. padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
  217. *(ctx->buffer + ctx->bufcnt) = 0x80;
  218. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
  219. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  220. ctx->bufcnt += padlen + 16;
  221. ctx->flags |= SHA_FLAGS_PAD;
  222. break;
  223. default:
  224. index = ctx->bufcnt & 0x3f;
  225. padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
  226. *(ctx->buffer + ctx->bufcnt) = 0x80;
  227. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
  228. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  229. ctx->bufcnt += padlen + 8;
  230. ctx->flags |= SHA_FLAGS_PAD;
  231. break;
  232. }
  233. }
  234. /* Initialize basic transform information of SHA */
  235. static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
  236. {
  237. struct mtk_sha_info *info = &ctx->info;
  238. ctx->ct_hdr = SHA_CT_CTRL_HDR;
  239. ctx->ct_size = SHA_CT_SIZE;
  240. info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
  241. switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
  242. case SHA_FLAGS_SHA1:
  243. info->tfm[0] |= SHA_TFM_SHA1;
  244. break;
  245. case SHA_FLAGS_SHA224:
  246. info->tfm[0] |= SHA_TFM_SHA224;
  247. break;
  248. case SHA_FLAGS_SHA256:
  249. info->tfm[0] |= SHA_TFM_SHA256;
  250. break;
  251. case SHA_FLAGS_SHA384:
  252. info->tfm[0] |= SHA_TFM_SHA384;
  253. break;
  254. case SHA_FLAGS_SHA512:
  255. info->tfm[0] |= SHA_TFM_SHA512;
  256. break;
  257. default:
  258. /* Should not happen... */
  259. return;
  260. }
  261. info->tfm[1] = SHA_TFM_HASH_STORE;
  262. info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
  263. info->ctrl[1] = info->tfm[1];
  264. info->cmd[0] = SHA_CMD0;
  265. info->cmd[1] = SHA_CMD1;
  266. info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
  267. }
  268. /*
  269. * Update input data length field of transform information and
  270. * map it to DMA region.
  271. */
  272. static int mtk_sha_info_update(struct mtk_cryp *cryp,
  273. struct mtk_sha_rec *sha,
  274. size_t len1, size_t len2)
  275. {
  276. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  277. struct mtk_sha_info *info = &ctx->info;
  278. ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
  279. ctx->ct_hdr |= cpu_to_le32(len1 + len2);
  280. info->cmd[0] &= ~SHA_DATA_LEN_MSK;
  281. info->cmd[0] |= cpu_to_le32(len1 + len2);
  282. /* Setting SHA_TFM_START only for the first iteration */
  283. if (ctx->digcnt)
  284. info->ctrl[0] &= ~SHA_TFM_START;
  285. ctx->digcnt += len1;
  286. ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
  287. DMA_BIDIRECTIONAL);
  288. if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
  289. dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
  290. return -EINVAL;
  291. }
  292. ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
  293. return 0;
  294. }
  295. /*
  296. * Because of hardware limitation, we must pre-calculate the inner
  297. * and outer digest that need to be processed firstly by engine, then
  298. * apply the result digest to the input message. These complex hashing
  299. * procedures limits HMAC performance, so we use fallback SW encoding.
  300. */
  301. static int mtk_sha_finish_hmac(struct ahash_request *req)
  302. {
  303. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  304. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  305. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  306. SHASH_DESC_ON_STACK(shash, bctx->shash);
  307. shash->tfm = bctx->shash;
  308. return crypto_shash_init(shash) ?:
  309. crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
  310. crypto_shash_finup(shash, req->result, ctx->ds, req->result);
  311. }
  312. /* Initialize request context */
  313. static int mtk_sha_init(struct ahash_request *req)
  314. {
  315. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  316. struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  317. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  318. ctx->flags = 0;
  319. ctx->ds = crypto_ahash_digestsize(tfm);
  320. switch (ctx->ds) {
  321. case SHA1_DIGEST_SIZE:
  322. ctx->flags |= SHA_FLAGS_SHA1;
  323. ctx->bs = SHA1_BLOCK_SIZE;
  324. break;
  325. case SHA224_DIGEST_SIZE:
  326. ctx->flags |= SHA_FLAGS_SHA224;
  327. ctx->bs = SHA224_BLOCK_SIZE;
  328. break;
  329. case SHA256_DIGEST_SIZE:
  330. ctx->flags |= SHA_FLAGS_SHA256;
  331. ctx->bs = SHA256_BLOCK_SIZE;
  332. break;
  333. case SHA384_DIGEST_SIZE:
  334. ctx->flags |= SHA_FLAGS_SHA384;
  335. ctx->bs = SHA384_BLOCK_SIZE;
  336. break;
  337. case SHA512_DIGEST_SIZE:
  338. ctx->flags |= SHA_FLAGS_SHA512;
  339. ctx->bs = SHA512_BLOCK_SIZE;
  340. break;
  341. default:
  342. return -EINVAL;
  343. }
  344. ctx->bufcnt = 0;
  345. ctx->digcnt = 0;
  346. ctx->buffer = tctx->buf;
  347. if (tctx->flags & SHA_FLAGS_HMAC) {
  348. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  349. memcpy(ctx->buffer, bctx->ipad, ctx->bs);
  350. ctx->bufcnt = ctx->bs;
  351. ctx->flags |= SHA_FLAGS_HMAC;
  352. }
  353. return 0;
  354. }
  355. static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
  356. dma_addr_t addr1, size_t len1,
  357. dma_addr_t addr2, size_t len2)
  358. {
  359. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  360. struct mtk_ring *ring = cryp->ring[sha->id];
  361. struct mtk_desc *cmd, *res;
  362. int err, count = 0;
  363. err = mtk_sha_info_update(cryp, sha, len1, len2);
  364. if (err)
  365. return err;
  366. /* Fill in the command/result descriptors */
  367. mtk_sha_ring_shift(ring, &cmd, &res, &count);
  368. res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
  369. cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
  370. MTK_DESC_CT_LEN(ctx->ct_size);
  371. cmd->buf = cpu_to_le32(addr1);
  372. cmd->ct = cpu_to_le32(ctx->ct_dma);
  373. cmd->ct_hdr = ctx->ct_hdr;
  374. cmd->tfm = cpu_to_le32(ctx->tfm_dma);
  375. if (len2) {
  376. mtk_sha_ring_shift(ring, &cmd, &res, &count);
  377. res->hdr = MTK_DESC_BUF_LEN(len2);
  378. cmd->hdr = MTK_DESC_BUF_LEN(len2);
  379. cmd->buf = cpu_to_le32(addr2);
  380. }
  381. cmd->hdr |= MTK_DESC_LAST;
  382. res->hdr |= MTK_DESC_LAST;
  383. /*
  384. * Make sure that all changes to the DMA ring are done before we
  385. * start engine.
  386. */
  387. wmb();
  388. /* Start DMA transfer */
  389. mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
  390. mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
  391. return -EINPROGRESS;
  392. }
  393. static int mtk_sha_dma_map(struct mtk_cryp *cryp,
  394. struct mtk_sha_rec *sha,
  395. struct mtk_sha_reqctx *ctx,
  396. size_t count)
  397. {
  398. ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
  399. SHA_BUF_SIZE, DMA_TO_DEVICE);
  400. if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
  401. dev_err(cryp->dev, "dma map error\n");
  402. return -EINVAL;
  403. }
  404. ctx->flags &= ~SHA_FLAGS_SG;
  405. return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
  406. }
  407. static int mtk_sha_update_slow(struct mtk_cryp *cryp,
  408. struct mtk_sha_rec *sha)
  409. {
  410. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  411. size_t count;
  412. u32 final;
  413. mtk_sha_append_sg(ctx);
  414. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  415. dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
  416. if (final) {
  417. sha->flags |= SHA_FLAGS_FINAL;
  418. mtk_sha_fill_padding(ctx, 0);
  419. }
  420. if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
  421. count = ctx->bufcnt;
  422. ctx->bufcnt = 0;
  423. return mtk_sha_dma_map(cryp, sha, ctx, count);
  424. }
  425. return 0;
  426. }
  427. static int mtk_sha_update_start(struct mtk_cryp *cryp,
  428. struct mtk_sha_rec *sha)
  429. {
  430. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  431. u32 len, final, tail;
  432. struct scatterlist *sg;
  433. if (!ctx->total)
  434. return 0;
  435. if (ctx->bufcnt || ctx->offset)
  436. return mtk_sha_update_slow(cryp, sha);
  437. sg = ctx->sg;
  438. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  439. return mtk_sha_update_slow(cryp, sha);
  440. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
  441. /* size is not ctx->bs aligned */
  442. return mtk_sha_update_slow(cryp, sha);
  443. len = min(ctx->total, sg->length);
  444. if (sg_is_last(sg)) {
  445. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  446. /* not last sg must be ctx->bs aligned */
  447. tail = len & (ctx->bs - 1);
  448. len -= tail;
  449. }
  450. }
  451. ctx->total -= len;
  452. ctx->offset = len; /* offset where to start slow */
  453. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  454. /* Add padding */
  455. if (final) {
  456. size_t count;
  457. tail = len & (ctx->bs - 1);
  458. len -= tail;
  459. ctx->total += tail;
  460. ctx->offset = len; /* offset where to start slow */
  461. sg = ctx->sg;
  462. mtk_sha_append_sg(ctx);
  463. mtk_sha_fill_padding(ctx, len);
  464. ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
  465. SHA_BUF_SIZE, DMA_TO_DEVICE);
  466. if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
  467. dev_err(cryp->dev, "dma map bytes error\n");
  468. return -EINVAL;
  469. }
  470. sha->flags |= SHA_FLAGS_FINAL;
  471. count = ctx->bufcnt;
  472. ctx->bufcnt = 0;
  473. if (len == 0) {
  474. ctx->flags &= ~SHA_FLAGS_SG;
  475. return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
  476. count, 0, 0);
  477. } else {
  478. ctx->sg = sg;
  479. if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  480. dev_err(cryp->dev, "dma_map_sg error\n");
  481. return -EINVAL;
  482. }
  483. ctx->flags |= SHA_FLAGS_SG;
  484. return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
  485. len, ctx->dma_addr, count);
  486. }
  487. }
  488. if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  489. dev_err(cryp->dev, "dma_map_sg error\n");
  490. return -EINVAL;
  491. }
  492. ctx->flags |= SHA_FLAGS_SG;
  493. return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
  494. len, 0, 0);
  495. }
  496. static int mtk_sha_final_req(struct mtk_cryp *cryp,
  497. struct mtk_sha_rec *sha)
  498. {
  499. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  500. size_t count;
  501. mtk_sha_fill_padding(ctx, 0);
  502. sha->flags |= SHA_FLAGS_FINAL;
  503. count = ctx->bufcnt;
  504. ctx->bufcnt = 0;
  505. return mtk_sha_dma_map(cryp, sha, ctx, count);
  506. }
  507. /* Copy ready hash (+ finalize hmac) */
  508. static int mtk_sha_finish(struct ahash_request *req)
  509. {
  510. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  511. __le32 *digest = ctx->info.digest;
  512. u32 *result = (u32 *)req->result;
  513. int i;
  514. /* Get the hash from the digest buffer */
  515. for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
  516. result[i] = le32_to_cpu(digest[i]);
  517. if (ctx->flags & SHA_FLAGS_HMAC)
  518. return mtk_sha_finish_hmac(req);
  519. return 0;
  520. }
  521. static void mtk_sha_finish_req(struct mtk_cryp *cryp,
  522. struct mtk_sha_rec *sha,
  523. int err)
  524. {
  525. if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
  526. err = mtk_sha_finish(sha->req);
  527. sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
  528. sha->req->base.complete(&sha->req->base, err);
  529. /* Handle new request */
  530. tasklet_schedule(&sha->queue_task);
  531. }
  532. static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
  533. struct ahash_request *req)
  534. {
  535. struct mtk_sha_rec *sha = cryp->sha[id];
  536. struct crypto_async_request *async_req, *backlog;
  537. struct mtk_sha_reqctx *ctx;
  538. unsigned long flags;
  539. int err = 0, ret = 0;
  540. spin_lock_irqsave(&sha->lock, flags);
  541. if (req)
  542. ret = ahash_enqueue_request(&sha->queue, req);
  543. if (SHA_FLAGS_BUSY & sha->flags) {
  544. spin_unlock_irqrestore(&sha->lock, flags);
  545. return ret;
  546. }
  547. backlog = crypto_get_backlog(&sha->queue);
  548. async_req = crypto_dequeue_request(&sha->queue);
  549. if (async_req)
  550. sha->flags |= SHA_FLAGS_BUSY;
  551. spin_unlock_irqrestore(&sha->lock, flags);
  552. if (!async_req)
  553. return ret;
  554. if (backlog)
  555. backlog->complete(backlog, -EINPROGRESS);
  556. req = ahash_request_cast(async_req);
  557. ctx = ahash_request_ctx(req);
  558. sha->req = req;
  559. mtk_sha_info_init(ctx);
  560. if (ctx->op == SHA_OP_UPDATE) {
  561. err = mtk_sha_update_start(cryp, sha);
  562. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  563. /* No final() after finup() */
  564. err = mtk_sha_final_req(cryp, sha);
  565. } else if (ctx->op == SHA_OP_FINAL) {
  566. err = mtk_sha_final_req(cryp, sha);
  567. }
  568. if (unlikely(err != -EINPROGRESS))
  569. /* Task will not finish it, so do it here */
  570. mtk_sha_finish_req(cryp, sha, err);
  571. return ret;
  572. }
  573. static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
  574. {
  575. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  576. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  577. ctx->op = op;
  578. return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
  579. }
  580. static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
  581. {
  582. struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
  583. dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
  584. DMA_BIDIRECTIONAL);
  585. if (ctx->flags & SHA_FLAGS_SG) {
  586. dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
  587. if (ctx->sg->length == ctx->offset) {
  588. ctx->sg = sg_next(ctx->sg);
  589. if (ctx->sg)
  590. ctx->offset = 0;
  591. }
  592. if (ctx->flags & SHA_FLAGS_PAD) {
  593. dma_unmap_single(cryp->dev, ctx->dma_addr,
  594. SHA_BUF_SIZE, DMA_TO_DEVICE);
  595. }
  596. } else
  597. dma_unmap_single(cryp->dev, ctx->dma_addr,
  598. SHA_BUF_SIZE, DMA_TO_DEVICE);
  599. }
  600. static void mtk_sha_complete(struct mtk_cryp *cryp,
  601. struct mtk_sha_rec *sha)
  602. {
  603. int err = 0;
  604. err = mtk_sha_update_start(cryp, sha);
  605. if (err != -EINPROGRESS)
  606. mtk_sha_finish_req(cryp, sha, err);
  607. }
  608. static int mtk_sha_update(struct ahash_request *req)
  609. {
  610. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  611. ctx->total = req->nbytes;
  612. ctx->sg = req->src;
  613. ctx->offset = 0;
  614. if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
  615. !(ctx->flags & SHA_FLAGS_FINUP))
  616. return mtk_sha_append_sg(ctx);
  617. return mtk_sha_enqueue(req, SHA_OP_UPDATE);
  618. }
  619. static int mtk_sha_final(struct ahash_request *req)
  620. {
  621. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  622. ctx->flags |= SHA_FLAGS_FINUP;
  623. if (ctx->flags & SHA_FLAGS_PAD)
  624. return mtk_sha_finish(req);
  625. return mtk_sha_enqueue(req, SHA_OP_FINAL);
  626. }
  627. static int mtk_sha_finup(struct ahash_request *req)
  628. {
  629. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  630. int err1, err2;
  631. ctx->flags |= SHA_FLAGS_FINUP;
  632. err1 = mtk_sha_update(req);
  633. if (err1 == -EINPROGRESS ||
  634. (err1 == -EBUSY && (ahash_request_flags(req) &
  635. CRYPTO_TFM_REQ_MAY_BACKLOG)))
  636. return err1;
  637. /*
  638. * final() has to be always called to cleanup resources
  639. * even if update() failed
  640. */
  641. err2 = mtk_sha_final(req);
  642. return err1 ?: err2;
  643. }
  644. static int mtk_sha_digest(struct ahash_request *req)
  645. {
  646. return mtk_sha_init(req) ?: mtk_sha_finup(req);
  647. }
  648. static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
  649. u32 keylen)
  650. {
  651. struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  652. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  653. size_t bs = crypto_shash_blocksize(bctx->shash);
  654. size_t ds = crypto_shash_digestsize(bctx->shash);
  655. int err, i;
  656. SHASH_DESC_ON_STACK(shash, bctx->shash);
  657. shash->tfm = bctx->shash;
  658. if (keylen > bs) {
  659. err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
  660. if (err)
  661. return err;
  662. keylen = ds;
  663. } else {
  664. memcpy(bctx->ipad, key, keylen);
  665. }
  666. memset(bctx->ipad + keylen, 0, bs - keylen);
  667. memcpy(bctx->opad, bctx->ipad, bs);
  668. for (i = 0; i < bs; i++) {
  669. bctx->ipad[i] ^= HMAC_IPAD_VALUE;
  670. bctx->opad[i] ^= HMAC_OPAD_VALUE;
  671. }
  672. return 0;
  673. }
  674. static int mtk_sha_export(struct ahash_request *req, void *out)
  675. {
  676. const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  677. memcpy(out, ctx, sizeof(*ctx));
  678. return 0;
  679. }
  680. static int mtk_sha_import(struct ahash_request *req, const void *in)
  681. {
  682. struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
  683. memcpy(ctx, in, sizeof(*ctx));
  684. return 0;
  685. }
  686. static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
  687. const char *alg_base)
  688. {
  689. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  690. struct mtk_cryp *cryp = NULL;
  691. cryp = mtk_sha_find_dev(tctx);
  692. if (!cryp)
  693. return -ENODEV;
  694. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  695. sizeof(struct mtk_sha_reqctx));
  696. if (alg_base) {
  697. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  698. tctx->flags |= SHA_FLAGS_HMAC;
  699. bctx->shash = crypto_alloc_shash(alg_base, 0,
  700. CRYPTO_ALG_NEED_FALLBACK);
  701. if (IS_ERR(bctx->shash)) {
  702. pr_err("base driver %s could not be loaded.\n",
  703. alg_base);
  704. return PTR_ERR(bctx->shash);
  705. }
  706. }
  707. return 0;
  708. }
  709. static int mtk_sha_cra_init(struct crypto_tfm *tfm)
  710. {
  711. return mtk_sha_cra_init_alg(tfm, NULL);
  712. }
  713. static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
  714. {
  715. return mtk_sha_cra_init_alg(tfm, "sha1");
  716. }
  717. static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
  718. {
  719. return mtk_sha_cra_init_alg(tfm, "sha224");
  720. }
  721. static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
  722. {
  723. return mtk_sha_cra_init_alg(tfm, "sha256");
  724. }
  725. static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
  726. {
  727. return mtk_sha_cra_init_alg(tfm, "sha384");
  728. }
  729. static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
  730. {
  731. return mtk_sha_cra_init_alg(tfm, "sha512");
  732. }
  733. static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
  734. {
  735. struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  736. if (tctx->flags & SHA_FLAGS_HMAC) {
  737. struct mtk_sha_hmac_ctx *bctx = tctx->base;
  738. crypto_free_shash(bctx->shash);
  739. }
  740. }
  741. static struct ahash_alg algs_sha1_sha224_sha256[] = {
  742. {
  743. .init = mtk_sha_init,
  744. .update = mtk_sha_update,
  745. .final = mtk_sha_final,
  746. .finup = mtk_sha_finup,
  747. .digest = mtk_sha_digest,
  748. .export = mtk_sha_export,
  749. .import = mtk_sha_import,
  750. .halg.digestsize = SHA1_DIGEST_SIZE,
  751. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  752. .halg.base = {
  753. .cra_name = "sha1",
  754. .cra_driver_name = "mtk-sha1",
  755. .cra_priority = 400,
  756. .cra_flags = CRYPTO_ALG_ASYNC,
  757. .cra_blocksize = SHA1_BLOCK_SIZE,
  758. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  759. .cra_alignmask = SHA_ALIGN_MSK,
  760. .cra_module = THIS_MODULE,
  761. .cra_init = mtk_sha_cra_init,
  762. .cra_exit = mtk_sha_cra_exit,
  763. }
  764. },
  765. {
  766. .init = mtk_sha_init,
  767. .update = mtk_sha_update,
  768. .final = mtk_sha_final,
  769. .finup = mtk_sha_finup,
  770. .digest = mtk_sha_digest,
  771. .export = mtk_sha_export,
  772. .import = mtk_sha_import,
  773. .halg.digestsize = SHA224_DIGEST_SIZE,
  774. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  775. .halg.base = {
  776. .cra_name = "sha224",
  777. .cra_driver_name = "mtk-sha224",
  778. .cra_priority = 400,
  779. .cra_flags = CRYPTO_ALG_ASYNC,
  780. .cra_blocksize = SHA224_BLOCK_SIZE,
  781. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  782. .cra_alignmask = SHA_ALIGN_MSK,
  783. .cra_module = THIS_MODULE,
  784. .cra_init = mtk_sha_cra_init,
  785. .cra_exit = mtk_sha_cra_exit,
  786. }
  787. },
  788. {
  789. .init = mtk_sha_init,
  790. .update = mtk_sha_update,
  791. .final = mtk_sha_final,
  792. .finup = mtk_sha_finup,
  793. .digest = mtk_sha_digest,
  794. .export = mtk_sha_export,
  795. .import = mtk_sha_import,
  796. .halg.digestsize = SHA256_DIGEST_SIZE,
  797. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  798. .halg.base = {
  799. .cra_name = "sha256",
  800. .cra_driver_name = "mtk-sha256",
  801. .cra_priority = 400,
  802. .cra_flags = CRYPTO_ALG_ASYNC,
  803. .cra_blocksize = SHA256_BLOCK_SIZE,
  804. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  805. .cra_alignmask = SHA_ALIGN_MSK,
  806. .cra_module = THIS_MODULE,
  807. .cra_init = mtk_sha_cra_init,
  808. .cra_exit = mtk_sha_cra_exit,
  809. }
  810. },
  811. {
  812. .init = mtk_sha_init,
  813. .update = mtk_sha_update,
  814. .final = mtk_sha_final,
  815. .finup = mtk_sha_finup,
  816. .digest = mtk_sha_digest,
  817. .export = mtk_sha_export,
  818. .import = mtk_sha_import,
  819. .setkey = mtk_sha_setkey,
  820. .halg.digestsize = SHA1_DIGEST_SIZE,
  821. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  822. .halg.base = {
  823. .cra_name = "hmac(sha1)",
  824. .cra_driver_name = "mtk-hmac-sha1",
  825. .cra_priority = 400,
  826. .cra_flags = CRYPTO_ALG_ASYNC |
  827. CRYPTO_ALG_NEED_FALLBACK,
  828. .cra_blocksize = SHA1_BLOCK_SIZE,
  829. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  830. sizeof(struct mtk_sha_hmac_ctx),
  831. .cra_alignmask = SHA_ALIGN_MSK,
  832. .cra_module = THIS_MODULE,
  833. .cra_init = mtk_sha_cra_sha1_init,
  834. .cra_exit = mtk_sha_cra_exit,
  835. }
  836. },
  837. {
  838. .init = mtk_sha_init,
  839. .update = mtk_sha_update,
  840. .final = mtk_sha_final,
  841. .finup = mtk_sha_finup,
  842. .digest = mtk_sha_digest,
  843. .export = mtk_sha_export,
  844. .import = mtk_sha_import,
  845. .setkey = mtk_sha_setkey,
  846. .halg.digestsize = SHA224_DIGEST_SIZE,
  847. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  848. .halg.base = {
  849. .cra_name = "hmac(sha224)",
  850. .cra_driver_name = "mtk-hmac-sha224",
  851. .cra_priority = 400,
  852. .cra_flags = CRYPTO_ALG_ASYNC |
  853. CRYPTO_ALG_NEED_FALLBACK,
  854. .cra_blocksize = SHA224_BLOCK_SIZE,
  855. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  856. sizeof(struct mtk_sha_hmac_ctx),
  857. .cra_alignmask = SHA_ALIGN_MSK,
  858. .cra_module = THIS_MODULE,
  859. .cra_init = mtk_sha_cra_sha224_init,
  860. .cra_exit = mtk_sha_cra_exit,
  861. }
  862. },
  863. {
  864. .init = mtk_sha_init,
  865. .update = mtk_sha_update,
  866. .final = mtk_sha_final,
  867. .finup = mtk_sha_finup,
  868. .digest = mtk_sha_digest,
  869. .export = mtk_sha_export,
  870. .import = mtk_sha_import,
  871. .setkey = mtk_sha_setkey,
  872. .halg.digestsize = SHA256_DIGEST_SIZE,
  873. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  874. .halg.base = {
  875. .cra_name = "hmac(sha256)",
  876. .cra_driver_name = "mtk-hmac-sha256",
  877. .cra_priority = 400,
  878. .cra_flags = CRYPTO_ALG_ASYNC |
  879. CRYPTO_ALG_NEED_FALLBACK,
  880. .cra_blocksize = SHA256_BLOCK_SIZE,
  881. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  882. sizeof(struct mtk_sha_hmac_ctx),
  883. .cra_alignmask = SHA_ALIGN_MSK,
  884. .cra_module = THIS_MODULE,
  885. .cra_init = mtk_sha_cra_sha256_init,
  886. .cra_exit = mtk_sha_cra_exit,
  887. }
  888. },
  889. };
  890. static struct ahash_alg algs_sha384_sha512[] = {
  891. {
  892. .init = mtk_sha_init,
  893. .update = mtk_sha_update,
  894. .final = mtk_sha_final,
  895. .finup = mtk_sha_finup,
  896. .digest = mtk_sha_digest,
  897. .export = mtk_sha_export,
  898. .import = mtk_sha_import,
  899. .halg.digestsize = SHA384_DIGEST_SIZE,
  900. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  901. .halg.base = {
  902. .cra_name = "sha384",
  903. .cra_driver_name = "mtk-sha384",
  904. .cra_priority = 400,
  905. .cra_flags = CRYPTO_ALG_ASYNC,
  906. .cra_blocksize = SHA384_BLOCK_SIZE,
  907. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  908. .cra_alignmask = SHA_ALIGN_MSK,
  909. .cra_module = THIS_MODULE,
  910. .cra_init = mtk_sha_cra_init,
  911. .cra_exit = mtk_sha_cra_exit,
  912. }
  913. },
  914. {
  915. .init = mtk_sha_init,
  916. .update = mtk_sha_update,
  917. .final = mtk_sha_final,
  918. .finup = mtk_sha_finup,
  919. .digest = mtk_sha_digest,
  920. .export = mtk_sha_export,
  921. .import = mtk_sha_import,
  922. .halg.digestsize = SHA512_DIGEST_SIZE,
  923. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  924. .halg.base = {
  925. .cra_name = "sha512",
  926. .cra_driver_name = "mtk-sha512",
  927. .cra_priority = 400,
  928. .cra_flags = CRYPTO_ALG_ASYNC,
  929. .cra_blocksize = SHA512_BLOCK_SIZE,
  930. .cra_ctxsize = sizeof(struct mtk_sha_ctx),
  931. .cra_alignmask = SHA_ALIGN_MSK,
  932. .cra_module = THIS_MODULE,
  933. .cra_init = mtk_sha_cra_init,
  934. .cra_exit = mtk_sha_cra_exit,
  935. }
  936. },
  937. {
  938. .init = mtk_sha_init,
  939. .update = mtk_sha_update,
  940. .final = mtk_sha_final,
  941. .finup = mtk_sha_finup,
  942. .digest = mtk_sha_digest,
  943. .export = mtk_sha_export,
  944. .import = mtk_sha_import,
  945. .setkey = mtk_sha_setkey,
  946. .halg.digestsize = SHA384_DIGEST_SIZE,
  947. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  948. .halg.base = {
  949. .cra_name = "hmac(sha384)",
  950. .cra_driver_name = "mtk-hmac-sha384",
  951. .cra_priority = 400,
  952. .cra_flags = CRYPTO_ALG_ASYNC |
  953. CRYPTO_ALG_NEED_FALLBACK,
  954. .cra_blocksize = SHA384_BLOCK_SIZE,
  955. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  956. sizeof(struct mtk_sha_hmac_ctx),
  957. .cra_alignmask = SHA_ALIGN_MSK,
  958. .cra_module = THIS_MODULE,
  959. .cra_init = mtk_sha_cra_sha384_init,
  960. .cra_exit = mtk_sha_cra_exit,
  961. }
  962. },
  963. {
  964. .init = mtk_sha_init,
  965. .update = mtk_sha_update,
  966. .final = mtk_sha_final,
  967. .finup = mtk_sha_finup,
  968. .digest = mtk_sha_digest,
  969. .export = mtk_sha_export,
  970. .import = mtk_sha_import,
  971. .setkey = mtk_sha_setkey,
  972. .halg.digestsize = SHA512_DIGEST_SIZE,
  973. .halg.statesize = sizeof(struct mtk_sha_reqctx),
  974. .halg.base = {
  975. .cra_name = "hmac(sha512)",
  976. .cra_driver_name = "mtk-hmac-sha512",
  977. .cra_priority = 400,
  978. .cra_flags = CRYPTO_ALG_ASYNC |
  979. CRYPTO_ALG_NEED_FALLBACK,
  980. .cra_blocksize = SHA512_BLOCK_SIZE,
  981. .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
  982. sizeof(struct mtk_sha_hmac_ctx),
  983. .cra_alignmask = SHA_ALIGN_MSK,
  984. .cra_module = THIS_MODULE,
  985. .cra_init = mtk_sha_cra_sha512_init,
  986. .cra_exit = mtk_sha_cra_exit,
  987. }
  988. },
  989. };
  990. static void mtk_sha_queue_task(unsigned long data)
  991. {
  992. struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
  993. mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
  994. }
  995. static void mtk_sha_done_task(unsigned long data)
  996. {
  997. struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
  998. struct mtk_cryp *cryp = sha->cryp;
  999. mtk_sha_unmap(cryp, sha);
  1000. mtk_sha_complete(cryp, sha);
  1001. }
  1002. static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
  1003. {
  1004. struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
  1005. struct mtk_cryp *cryp = sha->cryp;
  1006. u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
  1007. mtk_sha_write(cryp, RDR_STAT(sha->id), val);
  1008. if (likely((SHA_FLAGS_BUSY & sha->flags))) {
  1009. mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
  1010. mtk_sha_write(cryp, RDR_THRESH(sha->id),
  1011. MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
  1012. tasklet_schedule(&sha->done_task);
  1013. } else {
  1014. dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
  1015. }
  1016. return IRQ_HANDLED;
  1017. }
  1018. /*
  1019. * The purpose of two SHA records is used to get extra performance.
  1020. * It is similar to mtk_aes_record_init().
  1021. */
  1022. static int mtk_sha_record_init(struct mtk_cryp *cryp)
  1023. {
  1024. struct mtk_sha_rec **sha = cryp->sha;
  1025. int i, err = -ENOMEM;
  1026. for (i = 0; i < MTK_REC_NUM; i++) {
  1027. sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
  1028. if (!sha[i])
  1029. goto err_cleanup;
  1030. sha[i]->cryp = cryp;
  1031. spin_lock_init(&sha[i]->lock);
  1032. crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
  1033. tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
  1034. (unsigned long)sha[i]);
  1035. tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
  1036. (unsigned long)sha[i]);
  1037. }
  1038. /* Link to ring2 and ring3 respectively */
  1039. sha[0]->id = MTK_RING2;
  1040. sha[1]->id = MTK_RING3;
  1041. cryp->rec = 1;
  1042. return 0;
  1043. err_cleanup:
  1044. for (; i--; )
  1045. kfree(sha[i]);
  1046. return err;
  1047. }
  1048. static void mtk_sha_record_free(struct mtk_cryp *cryp)
  1049. {
  1050. int i;
  1051. for (i = 0; i < MTK_REC_NUM; i++) {
  1052. tasklet_kill(&cryp->sha[i]->done_task);
  1053. tasklet_kill(&cryp->sha[i]->queue_task);
  1054. kfree(cryp->sha[i]);
  1055. }
  1056. }
  1057. static void mtk_sha_unregister_algs(void)
  1058. {
  1059. int i;
  1060. for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
  1061. crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
  1062. for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
  1063. crypto_unregister_ahash(&algs_sha384_sha512[i]);
  1064. }
  1065. static int mtk_sha_register_algs(void)
  1066. {
  1067. int err, i;
  1068. for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
  1069. err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
  1070. if (err)
  1071. goto err_sha_224_256_algs;
  1072. }
  1073. for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
  1074. err = crypto_register_ahash(&algs_sha384_sha512[i]);
  1075. if (err)
  1076. goto err_sha_384_512_algs;
  1077. }
  1078. return 0;
  1079. err_sha_384_512_algs:
  1080. for (; i--; )
  1081. crypto_unregister_ahash(&algs_sha384_sha512[i]);
  1082. i = ARRAY_SIZE(algs_sha1_sha224_sha256);
  1083. err_sha_224_256_algs:
  1084. for (; i--; )
  1085. crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
  1086. return err;
  1087. }
  1088. int mtk_hash_alg_register(struct mtk_cryp *cryp)
  1089. {
  1090. int err;
  1091. INIT_LIST_HEAD(&cryp->sha_list);
  1092. /* Initialize two hash records */
  1093. err = mtk_sha_record_init(cryp);
  1094. if (err)
  1095. goto err_record;
  1096. err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
  1097. 0, "mtk-sha", cryp->sha[0]);
  1098. if (err) {
  1099. dev_err(cryp->dev, "unable to request sha irq0.\n");
  1100. goto err_res;
  1101. }
  1102. err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
  1103. 0, "mtk-sha", cryp->sha[1]);
  1104. if (err) {
  1105. dev_err(cryp->dev, "unable to request sha irq1.\n");
  1106. goto err_res;
  1107. }
  1108. /* Enable ring2 and ring3 interrupt for hash */
  1109. mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
  1110. mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
  1111. spin_lock(&mtk_sha.lock);
  1112. list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
  1113. spin_unlock(&mtk_sha.lock);
  1114. err = mtk_sha_register_algs();
  1115. if (err)
  1116. goto err_algs;
  1117. return 0;
  1118. err_algs:
  1119. spin_lock(&mtk_sha.lock);
  1120. list_del(&cryp->sha_list);
  1121. spin_unlock(&mtk_sha.lock);
  1122. err_res:
  1123. mtk_sha_record_free(cryp);
  1124. err_record:
  1125. dev_err(cryp->dev, "mtk-sha initialization failed.\n");
  1126. return err;
  1127. }
  1128. void mtk_hash_alg_release(struct mtk_cryp *cryp)
  1129. {
  1130. spin_lock(&mtk_sha.lock);
  1131. list_del(&cryp->sha_list);
  1132. spin_unlock(&mtk_sha.lock);
  1133. mtk_sha_unregister_algs();
  1134. mtk_sha_record_free(cryp);
  1135. }