atmel-aes.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Cryptographic API.
  4. *
  5. * Support for ATMEL AES HW acceleration.
  6. *
  7. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  8. * Author: Nicolas Royer <nicolas@eukrea.com>
  9. *
  10. * Some ideas are from omap-aes.c driver.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/hw_random.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/irq.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/of_device.h>
  28. #include <linux/delay.h>
  29. #include <linux/crypto.h>
  30. #include <crypto/scatterwalk.h>
  31. #include <crypto/algapi.h>
  32. #include <crypto/aes.h>
  33. #include <crypto/gcm.h>
  34. #include <crypto/xts.h>
  35. #include <crypto/internal/aead.h>
  36. #include <linux/platform_data/crypto-atmel.h>
  37. #include <dt-bindings/dma/at91.h>
  38. #include "atmel-aes-regs.h"
  39. #include "atmel-authenc.h"
  40. #define ATMEL_AES_PRIORITY 300
  41. #define ATMEL_AES_BUFFER_ORDER 2
  42. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  43. #define CFB8_BLOCK_SIZE 1
  44. #define CFB16_BLOCK_SIZE 2
  45. #define CFB32_BLOCK_SIZE 4
  46. #define CFB64_BLOCK_SIZE 8
  47. #define SIZE_IN_WORDS(x) ((x) >> 2)
  48. /* AES flags */
  49. /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  50. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  51. #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
  52. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  53. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  54. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  55. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  56. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  57. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  58. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  59. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  60. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  61. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  62. #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
  63. #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
  64. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  65. AES_FLAGS_ENCRYPT | \
  66. AES_FLAGS_GTAGEN)
  67. #define AES_FLAGS_BUSY BIT(3)
  68. #define AES_FLAGS_DUMP_REG BIT(4)
  69. #define AES_FLAGS_OWN_SHA BIT(5)
  70. #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
  71. #define ATMEL_AES_QUEUE_LENGTH 50
  72. #define ATMEL_AES_DMA_THRESHOLD 256
  73. struct atmel_aes_caps {
  74. bool has_dualbuff;
  75. bool has_cfb64;
  76. bool has_gcm;
  77. bool has_xts;
  78. bool has_authenc;
  79. u32 max_burst_size;
  80. };
  81. struct atmel_aes_dev;
  82. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  83. struct atmel_aes_base_ctx {
  84. struct atmel_aes_dev *dd;
  85. atmel_aes_fn_t start;
  86. int keylen;
  87. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  88. u16 block_size;
  89. bool is_aead;
  90. };
  91. struct atmel_aes_ctx {
  92. struct atmel_aes_base_ctx base;
  93. };
  94. struct atmel_aes_ctr_ctx {
  95. struct atmel_aes_base_ctx base;
  96. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  97. size_t offset;
  98. struct scatterlist src[2];
  99. struct scatterlist dst[2];
  100. };
  101. struct atmel_aes_gcm_ctx {
  102. struct atmel_aes_base_ctx base;
  103. struct scatterlist src[2];
  104. struct scatterlist dst[2];
  105. u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
  106. u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
  107. u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
  108. size_t textlen;
  109. const u32 *ghash_in;
  110. u32 *ghash_out;
  111. atmel_aes_fn_t ghash_resume;
  112. };
  113. struct atmel_aes_xts_ctx {
  114. struct atmel_aes_base_ctx base;
  115. u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
  116. };
  117. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  118. struct atmel_aes_authenc_ctx {
  119. struct atmel_aes_base_ctx base;
  120. struct atmel_sha_authenc_ctx *auth;
  121. };
  122. #endif
  123. struct atmel_aes_reqctx {
  124. unsigned long mode;
  125. u32 lastc[AES_BLOCK_SIZE / sizeof(u32)];
  126. };
  127. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  128. struct atmel_aes_authenc_reqctx {
  129. struct atmel_aes_reqctx base;
  130. struct scatterlist src[2];
  131. struct scatterlist dst[2];
  132. size_t textlen;
  133. u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
  134. /* auth_req MUST be place last. */
  135. struct ahash_request auth_req;
  136. };
  137. #endif
  138. struct atmel_aes_dma {
  139. struct dma_chan *chan;
  140. struct scatterlist *sg;
  141. int nents;
  142. unsigned int remainder;
  143. unsigned int sg_len;
  144. };
  145. struct atmel_aes_dev {
  146. struct list_head list;
  147. unsigned long phys_base;
  148. void __iomem *io_base;
  149. struct crypto_async_request *areq;
  150. struct atmel_aes_base_ctx *ctx;
  151. bool is_async;
  152. atmel_aes_fn_t resume;
  153. atmel_aes_fn_t cpu_transfer_complete;
  154. struct device *dev;
  155. struct clk *iclk;
  156. int irq;
  157. unsigned long flags;
  158. spinlock_t lock;
  159. struct crypto_queue queue;
  160. struct tasklet_struct done_task;
  161. struct tasklet_struct queue_task;
  162. size_t total;
  163. size_t datalen;
  164. u32 *data;
  165. struct atmel_aes_dma src;
  166. struct atmel_aes_dma dst;
  167. size_t buflen;
  168. void *buf;
  169. struct scatterlist aligned_sg;
  170. struct scatterlist *real_dst;
  171. struct atmel_aes_caps caps;
  172. u32 hw_version;
  173. };
  174. struct atmel_aes_drv {
  175. struct list_head dev_list;
  176. spinlock_t lock;
  177. };
  178. static struct atmel_aes_drv atmel_aes = {
  179. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  180. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  181. };
  182. #ifdef VERBOSE_DEBUG
  183. static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
  184. {
  185. switch (offset) {
  186. case AES_CR:
  187. return "CR";
  188. case AES_MR:
  189. return "MR";
  190. case AES_ISR:
  191. return "ISR";
  192. case AES_IMR:
  193. return "IMR";
  194. case AES_IER:
  195. return "IER";
  196. case AES_IDR:
  197. return "IDR";
  198. case AES_KEYWR(0):
  199. case AES_KEYWR(1):
  200. case AES_KEYWR(2):
  201. case AES_KEYWR(3):
  202. case AES_KEYWR(4):
  203. case AES_KEYWR(5):
  204. case AES_KEYWR(6):
  205. case AES_KEYWR(7):
  206. snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
  207. break;
  208. case AES_IDATAR(0):
  209. case AES_IDATAR(1):
  210. case AES_IDATAR(2):
  211. case AES_IDATAR(3):
  212. snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
  213. break;
  214. case AES_ODATAR(0):
  215. case AES_ODATAR(1):
  216. case AES_ODATAR(2):
  217. case AES_ODATAR(3):
  218. snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
  219. break;
  220. case AES_IVR(0):
  221. case AES_IVR(1):
  222. case AES_IVR(2):
  223. case AES_IVR(3):
  224. snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
  225. break;
  226. case AES_AADLENR:
  227. return "AADLENR";
  228. case AES_CLENR:
  229. return "CLENR";
  230. case AES_GHASHR(0):
  231. case AES_GHASHR(1):
  232. case AES_GHASHR(2):
  233. case AES_GHASHR(3):
  234. snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
  235. break;
  236. case AES_TAGR(0):
  237. case AES_TAGR(1):
  238. case AES_TAGR(2):
  239. case AES_TAGR(3):
  240. snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
  241. break;
  242. case AES_CTRR:
  243. return "CTRR";
  244. case AES_GCMHR(0):
  245. case AES_GCMHR(1):
  246. case AES_GCMHR(2):
  247. case AES_GCMHR(3):
  248. snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
  249. break;
  250. case AES_EMR:
  251. return "EMR";
  252. case AES_TWR(0):
  253. case AES_TWR(1):
  254. case AES_TWR(2):
  255. case AES_TWR(3):
  256. snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
  257. break;
  258. case AES_ALPHAR(0):
  259. case AES_ALPHAR(1):
  260. case AES_ALPHAR(2):
  261. case AES_ALPHAR(3):
  262. snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
  263. break;
  264. default:
  265. snprintf(tmp, sz, "0x%02x", offset);
  266. break;
  267. }
  268. return tmp;
  269. }
  270. #endif /* VERBOSE_DEBUG */
  271. /* Shared functions */
  272. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  273. {
  274. u32 value = readl_relaxed(dd->io_base + offset);
  275. #ifdef VERBOSE_DEBUG
  276. if (dd->flags & AES_FLAGS_DUMP_REG) {
  277. char tmp[16];
  278. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  279. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  280. }
  281. #endif /* VERBOSE_DEBUG */
  282. return value;
  283. }
  284. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  285. u32 offset, u32 value)
  286. {
  287. #ifdef VERBOSE_DEBUG
  288. if (dd->flags & AES_FLAGS_DUMP_REG) {
  289. char tmp[16];
  290. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  291. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  292. }
  293. #endif /* VERBOSE_DEBUG */
  294. writel_relaxed(value, dd->io_base + offset);
  295. }
  296. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  297. u32 *value, int count)
  298. {
  299. for (; count--; value++, offset += 4)
  300. *value = atmel_aes_read(dd, offset);
  301. }
  302. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  303. const u32 *value, int count)
  304. {
  305. for (; count--; value++, offset += 4)
  306. atmel_aes_write(dd, offset, *value);
  307. }
  308. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  309. u32 *value)
  310. {
  311. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  312. }
  313. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  314. const u32 *value)
  315. {
  316. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  317. }
  318. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  319. atmel_aes_fn_t resume)
  320. {
  321. u32 isr = atmel_aes_read(dd, AES_ISR);
  322. if (unlikely(isr & AES_INT_DATARDY))
  323. return resume(dd);
  324. dd->resume = resume;
  325. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  326. return -EINPROGRESS;
  327. }
  328. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  329. {
  330. len &= block_size - 1;
  331. return len ? block_size - len : 0;
  332. }
  333. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  334. {
  335. struct atmel_aes_dev *aes_dd = NULL;
  336. struct atmel_aes_dev *tmp;
  337. spin_lock_bh(&atmel_aes.lock);
  338. if (!ctx->dd) {
  339. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  340. aes_dd = tmp;
  341. break;
  342. }
  343. ctx->dd = aes_dd;
  344. } else {
  345. aes_dd = ctx->dd;
  346. }
  347. spin_unlock_bh(&atmel_aes.lock);
  348. return aes_dd;
  349. }
  350. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  351. {
  352. int err;
  353. err = clk_enable(dd->iclk);
  354. if (err)
  355. return err;
  356. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  357. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  358. return 0;
  359. }
  360. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  361. {
  362. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  363. }
  364. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  365. {
  366. int err;
  367. err = atmel_aes_hw_init(dd);
  368. if (err)
  369. return err;
  370. dd->hw_version = atmel_aes_get_version(dd);
  371. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  372. clk_disable(dd->iclk);
  373. return 0;
  374. }
  375. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  376. const struct atmel_aes_reqctx *rctx)
  377. {
  378. /* Clear all but persistent flags and set request flags. */
  379. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  380. }
  381. static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
  382. {
  383. return (dd->flags & AES_FLAGS_ENCRYPT);
  384. }
  385. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  386. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
  387. #endif
  388. static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
  389. {
  390. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  391. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  392. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  393. unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  394. if (req->nbytes < ivsize)
  395. return;
  396. if (rctx->mode & AES_FLAGS_ENCRYPT) {
  397. scatterwalk_map_and_copy(req->info, req->dst,
  398. req->nbytes - ivsize, ivsize, 0);
  399. } else {
  400. if (req->src == req->dst)
  401. memcpy(req->info, rctx->lastc, ivsize);
  402. else
  403. scatterwalk_map_and_copy(req->info, req->src,
  404. req->nbytes - ivsize,
  405. ivsize, 0);
  406. }
  407. }
  408. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  409. {
  410. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  411. if (dd->ctx->is_aead)
  412. atmel_aes_authenc_complete(dd, err);
  413. #endif
  414. clk_disable(dd->iclk);
  415. dd->flags &= ~AES_FLAGS_BUSY;
  416. if (!dd->ctx->is_aead)
  417. atmel_aes_set_iv_as_last_ciphertext_block(dd);
  418. if (dd->is_async)
  419. dd->areq->complete(dd->areq, err);
  420. tasklet_schedule(&dd->queue_task);
  421. return err;
  422. }
  423. static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
  424. const u32 *iv, const u32 *key, int keylen)
  425. {
  426. u32 valmr = 0;
  427. /* MR register must be set before IV registers */
  428. if (keylen == AES_KEYSIZE_128)
  429. valmr |= AES_MR_KEYSIZE_128;
  430. else if (keylen == AES_KEYSIZE_192)
  431. valmr |= AES_MR_KEYSIZE_192;
  432. else
  433. valmr |= AES_MR_KEYSIZE_256;
  434. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  435. if (use_dma) {
  436. valmr |= AES_MR_SMOD_IDATAR0;
  437. if (dd->caps.has_dualbuff)
  438. valmr |= AES_MR_DUALBUFF;
  439. } else {
  440. valmr |= AES_MR_SMOD_AUTO;
  441. }
  442. atmel_aes_write(dd, AES_MR, valmr);
  443. atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
  444. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  445. atmel_aes_write_block(dd, AES_IVR(0), iv);
  446. }
  447. static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  448. const u32 *iv)
  449. {
  450. atmel_aes_write_ctrl_key(dd, use_dma, iv,
  451. dd->ctx->key, dd->ctx->keylen);
  452. }
  453. /* CPU transfer */
  454. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  455. {
  456. int err = 0;
  457. u32 isr;
  458. for (;;) {
  459. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  460. dd->data += 4;
  461. dd->datalen -= AES_BLOCK_SIZE;
  462. if (dd->datalen < AES_BLOCK_SIZE)
  463. break;
  464. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  465. isr = atmel_aes_read(dd, AES_ISR);
  466. if (!(isr & AES_INT_DATARDY)) {
  467. dd->resume = atmel_aes_cpu_transfer;
  468. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  469. return -EINPROGRESS;
  470. }
  471. }
  472. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  473. dd->buf, dd->total))
  474. err = -EINVAL;
  475. if (err)
  476. return atmel_aes_complete(dd, err);
  477. return dd->cpu_transfer_complete(dd);
  478. }
  479. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  480. struct scatterlist *src,
  481. struct scatterlist *dst,
  482. size_t len,
  483. atmel_aes_fn_t resume)
  484. {
  485. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  486. if (unlikely(len == 0))
  487. return -EINVAL;
  488. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  489. dd->total = len;
  490. dd->real_dst = dst;
  491. dd->cpu_transfer_complete = resume;
  492. dd->datalen = len + padlen;
  493. dd->data = (u32 *)dd->buf;
  494. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  495. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  496. }
  497. /* DMA transfer */
  498. static void atmel_aes_dma_callback(void *data);
  499. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  500. struct scatterlist *sg,
  501. size_t len,
  502. struct atmel_aes_dma *dma)
  503. {
  504. int nents;
  505. if (!IS_ALIGNED(len, dd->ctx->block_size))
  506. return false;
  507. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  508. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  509. return false;
  510. if (len <= sg->length) {
  511. if (!IS_ALIGNED(len, dd->ctx->block_size))
  512. return false;
  513. dma->nents = nents+1;
  514. dma->remainder = sg->length - len;
  515. sg->length = len;
  516. return true;
  517. }
  518. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  519. return false;
  520. len -= sg->length;
  521. }
  522. return false;
  523. }
  524. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  525. {
  526. struct scatterlist *sg = dma->sg;
  527. int nents = dma->nents;
  528. if (!dma->remainder)
  529. return;
  530. while (--nents > 0 && sg)
  531. sg = sg_next(sg);
  532. if (!sg)
  533. return;
  534. sg->length += dma->remainder;
  535. }
  536. static int atmel_aes_map(struct atmel_aes_dev *dd,
  537. struct scatterlist *src,
  538. struct scatterlist *dst,
  539. size_t len)
  540. {
  541. bool src_aligned, dst_aligned;
  542. size_t padlen;
  543. dd->total = len;
  544. dd->src.sg = src;
  545. dd->dst.sg = dst;
  546. dd->real_dst = dst;
  547. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  548. if (src == dst)
  549. dst_aligned = src_aligned;
  550. else
  551. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  552. if (!src_aligned || !dst_aligned) {
  553. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  554. if (dd->buflen < len + padlen)
  555. return -ENOMEM;
  556. if (!src_aligned) {
  557. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  558. dd->src.sg = &dd->aligned_sg;
  559. dd->src.nents = 1;
  560. dd->src.remainder = 0;
  561. }
  562. if (!dst_aligned) {
  563. dd->dst.sg = &dd->aligned_sg;
  564. dd->dst.nents = 1;
  565. dd->dst.remainder = 0;
  566. }
  567. sg_init_table(&dd->aligned_sg, 1);
  568. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  569. }
  570. if (dd->src.sg == dd->dst.sg) {
  571. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  572. DMA_BIDIRECTIONAL);
  573. dd->dst.sg_len = dd->src.sg_len;
  574. if (!dd->src.sg_len)
  575. return -EFAULT;
  576. } else {
  577. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  578. DMA_TO_DEVICE);
  579. if (!dd->src.sg_len)
  580. return -EFAULT;
  581. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  582. DMA_FROM_DEVICE);
  583. if (!dd->dst.sg_len) {
  584. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  585. DMA_TO_DEVICE);
  586. return -EFAULT;
  587. }
  588. }
  589. return 0;
  590. }
  591. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  592. {
  593. if (dd->src.sg == dd->dst.sg) {
  594. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  595. DMA_BIDIRECTIONAL);
  596. if (dd->src.sg != &dd->aligned_sg)
  597. atmel_aes_restore_sg(&dd->src);
  598. } else {
  599. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  600. DMA_FROM_DEVICE);
  601. if (dd->dst.sg != &dd->aligned_sg)
  602. atmel_aes_restore_sg(&dd->dst);
  603. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  604. DMA_TO_DEVICE);
  605. if (dd->src.sg != &dd->aligned_sg)
  606. atmel_aes_restore_sg(&dd->src);
  607. }
  608. if (dd->dst.sg == &dd->aligned_sg)
  609. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  610. dd->buf, dd->total);
  611. }
  612. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  613. enum dma_slave_buswidth addr_width,
  614. enum dma_transfer_direction dir,
  615. u32 maxburst)
  616. {
  617. struct dma_async_tx_descriptor *desc;
  618. struct dma_slave_config config;
  619. dma_async_tx_callback callback;
  620. struct atmel_aes_dma *dma;
  621. int err;
  622. memset(&config, 0, sizeof(config));
  623. config.direction = dir;
  624. config.src_addr_width = addr_width;
  625. config.dst_addr_width = addr_width;
  626. config.src_maxburst = maxburst;
  627. config.dst_maxburst = maxburst;
  628. switch (dir) {
  629. case DMA_MEM_TO_DEV:
  630. dma = &dd->src;
  631. callback = NULL;
  632. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  633. break;
  634. case DMA_DEV_TO_MEM:
  635. dma = &dd->dst;
  636. callback = atmel_aes_dma_callback;
  637. config.src_addr = dd->phys_base + AES_ODATAR(0);
  638. break;
  639. default:
  640. return -EINVAL;
  641. }
  642. err = dmaengine_slave_config(dma->chan, &config);
  643. if (err)
  644. return err;
  645. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  646. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  647. if (!desc)
  648. return -ENOMEM;
  649. desc->callback = callback;
  650. desc->callback_param = dd;
  651. dmaengine_submit(desc);
  652. dma_async_issue_pending(dma->chan);
  653. return 0;
  654. }
  655. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  656. enum dma_transfer_direction dir)
  657. {
  658. struct atmel_aes_dma *dma;
  659. switch (dir) {
  660. case DMA_MEM_TO_DEV:
  661. dma = &dd->src;
  662. break;
  663. case DMA_DEV_TO_MEM:
  664. dma = &dd->dst;
  665. break;
  666. default:
  667. return;
  668. }
  669. dmaengine_terminate_all(dma->chan);
  670. }
  671. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  672. struct scatterlist *src,
  673. struct scatterlist *dst,
  674. size_t len,
  675. atmel_aes_fn_t resume)
  676. {
  677. enum dma_slave_buswidth addr_width;
  678. u32 maxburst;
  679. int err;
  680. switch (dd->ctx->block_size) {
  681. case CFB8_BLOCK_SIZE:
  682. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  683. maxburst = 1;
  684. break;
  685. case CFB16_BLOCK_SIZE:
  686. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  687. maxburst = 1;
  688. break;
  689. case CFB32_BLOCK_SIZE:
  690. case CFB64_BLOCK_SIZE:
  691. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  692. maxburst = 1;
  693. break;
  694. case AES_BLOCK_SIZE:
  695. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  696. maxburst = dd->caps.max_burst_size;
  697. break;
  698. default:
  699. err = -EINVAL;
  700. goto exit;
  701. }
  702. err = atmel_aes_map(dd, src, dst, len);
  703. if (err)
  704. goto exit;
  705. dd->resume = resume;
  706. /* Set output DMA transfer first */
  707. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  708. maxburst);
  709. if (err)
  710. goto unmap;
  711. /* Then set input DMA transfer */
  712. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  713. maxburst);
  714. if (err)
  715. goto output_transfer_stop;
  716. return -EINPROGRESS;
  717. output_transfer_stop:
  718. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  719. unmap:
  720. atmel_aes_unmap(dd);
  721. exit:
  722. return atmel_aes_complete(dd, err);
  723. }
  724. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  725. {
  726. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  727. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  728. atmel_aes_unmap(dd);
  729. }
  730. static void atmel_aes_dma_callback(void *data)
  731. {
  732. struct atmel_aes_dev *dd = data;
  733. atmel_aes_dma_stop(dd);
  734. dd->is_async = true;
  735. (void)dd->resume(dd);
  736. }
  737. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  738. struct crypto_async_request *new_areq)
  739. {
  740. struct crypto_async_request *areq, *backlog;
  741. struct atmel_aes_base_ctx *ctx;
  742. unsigned long flags;
  743. bool start_async;
  744. int err, ret = 0;
  745. spin_lock_irqsave(&dd->lock, flags);
  746. if (new_areq)
  747. ret = crypto_enqueue_request(&dd->queue, new_areq);
  748. if (dd->flags & AES_FLAGS_BUSY) {
  749. spin_unlock_irqrestore(&dd->lock, flags);
  750. return ret;
  751. }
  752. backlog = crypto_get_backlog(&dd->queue);
  753. areq = crypto_dequeue_request(&dd->queue);
  754. if (areq)
  755. dd->flags |= AES_FLAGS_BUSY;
  756. spin_unlock_irqrestore(&dd->lock, flags);
  757. if (!areq)
  758. return ret;
  759. if (backlog)
  760. backlog->complete(backlog, -EINPROGRESS);
  761. ctx = crypto_tfm_ctx(areq->tfm);
  762. dd->areq = areq;
  763. dd->ctx = ctx;
  764. start_async = (areq != new_areq);
  765. dd->is_async = start_async;
  766. /* WARNING: ctx->start() MAY change dd->is_async. */
  767. err = ctx->start(dd);
  768. return (start_async) ? ret : err;
  769. }
  770. /* AES async block ciphers */
  771. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  772. {
  773. return atmel_aes_complete(dd, 0);
  774. }
  775. static int atmel_aes_start(struct atmel_aes_dev *dd)
  776. {
  777. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  778. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  779. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  780. dd->ctx->block_size != AES_BLOCK_SIZE);
  781. int err;
  782. atmel_aes_set_mode(dd, rctx);
  783. err = atmel_aes_hw_init(dd);
  784. if (err)
  785. return atmel_aes_complete(dd, err);
  786. atmel_aes_write_ctrl(dd, use_dma, req->info);
  787. if (use_dma)
  788. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  789. atmel_aes_transfer_complete);
  790. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  791. atmel_aes_transfer_complete);
  792. }
  793. static inline struct atmel_aes_ctr_ctx *
  794. atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
  795. {
  796. return container_of(ctx, struct atmel_aes_ctr_ctx, base);
  797. }
  798. static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
  799. {
  800. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  801. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  802. struct scatterlist *src, *dst;
  803. size_t datalen;
  804. u32 ctr;
  805. u16 blocks, start, end;
  806. bool use_dma, fragmented = false;
  807. /* Check for transfer completion. */
  808. ctx->offset += dd->total;
  809. if (ctx->offset >= req->nbytes)
  810. return atmel_aes_transfer_complete(dd);
  811. /* Compute data length. */
  812. datalen = req->nbytes - ctx->offset;
  813. blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
  814. ctr = be32_to_cpu(ctx->iv[3]);
  815. /* Check 16bit counter overflow. */
  816. start = ctr & 0xffff;
  817. end = start + blocks - 1;
  818. if (blocks >> 16 || end < start) {
  819. ctr |= 0xffff;
  820. datalen = AES_BLOCK_SIZE * (0x10000 - start);
  821. fragmented = true;
  822. }
  823. use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
  824. /* Jump to offset. */
  825. src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
  826. dst = ((req->src == req->dst) ? src :
  827. scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
  828. /* Configure hardware. */
  829. atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
  830. if (unlikely(fragmented)) {
  831. /*
  832. * Increment the counter manually to cope with the hardware
  833. * counter overflow.
  834. */
  835. ctx->iv[3] = cpu_to_be32(ctr);
  836. crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
  837. }
  838. if (use_dma)
  839. return atmel_aes_dma_start(dd, src, dst, datalen,
  840. atmel_aes_ctr_transfer);
  841. return atmel_aes_cpu_start(dd, src, dst, datalen,
  842. atmel_aes_ctr_transfer);
  843. }
  844. static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
  845. {
  846. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  847. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  848. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  849. int err;
  850. atmel_aes_set_mode(dd, rctx);
  851. err = atmel_aes_hw_init(dd);
  852. if (err)
  853. return atmel_aes_complete(dd, err);
  854. memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
  855. ctx->offset = 0;
  856. dd->total = 0;
  857. return atmel_aes_ctr_transfer(dd);
  858. }
  859. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  860. {
  861. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  862. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  863. struct atmel_aes_reqctx *rctx;
  864. struct atmel_aes_dev *dd;
  865. switch (mode & AES_FLAGS_OPMODE_MASK) {
  866. case AES_FLAGS_CFB8:
  867. ctx->block_size = CFB8_BLOCK_SIZE;
  868. break;
  869. case AES_FLAGS_CFB16:
  870. ctx->block_size = CFB16_BLOCK_SIZE;
  871. break;
  872. case AES_FLAGS_CFB32:
  873. ctx->block_size = CFB32_BLOCK_SIZE;
  874. break;
  875. case AES_FLAGS_CFB64:
  876. ctx->block_size = CFB64_BLOCK_SIZE;
  877. break;
  878. default:
  879. ctx->block_size = AES_BLOCK_SIZE;
  880. break;
  881. }
  882. ctx->is_aead = false;
  883. dd = atmel_aes_find_dev(ctx);
  884. if (!dd)
  885. return -ENODEV;
  886. rctx = ablkcipher_request_ctx(req);
  887. rctx->mode = mode;
  888. if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
  889. unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  890. if (req->nbytes >= ivsize)
  891. scatterwalk_map_and_copy(rctx->lastc, req->src,
  892. req->nbytes - ivsize,
  893. ivsize, 0);
  894. }
  895. return atmel_aes_handle_queue(dd, &req->base);
  896. }
  897. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  898. unsigned int keylen)
  899. {
  900. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  901. if (keylen != AES_KEYSIZE_128 &&
  902. keylen != AES_KEYSIZE_192 &&
  903. keylen != AES_KEYSIZE_256) {
  904. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  905. return -EINVAL;
  906. }
  907. memcpy(ctx->key, key, keylen);
  908. ctx->keylen = keylen;
  909. return 0;
  910. }
  911. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  912. {
  913. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  914. }
  915. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  916. {
  917. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  918. }
  919. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  920. {
  921. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  922. }
  923. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  924. {
  925. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  926. }
  927. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  928. {
  929. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  930. }
  931. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  932. {
  933. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  934. }
  935. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  936. {
  937. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  938. }
  939. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  940. {
  941. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  942. }
  943. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  944. {
  945. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  946. }
  947. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  948. {
  949. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  950. }
  951. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  952. {
  953. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  954. }
  955. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  956. {
  957. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  958. }
  959. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  960. {
  961. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  962. }
  963. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  964. {
  965. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  966. }
  967. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  968. {
  969. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  970. }
  971. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  972. {
  973. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  974. }
  975. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  976. {
  977. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  978. }
  979. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  980. {
  981. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  982. }
  983. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  984. {
  985. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  986. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  987. ctx->base.start = atmel_aes_start;
  988. return 0;
  989. }
  990. static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
  991. {
  992. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  993. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  994. ctx->base.start = atmel_aes_ctr_start;
  995. return 0;
  996. }
  997. static struct crypto_alg aes_algs[] = {
  998. {
  999. .cra_name = "ecb(aes)",
  1000. .cra_driver_name = "atmel-ecb-aes",
  1001. .cra_priority = ATMEL_AES_PRIORITY,
  1002. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1003. .cra_blocksize = AES_BLOCK_SIZE,
  1004. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1005. .cra_alignmask = 0xf,
  1006. .cra_type = &crypto_ablkcipher_type,
  1007. .cra_module = THIS_MODULE,
  1008. .cra_init = atmel_aes_cra_init,
  1009. .cra_u.ablkcipher = {
  1010. .min_keysize = AES_MIN_KEY_SIZE,
  1011. .max_keysize = AES_MAX_KEY_SIZE,
  1012. .setkey = atmel_aes_setkey,
  1013. .encrypt = atmel_aes_ecb_encrypt,
  1014. .decrypt = atmel_aes_ecb_decrypt,
  1015. }
  1016. },
  1017. {
  1018. .cra_name = "cbc(aes)",
  1019. .cra_driver_name = "atmel-cbc-aes",
  1020. .cra_priority = ATMEL_AES_PRIORITY,
  1021. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1022. .cra_blocksize = AES_BLOCK_SIZE,
  1023. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1024. .cra_alignmask = 0xf,
  1025. .cra_type = &crypto_ablkcipher_type,
  1026. .cra_module = THIS_MODULE,
  1027. .cra_init = atmel_aes_cra_init,
  1028. .cra_u.ablkcipher = {
  1029. .min_keysize = AES_MIN_KEY_SIZE,
  1030. .max_keysize = AES_MAX_KEY_SIZE,
  1031. .ivsize = AES_BLOCK_SIZE,
  1032. .setkey = atmel_aes_setkey,
  1033. .encrypt = atmel_aes_cbc_encrypt,
  1034. .decrypt = atmel_aes_cbc_decrypt,
  1035. }
  1036. },
  1037. {
  1038. .cra_name = "ofb(aes)",
  1039. .cra_driver_name = "atmel-ofb-aes",
  1040. .cra_priority = ATMEL_AES_PRIORITY,
  1041. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1042. .cra_blocksize = AES_BLOCK_SIZE,
  1043. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1044. .cra_alignmask = 0xf,
  1045. .cra_type = &crypto_ablkcipher_type,
  1046. .cra_module = THIS_MODULE,
  1047. .cra_init = atmel_aes_cra_init,
  1048. .cra_u.ablkcipher = {
  1049. .min_keysize = AES_MIN_KEY_SIZE,
  1050. .max_keysize = AES_MAX_KEY_SIZE,
  1051. .ivsize = AES_BLOCK_SIZE,
  1052. .setkey = atmel_aes_setkey,
  1053. .encrypt = atmel_aes_ofb_encrypt,
  1054. .decrypt = atmel_aes_ofb_decrypt,
  1055. }
  1056. },
  1057. {
  1058. .cra_name = "cfb(aes)",
  1059. .cra_driver_name = "atmel-cfb-aes",
  1060. .cra_priority = ATMEL_AES_PRIORITY,
  1061. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1062. .cra_blocksize = AES_BLOCK_SIZE,
  1063. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1064. .cra_alignmask = 0xf,
  1065. .cra_type = &crypto_ablkcipher_type,
  1066. .cra_module = THIS_MODULE,
  1067. .cra_init = atmel_aes_cra_init,
  1068. .cra_u.ablkcipher = {
  1069. .min_keysize = AES_MIN_KEY_SIZE,
  1070. .max_keysize = AES_MAX_KEY_SIZE,
  1071. .ivsize = AES_BLOCK_SIZE,
  1072. .setkey = atmel_aes_setkey,
  1073. .encrypt = atmel_aes_cfb_encrypt,
  1074. .decrypt = atmel_aes_cfb_decrypt,
  1075. }
  1076. },
  1077. {
  1078. .cra_name = "cfb32(aes)",
  1079. .cra_driver_name = "atmel-cfb32-aes",
  1080. .cra_priority = ATMEL_AES_PRIORITY,
  1081. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1082. .cra_blocksize = CFB32_BLOCK_SIZE,
  1083. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1084. .cra_alignmask = 0x3,
  1085. .cra_type = &crypto_ablkcipher_type,
  1086. .cra_module = THIS_MODULE,
  1087. .cra_init = atmel_aes_cra_init,
  1088. .cra_u.ablkcipher = {
  1089. .min_keysize = AES_MIN_KEY_SIZE,
  1090. .max_keysize = AES_MAX_KEY_SIZE,
  1091. .ivsize = AES_BLOCK_SIZE,
  1092. .setkey = atmel_aes_setkey,
  1093. .encrypt = atmel_aes_cfb32_encrypt,
  1094. .decrypt = atmel_aes_cfb32_decrypt,
  1095. }
  1096. },
  1097. {
  1098. .cra_name = "cfb16(aes)",
  1099. .cra_driver_name = "atmel-cfb16-aes",
  1100. .cra_priority = ATMEL_AES_PRIORITY,
  1101. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1102. .cra_blocksize = CFB16_BLOCK_SIZE,
  1103. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1104. .cra_alignmask = 0x1,
  1105. .cra_type = &crypto_ablkcipher_type,
  1106. .cra_module = THIS_MODULE,
  1107. .cra_init = atmel_aes_cra_init,
  1108. .cra_u.ablkcipher = {
  1109. .min_keysize = AES_MIN_KEY_SIZE,
  1110. .max_keysize = AES_MAX_KEY_SIZE,
  1111. .ivsize = AES_BLOCK_SIZE,
  1112. .setkey = atmel_aes_setkey,
  1113. .encrypt = atmel_aes_cfb16_encrypt,
  1114. .decrypt = atmel_aes_cfb16_decrypt,
  1115. }
  1116. },
  1117. {
  1118. .cra_name = "cfb8(aes)",
  1119. .cra_driver_name = "atmel-cfb8-aes",
  1120. .cra_priority = ATMEL_AES_PRIORITY,
  1121. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1122. .cra_blocksize = CFB8_BLOCK_SIZE,
  1123. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1124. .cra_alignmask = 0x0,
  1125. .cra_type = &crypto_ablkcipher_type,
  1126. .cra_module = THIS_MODULE,
  1127. .cra_init = atmel_aes_cra_init,
  1128. .cra_u.ablkcipher = {
  1129. .min_keysize = AES_MIN_KEY_SIZE,
  1130. .max_keysize = AES_MAX_KEY_SIZE,
  1131. .ivsize = AES_BLOCK_SIZE,
  1132. .setkey = atmel_aes_setkey,
  1133. .encrypt = atmel_aes_cfb8_encrypt,
  1134. .decrypt = atmel_aes_cfb8_decrypt,
  1135. }
  1136. },
  1137. {
  1138. .cra_name = "ctr(aes)",
  1139. .cra_driver_name = "atmel-ctr-aes",
  1140. .cra_priority = ATMEL_AES_PRIORITY,
  1141. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1142. .cra_blocksize = 1,
  1143. .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
  1144. .cra_alignmask = 0xf,
  1145. .cra_type = &crypto_ablkcipher_type,
  1146. .cra_module = THIS_MODULE,
  1147. .cra_init = atmel_aes_ctr_cra_init,
  1148. .cra_u.ablkcipher = {
  1149. .min_keysize = AES_MIN_KEY_SIZE,
  1150. .max_keysize = AES_MAX_KEY_SIZE,
  1151. .ivsize = AES_BLOCK_SIZE,
  1152. .setkey = atmel_aes_setkey,
  1153. .encrypt = atmel_aes_ctr_encrypt,
  1154. .decrypt = atmel_aes_ctr_decrypt,
  1155. }
  1156. },
  1157. };
  1158. static struct crypto_alg aes_cfb64_alg = {
  1159. .cra_name = "cfb64(aes)",
  1160. .cra_driver_name = "atmel-cfb64-aes",
  1161. .cra_priority = ATMEL_AES_PRIORITY,
  1162. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1163. .cra_blocksize = CFB64_BLOCK_SIZE,
  1164. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1165. .cra_alignmask = 0x7,
  1166. .cra_type = &crypto_ablkcipher_type,
  1167. .cra_module = THIS_MODULE,
  1168. .cra_init = atmel_aes_cra_init,
  1169. .cra_u.ablkcipher = {
  1170. .min_keysize = AES_MIN_KEY_SIZE,
  1171. .max_keysize = AES_MAX_KEY_SIZE,
  1172. .ivsize = AES_BLOCK_SIZE,
  1173. .setkey = atmel_aes_setkey,
  1174. .encrypt = atmel_aes_cfb64_encrypt,
  1175. .decrypt = atmel_aes_cfb64_decrypt,
  1176. }
  1177. };
  1178. /* gcm aead functions */
  1179. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1180. const u32 *data, size_t datalen,
  1181. const u32 *ghash_in, u32 *ghash_out,
  1182. atmel_aes_fn_t resume);
  1183. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
  1184. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
  1185. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
  1186. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
  1187. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
  1188. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
  1189. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
  1190. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
  1191. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
  1192. static inline struct atmel_aes_gcm_ctx *
  1193. atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1194. {
  1195. return container_of(ctx, struct atmel_aes_gcm_ctx, base);
  1196. }
  1197. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1198. const u32 *data, size_t datalen,
  1199. const u32 *ghash_in, u32 *ghash_out,
  1200. atmel_aes_fn_t resume)
  1201. {
  1202. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1203. dd->data = (u32 *)data;
  1204. dd->datalen = datalen;
  1205. ctx->ghash_in = ghash_in;
  1206. ctx->ghash_out = ghash_out;
  1207. ctx->ghash_resume = resume;
  1208. atmel_aes_write_ctrl(dd, false, NULL);
  1209. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
  1210. }
  1211. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
  1212. {
  1213. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1214. /* Set the data length. */
  1215. atmel_aes_write(dd, AES_AADLENR, dd->total);
  1216. atmel_aes_write(dd, AES_CLENR, 0);
  1217. /* If needed, overwrite the GCM Intermediate Hash Word Registers */
  1218. if (ctx->ghash_in)
  1219. atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
  1220. return atmel_aes_gcm_ghash_finalize(dd);
  1221. }
  1222. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
  1223. {
  1224. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1225. u32 isr;
  1226. /* Write data into the Input Data Registers. */
  1227. while (dd->datalen > 0) {
  1228. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1229. dd->data += 4;
  1230. dd->datalen -= AES_BLOCK_SIZE;
  1231. isr = atmel_aes_read(dd, AES_ISR);
  1232. if (!(isr & AES_INT_DATARDY)) {
  1233. dd->resume = atmel_aes_gcm_ghash_finalize;
  1234. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1235. return -EINPROGRESS;
  1236. }
  1237. }
  1238. /* Read the computed hash from GHASHRx. */
  1239. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
  1240. return ctx->ghash_resume(dd);
  1241. }
  1242. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
  1243. {
  1244. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1245. struct aead_request *req = aead_request_cast(dd->areq);
  1246. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1247. struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
  1248. size_t ivsize = crypto_aead_ivsize(tfm);
  1249. size_t datalen, padlen;
  1250. const void *iv = req->iv;
  1251. u8 *data = dd->buf;
  1252. int err;
  1253. atmel_aes_set_mode(dd, rctx);
  1254. err = atmel_aes_hw_init(dd);
  1255. if (err)
  1256. return atmel_aes_complete(dd, err);
  1257. if (likely(ivsize == GCM_AES_IV_SIZE)) {
  1258. memcpy(ctx->j0, iv, ivsize);
  1259. ctx->j0[3] = cpu_to_be32(1);
  1260. return atmel_aes_gcm_process(dd);
  1261. }
  1262. padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
  1263. datalen = ivsize + padlen + AES_BLOCK_SIZE;
  1264. if (datalen > dd->buflen)
  1265. return atmel_aes_complete(dd, -EINVAL);
  1266. memcpy(data, iv, ivsize);
  1267. memset(data + ivsize, 0, padlen + sizeof(u64));
  1268. ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
  1269. return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
  1270. NULL, ctx->j0, atmel_aes_gcm_process);
  1271. }
  1272. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
  1273. {
  1274. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1275. struct aead_request *req = aead_request_cast(dd->areq);
  1276. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1277. bool enc = atmel_aes_is_encrypt(dd);
  1278. u32 authsize;
  1279. /* Compute text length. */
  1280. authsize = crypto_aead_authsize(tfm);
  1281. ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1282. /*
  1283. * According to tcrypt test suite, the GCM Automatic Tag Generation
  1284. * fails when both the message and its associated data are empty.
  1285. */
  1286. if (likely(req->assoclen != 0 || ctx->textlen != 0))
  1287. dd->flags |= AES_FLAGS_GTAGEN;
  1288. atmel_aes_write_ctrl(dd, false, NULL);
  1289. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
  1290. }
  1291. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
  1292. {
  1293. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1294. struct aead_request *req = aead_request_cast(dd->areq);
  1295. u32 j0_lsw, *j0 = ctx->j0;
  1296. size_t padlen;
  1297. /* Write incr32(J0) into IV. */
  1298. j0_lsw = j0[3];
  1299. j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
  1300. atmel_aes_write_block(dd, AES_IVR(0), j0);
  1301. j0[3] = j0_lsw;
  1302. /* Set aad and text lengths. */
  1303. atmel_aes_write(dd, AES_AADLENR, req->assoclen);
  1304. atmel_aes_write(dd, AES_CLENR, ctx->textlen);
  1305. /* Check whether AAD are present. */
  1306. if (unlikely(req->assoclen == 0)) {
  1307. dd->datalen = 0;
  1308. return atmel_aes_gcm_data(dd);
  1309. }
  1310. /* Copy assoc data and add padding. */
  1311. padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
  1312. if (unlikely(req->assoclen + padlen > dd->buflen))
  1313. return atmel_aes_complete(dd, -EINVAL);
  1314. sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
  1315. /* Write assoc data into the Input Data register. */
  1316. dd->data = (u32 *)dd->buf;
  1317. dd->datalen = req->assoclen + padlen;
  1318. return atmel_aes_gcm_data(dd);
  1319. }
  1320. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
  1321. {
  1322. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1323. struct aead_request *req = aead_request_cast(dd->areq);
  1324. bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
  1325. struct scatterlist *src, *dst;
  1326. u32 isr, mr;
  1327. /* Write AAD first. */
  1328. while (dd->datalen > 0) {
  1329. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1330. dd->data += 4;
  1331. dd->datalen -= AES_BLOCK_SIZE;
  1332. isr = atmel_aes_read(dd, AES_ISR);
  1333. if (!(isr & AES_INT_DATARDY)) {
  1334. dd->resume = atmel_aes_gcm_data;
  1335. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1336. return -EINPROGRESS;
  1337. }
  1338. }
  1339. /* GMAC only. */
  1340. if (unlikely(ctx->textlen == 0))
  1341. return atmel_aes_gcm_tag_init(dd);
  1342. /* Prepare src and dst scatter lists to transfer cipher/plain texts */
  1343. src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
  1344. dst = ((req->src == req->dst) ? src :
  1345. scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
  1346. if (use_dma) {
  1347. /* Update the Mode Register for DMA transfers. */
  1348. mr = atmel_aes_read(dd, AES_MR);
  1349. mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
  1350. mr |= AES_MR_SMOD_IDATAR0;
  1351. if (dd->caps.has_dualbuff)
  1352. mr |= AES_MR_DUALBUFF;
  1353. atmel_aes_write(dd, AES_MR, mr);
  1354. return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
  1355. atmel_aes_gcm_tag_init);
  1356. }
  1357. return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
  1358. atmel_aes_gcm_tag_init);
  1359. }
  1360. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
  1361. {
  1362. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1363. struct aead_request *req = aead_request_cast(dd->areq);
  1364. u64 *data = dd->buf;
  1365. if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
  1366. if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
  1367. dd->resume = atmel_aes_gcm_tag_init;
  1368. atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
  1369. return -EINPROGRESS;
  1370. }
  1371. return atmel_aes_gcm_finalize(dd);
  1372. }
  1373. /* Read the GCM Intermediate Hash Word Registers. */
  1374. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
  1375. data[0] = cpu_to_be64(req->assoclen * 8);
  1376. data[1] = cpu_to_be64(ctx->textlen * 8);
  1377. return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
  1378. ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
  1379. }
  1380. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
  1381. {
  1382. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1383. unsigned long flags;
  1384. /*
  1385. * Change mode to CTR to complete the tag generation.
  1386. * Use J0 as Initialization Vector.
  1387. */
  1388. flags = dd->flags;
  1389. dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
  1390. dd->flags |= AES_FLAGS_CTR;
  1391. atmel_aes_write_ctrl(dd, false, ctx->j0);
  1392. dd->flags = flags;
  1393. atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
  1394. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
  1395. }
  1396. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
  1397. {
  1398. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1399. struct aead_request *req = aead_request_cast(dd->areq);
  1400. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1401. bool enc = atmel_aes_is_encrypt(dd);
  1402. u32 offset, authsize, itag[4], *otag = ctx->tag;
  1403. int err;
  1404. /* Read the computed tag. */
  1405. if (likely(dd->flags & AES_FLAGS_GTAGEN))
  1406. atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
  1407. else
  1408. atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
  1409. offset = req->assoclen + ctx->textlen;
  1410. authsize = crypto_aead_authsize(tfm);
  1411. if (enc) {
  1412. scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
  1413. err = 0;
  1414. } else {
  1415. scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
  1416. err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
  1417. }
  1418. return atmel_aes_complete(dd, err);
  1419. }
  1420. static int atmel_aes_gcm_crypt(struct aead_request *req,
  1421. unsigned long mode)
  1422. {
  1423. struct atmel_aes_base_ctx *ctx;
  1424. struct atmel_aes_reqctx *rctx;
  1425. struct atmel_aes_dev *dd;
  1426. ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1427. ctx->block_size = AES_BLOCK_SIZE;
  1428. ctx->is_aead = true;
  1429. dd = atmel_aes_find_dev(ctx);
  1430. if (!dd)
  1431. return -ENODEV;
  1432. rctx = aead_request_ctx(req);
  1433. rctx->mode = AES_FLAGS_GCM | mode;
  1434. return atmel_aes_handle_queue(dd, &req->base);
  1435. }
  1436. static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1437. unsigned int keylen)
  1438. {
  1439. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1440. if (keylen != AES_KEYSIZE_256 &&
  1441. keylen != AES_KEYSIZE_192 &&
  1442. keylen != AES_KEYSIZE_128) {
  1443. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1444. return -EINVAL;
  1445. }
  1446. memcpy(ctx->key, key, keylen);
  1447. ctx->keylen = keylen;
  1448. return 0;
  1449. }
  1450. static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
  1451. unsigned int authsize)
  1452. {
  1453. /* Same as crypto_gcm_authsize() from crypto/gcm.c */
  1454. switch (authsize) {
  1455. case 4:
  1456. case 8:
  1457. case 12:
  1458. case 13:
  1459. case 14:
  1460. case 15:
  1461. case 16:
  1462. break;
  1463. default:
  1464. return -EINVAL;
  1465. }
  1466. return 0;
  1467. }
  1468. static int atmel_aes_gcm_encrypt(struct aead_request *req)
  1469. {
  1470. return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
  1471. }
  1472. static int atmel_aes_gcm_decrypt(struct aead_request *req)
  1473. {
  1474. return atmel_aes_gcm_crypt(req, 0);
  1475. }
  1476. static int atmel_aes_gcm_init(struct crypto_aead *tfm)
  1477. {
  1478. struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  1479. crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
  1480. ctx->base.start = atmel_aes_gcm_start;
  1481. return 0;
  1482. }
  1483. static struct aead_alg aes_gcm_alg = {
  1484. .setkey = atmel_aes_gcm_setkey,
  1485. .setauthsize = atmel_aes_gcm_setauthsize,
  1486. .encrypt = atmel_aes_gcm_encrypt,
  1487. .decrypt = atmel_aes_gcm_decrypt,
  1488. .init = atmel_aes_gcm_init,
  1489. .ivsize = GCM_AES_IV_SIZE,
  1490. .maxauthsize = AES_BLOCK_SIZE,
  1491. .base = {
  1492. .cra_name = "gcm(aes)",
  1493. .cra_driver_name = "atmel-gcm-aes",
  1494. .cra_priority = ATMEL_AES_PRIORITY,
  1495. .cra_flags = CRYPTO_ALG_ASYNC,
  1496. .cra_blocksize = 1,
  1497. .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
  1498. .cra_alignmask = 0xf,
  1499. .cra_module = THIS_MODULE,
  1500. },
  1501. };
  1502. /* xts functions */
  1503. static inline struct atmel_aes_xts_ctx *
  1504. atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1505. {
  1506. return container_of(ctx, struct atmel_aes_xts_ctx, base);
  1507. }
  1508. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
  1509. static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
  1510. {
  1511. struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
  1512. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1513. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  1514. unsigned long flags;
  1515. int err;
  1516. atmel_aes_set_mode(dd, rctx);
  1517. err = atmel_aes_hw_init(dd);
  1518. if (err)
  1519. return atmel_aes_complete(dd, err);
  1520. /* Compute the tweak value from req->info with ecb(aes). */
  1521. flags = dd->flags;
  1522. dd->flags &= ~AES_FLAGS_MODE_MASK;
  1523. dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  1524. atmel_aes_write_ctrl_key(dd, false, NULL,
  1525. ctx->key2, ctx->base.keylen);
  1526. dd->flags = flags;
  1527. atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
  1528. return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
  1529. }
  1530. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
  1531. {
  1532. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1533. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
  1534. u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
  1535. static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
  1536. u8 *tweak_bytes = (u8 *)tweak;
  1537. int i;
  1538. /* Read the computed ciphered tweak value. */
  1539. atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
  1540. /*
  1541. * Hardware quirk:
  1542. * the order of the ciphered tweak bytes need to be reversed before
  1543. * writing them into the ODATARx registers.
  1544. */
  1545. for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
  1546. u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
  1547. tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
  1548. tweak_bytes[i] = tmp;
  1549. }
  1550. /* Process the data. */
  1551. atmel_aes_write_ctrl(dd, use_dma, NULL);
  1552. atmel_aes_write_block(dd, AES_TWR(0), tweak);
  1553. atmel_aes_write_block(dd, AES_ALPHAR(0), one);
  1554. if (use_dma)
  1555. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  1556. atmel_aes_transfer_complete);
  1557. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  1558. atmel_aes_transfer_complete);
  1559. }
  1560. static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  1561. unsigned int keylen)
  1562. {
  1563. struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  1564. int err;
  1565. err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
  1566. if (err)
  1567. return err;
  1568. memcpy(ctx->base.key, key, keylen/2);
  1569. memcpy(ctx->key2, key + keylen/2, keylen/2);
  1570. ctx->base.keylen = keylen/2;
  1571. return 0;
  1572. }
  1573. static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
  1574. {
  1575. return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
  1576. }
  1577. static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
  1578. {
  1579. return atmel_aes_crypt(req, AES_FLAGS_XTS);
  1580. }
  1581. static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
  1582. {
  1583. struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  1584. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1585. ctx->base.start = atmel_aes_xts_start;
  1586. return 0;
  1587. }
  1588. static struct crypto_alg aes_xts_alg = {
  1589. .cra_name = "xts(aes)",
  1590. .cra_driver_name = "atmel-xts-aes",
  1591. .cra_priority = ATMEL_AES_PRIORITY,
  1592. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1593. .cra_blocksize = AES_BLOCK_SIZE,
  1594. .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
  1595. .cra_alignmask = 0xf,
  1596. .cra_type = &crypto_ablkcipher_type,
  1597. .cra_module = THIS_MODULE,
  1598. .cra_init = atmel_aes_xts_cra_init,
  1599. .cra_u.ablkcipher = {
  1600. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1601. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1602. .ivsize = AES_BLOCK_SIZE,
  1603. .setkey = atmel_aes_xts_setkey,
  1604. .encrypt = atmel_aes_xts_encrypt,
  1605. .decrypt = atmel_aes_xts_decrypt,
  1606. }
  1607. };
  1608. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  1609. /* authenc aead functions */
  1610. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
  1611. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1612. bool is_async);
  1613. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1614. bool is_async);
  1615. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
  1616. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1617. bool is_async);
  1618. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
  1619. {
  1620. struct aead_request *req = aead_request_cast(dd->areq);
  1621. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1622. if (err && (dd->flags & AES_FLAGS_OWN_SHA))
  1623. atmel_sha_authenc_abort(&rctx->auth_req);
  1624. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1625. }
  1626. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
  1627. {
  1628. struct aead_request *req = aead_request_cast(dd->areq);
  1629. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1630. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1631. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1632. int err;
  1633. atmel_aes_set_mode(dd, &rctx->base);
  1634. err = atmel_aes_hw_init(dd);
  1635. if (err)
  1636. return atmel_aes_complete(dd, err);
  1637. return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
  1638. atmel_aes_authenc_init, dd);
  1639. }
  1640. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1641. bool is_async)
  1642. {
  1643. struct aead_request *req = aead_request_cast(dd->areq);
  1644. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1645. if (is_async)
  1646. dd->is_async = true;
  1647. if (err)
  1648. return atmel_aes_complete(dd, err);
  1649. /* If here, we've got the ownership of the SHA device. */
  1650. dd->flags |= AES_FLAGS_OWN_SHA;
  1651. /* Configure the SHA device. */
  1652. return atmel_sha_authenc_init(&rctx->auth_req,
  1653. req->src, req->assoclen,
  1654. rctx->textlen,
  1655. atmel_aes_authenc_transfer, dd);
  1656. }
  1657. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1658. bool is_async)
  1659. {
  1660. struct aead_request *req = aead_request_cast(dd->areq);
  1661. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1662. bool enc = atmel_aes_is_encrypt(dd);
  1663. struct scatterlist *src, *dst;
  1664. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  1665. u32 emr;
  1666. if (is_async)
  1667. dd->is_async = true;
  1668. if (err)
  1669. return atmel_aes_complete(dd, err);
  1670. /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
  1671. src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
  1672. dst = src;
  1673. if (req->src != req->dst)
  1674. dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
  1675. /* Configure the AES device. */
  1676. memcpy(iv, req->iv, sizeof(iv));
  1677. /*
  1678. * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
  1679. * 'true' even if the data transfer is actually performed by the CPU (so
  1680. * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
  1681. * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
  1682. * must be set to *_MR_SMOD_IDATAR0.
  1683. */
  1684. atmel_aes_write_ctrl(dd, true, iv);
  1685. emr = AES_EMR_PLIPEN;
  1686. if (!enc)
  1687. emr |= AES_EMR_PLIPD;
  1688. atmel_aes_write(dd, AES_EMR, emr);
  1689. /* Transfer data. */
  1690. return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
  1691. atmel_aes_authenc_digest);
  1692. }
  1693. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
  1694. {
  1695. struct aead_request *req = aead_request_cast(dd->areq);
  1696. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1697. /* atmel_sha_authenc_final() releases the SHA device. */
  1698. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1699. return atmel_sha_authenc_final(&rctx->auth_req,
  1700. rctx->digest, sizeof(rctx->digest),
  1701. atmel_aes_authenc_final, dd);
  1702. }
  1703. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1704. bool is_async)
  1705. {
  1706. struct aead_request *req = aead_request_cast(dd->areq);
  1707. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1708. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1709. bool enc = atmel_aes_is_encrypt(dd);
  1710. u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
  1711. u32 offs, authsize;
  1712. if (is_async)
  1713. dd->is_async = true;
  1714. if (err)
  1715. goto complete;
  1716. offs = req->assoclen + rctx->textlen;
  1717. authsize = crypto_aead_authsize(tfm);
  1718. if (enc) {
  1719. scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
  1720. } else {
  1721. scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
  1722. if (crypto_memneq(idigest, odigest, authsize))
  1723. err = -EBADMSG;
  1724. }
  1725. complete:
  1726. return atmel_aes_complete(dd, err);
  1727. }
  1728. static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
  1729. unsigned int keylen)
  1730. {
  1731. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1732. struct crypto_authenc_keys keys;
  1733. u32 flags;
  1734. int err;
  1735. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  1736. goto badkey;
  1737. if (keys.enckeylen > sizeof(ctx->base.key))
  1738. goto badkey;
  1739. /* Save auth key. */
  1740. flags = crypto_aead_get_flags(tfm);
  1741. err = atmel_sha_authenc_setkey(ctx->auth,
  1742. keys.authkey, keys.authkeylen,
  1743. &flags);
  1744. crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
  1745. if (err) {
  1746. memzero_explicit(&keys, sizeof(keys));
  1747. return err;
  1748. }
  1749. /* Save enc key. */
  1750. ctx->base.keylen = keys.enckeylen;
  1751. memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
  1752. memzero_explicit(&keys, sizeof(keys));
  1753. return 0;
  1754. badkey:
  1755. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1756. memzero_explicit(&keys, sizeof(keys));
  1757. return -EINVAL;
  1758. }
  1759. static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
  1760. unsigned long auth_mode)
  1761. {
  1762. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1763. unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
  1764. ctx->auth = atmel_sha_authenc_spawn(auth_mode);
  1765. if (IS_ERR(ctx->auth))
  1766. return PTR_ERR(ctx->auth);
  1767. crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
  1768. auth_reqsize));
  1769. ctx->base.start = atmel_aes_authenc_start;
  1770. return 0;
  1771. }
  1772. static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
  1773. {
  1774. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
  1775. }
  1776. static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
  1777. {
  1778. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
  1779. }
  1780. static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
  1781. {
  1782. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
  1783. }
  1784. static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
  1785. {
  1786. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
  1787. }
  1788. static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
  1789. {
  1790. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
  1791. }
  1792. static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
  1793. {
  1794. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1795. atmel_sha_authenc_free(ctx->auth);
  1796. }
  1797. static int atmel_aes_authenc_crypt(struct aead_request *req,
  1798. unsigned long mode)
  1799. {
  1800. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1801. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1802. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1803. u32 authsize = crypto_aead_authsize(tfm);
  1804. bool enc = (mode & AES_FLAGS_ENCRYPT);
  1805. struct atmel_aes_dev *dd;
  1806. /* Compute text length. */
  1807. if (!enc && req->cryptlen < authsize)
  1808. return -EINVAL;
  1809. rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1810. /*
  1811. * Currently, empty messages are not supported yet:
  1812. * the SHA auto-padding can be used only on non-empty messages.
  1813. * Hence a special case needs to be implemented for empty message.
  1814. */
  1815. if (!rctx->textlen && !req->assoclen)
  1816. return -EINVAL;
  1817. rctx->base.mode = mode;
  1818. ctx->block_size = AES_BLOCK_SIZE;
  1819. ctx->is_aead = true;
  1820. dd = atmel_aes_find_dev(ctx);
  1821. if (!dd)
  1822. return -ENODEV;
  1823. return atmel_aes_handle_queue(dd, &req->base);
  1824. }
  1825. static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
  1826. {
  1827. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  1828. }
  1829. static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
  1830. {
  1831. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
  1832. }
  1833. static struct aead_alg aes_authenc_algs[] = {
  1834. {
  1835. .setkey = atmel_aes_authenc_setkey,
  1836. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1837. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1838. .init = atmel_aes_authenc_hmac_sha1_init_tfm,
  1839. .exit = atmel_aes_authenc_exit_tfm,
  1840. .ivsize = AES_BLOCK_SIZE,
  1841. .maxauthsize = SHA1_DIGEST_SIZE,
  1842. .base = {
  1843. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1844. .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
  1845. .cra_priority = ATMEL_AES_PRIORITY,
  1846. .cra_flags = CRYPTO_ALG_ASYNC,
  1847. .cra_blocksize = AES_BLOCK_SIZE,
  1848. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1849. .cra_alignmask = 0xf,
  1850. .cra_module = THIS_MODULE,
  1851. },
  1852. },
  1853. {
  1854. .setkey = atmel_aes_authenc_setkey,
  1855. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1856. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1857. .init = atmel_aes_authenc_hmac_sha224_init_tfm,
  1858. .exit = atmel_aes_authenc_exit_tfm,
  1859. .ivsize = AES_BLOCK_SIZE,
  1860. .maxauthsize = SHA224_DIGEST_SIZE,
  1861. .base = {
  1862. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1863. .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
  1864. .cra_priority = ATMEL_AES_PRIORITY,
  1865. .cra_flags = CRYPTO_ALG_ASYNC,
  1866. .cra_blocksize = AES_BLOCK_SIZE,
  1867. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1868. .cra_alignmask = 0xf,
  1869. .cra_module = THIS_MODULE,
  1870. },
  1871. },
  1872. {
  1873. .setkey = atmel_aes_authenc_setkey,
  1874. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1875. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1876. .init = atmel_aes_authenc_hmac_sha256_init_tfm,
  1877. .exit = atmel_aes_authenc_exit_tfm,
  1878. .ivsize = AES_BLOCK_SIZE,
  1879. .maxauthsize = SHA256_DIGEST_SIZE,
  1880. .base = {
  1881. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1882. .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
  1883. .cra_priority = ATMEL_AES_PRIORITY,
  1884. .cra_flags = CRYPTO_ALG_ASYNC,
  1885. .cra_blocksize = AES_BLOCK_SIZE,
  1886. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1887. .cra_alignmask = 0xf,
  1888. .cra_module = THIS_MODULE,
  1889. },
  1890. },
  1891. {
  1892. .setkey = atmel_aes_authenc_setkey,
  1893. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1894. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1895. .init = atmel_aes_authenc_hmac_sha384_init_tfm,
  1896. .exit = atmel_aes_authenc_exit_tfm,
  1897. .ivsize = AES_BLOCK_SIZE,
  1898. .maxauthsize = SHA384_DIGEST_SIZE,
  1899. .base = {
  1900. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1901. .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
  1902. .cra_priority = ATMEL_AES_PRIORITY,
  1903. .cra_flags = CRYPTO_ALG_ASYNC,
  1904. .cra_blocksize = AES_BLOCK_SIZE,
  1905. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1906. .cra_alignmask = 0xf,
  1907. .cra_module = THIS_MODULE,
  1908. },
  1909. },
  1910. {
  1911. .setkey = atmel_aes_authenc_setkey,
  1912. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1913. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1914. .init = atmel_aes_authenc_hmac_sha512_init_tfm,
  1915. .exit = atmel_aes_authenc_exit_tfm,
  1916. .ivsize = AES_BLOCK_SIZE,
  1917. .maxauthsize = SHA512_DIGEST_SIZE,
  1918. .base = {
  1919. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1920. .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
  1921. .cra_priority = ATMEL_AES_PRIORITY,
  1922. .cra_flags = CRYPTO_ALG_ASYNC,
  1923. .cra_blocksize = AES_BLOCK_SIZE,
  1924. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1925. .cra_alignmask = 0xf,
  1926. .cra_module = THIS_MODULE,
  1927. },
  1928. },
  1929. };
  1930. #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
  1931. /* Probe functions */
  1932. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  1933. {
  1934. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  1935. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  1936. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  1937. if (!dd->buf) {
  1938. dev_err(dd->dev, "unable to alloc pages.\n");
  1939. return -ENOMEM;
  1940. }
  1941. return 0;
  1942. }
  1943. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  1944. {
  1945. free_page((unsigned long)dd->buf);
  1946. }
  1947. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  1948. {
  1949. struct at_dma_slave *sl = slave;
  1950. if (sl && sl->dma_dev == chan->device->dev) {
  1951. chan->private = sl;
  1952. return true;
  1953. } else {
  1954. return false;
  1955. }
  1956. }
  1957. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  1958. struct crypto_platform_data *pdata)
  1959. {
  1960. struct at_dma_slave *slave;
  1961. dma_cap_mask_t mask;
  1962. dma_cap_zero(mask);
  1963. dma_cap_set(DMA_SLAVE, mask);
  1964. /* Try to grab 2 DMA channels */
  1965. slave = &pdata->dma_slave->rxdata;
  1966. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1967. slave, dd->dev, "tx");
  1968. if (!dd->src.chan)
  1969. goto err_dma_in;
  1970. slave = &pdata->dma_slave->txdata;
  1971. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1972. slave, dd->dev, "rx");
  1973. if (!dd->dst.chan)
  1974. goto err_dma_out;
  1975. return 0;
  1976. err_dma_out:
  1977. dma_release_channel(dd->src.chan);
  1978. err_dma_in:
  1979. dev_warn(dd->dev, "no DMA channel available\n");
  1980. return -ENODEV;
  1981. }
  1982. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  1983. {
  1984. dma_release_channel(dd->dst.chan);
  1985. dma_release_channel(dd->src.chan);
  1986. }
  1987. static void atmel_aes_queue_task(unsigned long data)
  1988. {
  1989. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1990. atmel_aes_handle_queue(dd, NULL);
  1991. }
  1992. static void atmel_aes_done_task(unsigned long data)
  1993. {
  1994. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1995. dd->is_async = true;
  1996. (void)dd->resume(dd);
  1997. }
  1998. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  1999. {
  2000. struct atmel_aes_dev *aes_dd = dev_id;
  2001. u32 reg;
  2002. reg = atmel_aes_read(aes_dd, AES_ISR);
  2003. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  2004. atmel_aes_write(aes_dd, AES_IDR, reg);
  2005. if (AES_FLAGS_BUSY & aes_dd->flags)
  2006. tasklet_schedule(&aes_dd->done_task);
  2007. else
  2008. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  2009. return IRQ_HANDLED;
  2010. }
  2011. return IRQ_NONE;
  2012. }
  2013. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  2014. {
  2015. int i;
  2016. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  2017. if (dd->caps.has_authenc)
  2018. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
  2019. crypto_unregister_aead(&aes_authenc_algs[i]);
  2020. #endif
  2021. if (dd->caps.has_xts)
  2022. crypto_unregister_alg(&aes_xts_alg);
  2023. if (dd->caps.has_gcm)
  2024. crypto_unregister_aead(&aes_gcm_alg);
  2025. if (dd->caps.has_cfb64)
  2026. crypto_unregister_alg(&aes_cfb64_alg);
  2027. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  2028. crypto_unregister_alg(&aes_algs[i]);
  2029. }
  2030. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  2031. {
  2032. int err, i, j;
  2033. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  2034. err = crypto_register_alg(&aes_algs[i]);
  2035. if (err)
  2036. goto err_aes_algs;
  2037. }
  2038. if (dd->caps.has_cfb64) {
  2039. err = crypto_register_alg(&aes_cfb64_alg);
  2040. if (err)
  2041. goto err_aes_cfb64_alg;
  2042. }
  2043. if (dd->caps.has_gcm) {
  2044. err = crypto_register_aead(&aes_gcm_alg);
  2045. if (err)
  2046. goto err_aes_gcm_alg;
  2047. }
  2048. if (dd->caps.has_xts) {
  2049. err = crypto_register_alg(&aes_xts_alg);
  2050. if (err)
  2051. goto err_aes_xts_alg;
  2052. }
  2053. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  2054. if (dd->caps.has_authenc) {
  2055. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
  2056. err = crypto_register_aead(&aes_authenc_algs[i]);
  2057. if (err)
  2058. goto err_aes_authenc_alg;
  2059. }
  2060. }
  2061. #endif
  2062. return 0;
  2063. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  2064. /* i = ARRAY_SIZE(aes_authenc_algs); */
  2065. err_aes_authenc_alg:
  2066. for (j = 0; j < i; j++)
  2067. crypto_unregister_aead(&aes_authenc_algs[j]);
  2068. crypto_unregister_alg(&aes_xts_alg);
  2069. #endif
  2070. err_aes_xts_alg:
  2071. crypto_unregister_aead(&aes_gcm_alg);
  2072. err_aes_gcm_alg:
  2073. crypto_unregister_alg(&aes_cfb64_alg);
  2074. err_aes_cfb64_alg:
  2075. i = ARRAY_SIZE(aes_algs);
  2076. err_aes_algs:
  2077. for (j = 0; j < i; j++)
  2078. crypto_unregister_alg(&aes_algs[j]);
  2079. return err;
  2080. }
  2081. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  2082. {
  2083. dd->caps.has_dualbuff = 0;
  2084. dd->caps.has_cfb64 = 0;
  2085. dd->caps.has_gcm = 0;
  2086. dd->caps.has_xts = 0;
  2087. dd->caps.has_authenc = 0;
  2088. dd->caps.max_burst_size = 1;
  2089. /* keep only major version number */
  2090. switch (dd->hw_version & 0xff0) {
  2091. case 0x500:
  2092. dd->caps.has_dualbuff = 1;
  2093. dd->caps.has_cfb64 = 1;
  2094. dd->caps.has_gcm = 1;
  2095. dd->caps.has_xts = 1;
  2096. dd->caps.has_authenc = 1;
  2097. dd->caps.max_burst_size = 4;
  2098. break;
  2099. case 0x200:
  2100. dd->caps.has_dualbuff = 1;
  2101. dd->caps.has_cfb64 = 1;
  2102. dd->caps.has_gcm = 1;
  2103. dd->caps.max_burst_size = 4;
  2104. break;
  2105. case 0x130:
  2106. dd->caps.has_dualbuff = 1;
  2107. dd->caps.has_cfb64 = 1;
  2108. dd->caps.max_burst_size = 4;
  2109. break;
  2110. case 0x120:
  2111. break;
  2112. default:
  2113. dev_warn(dd->dev,
  2114. "Unmanaged aes version, set minimum capabilities\n");
  2115. break;
  2116. }
  2117. }
  2118. #if defined(CONFIG_OF)
  2119. static const struct of_device_id atmel_aes_dt_ids[] = {
  2120. { .compatible = "atmel,at91sam9g46-aes" },
  2121. { /* sentinel */ }
  2122. };
  2123. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  2124. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2125. {
  2126. struct device_node *np = pdev->dev.of_node;
  2127. struct crypto_platform_data *pdata;
  2128. if (!np) {
  2129. dev_err(&pdev->dev, "device node not found\n");
  2130. return ERR_PTR(-EINVAL);
  2131. }
  2132. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2133. if (!pdata)
  2134. return ERR_PTR(-ENOMEM);
  2135. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  2136. sizeof(*(pdata->dma_slave)),
  2137. GFP_KERNEL);
  2138. if (!pdata->dma_slave) {
  2139. devm_kfree(&pdev->dev, pdata);
  2140. return ERR_PTR(-ENOMEM);
  2141. }
  2142. return pdata;
  2143. }
  2144. #else
  2145. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2146. {
  2147. return ERR_PTR(-EINVAL);
  2148. }
  2149. #endif
  2150. static int atmel_aes_probe(struct platform_device *pdev)
  2151. {
  2152. struct atmel_aes_dev *aes_dd;
  2153. struct crypto_platform_data *pdata;
  2154. struct device *dev = &pdev->dev;
  2155. struct resource *aes_res;
  2156. int err;
  2157. pdata = pdev->dev.platform_data;
  2158. if (!pdata) {
  2159. pdata = atmel_aes_of_init(pdev);
  2160. if (IS_ERR(pdata)) {
  2161. err = PTR_ERR(pdata);
  2162. goto aes_dd_err;
  2163. }
  2164. }
  2165. if (!pdata->dma_slave) {
  2166. err = -ENXIO;
  2167. goto aes_dd_err;
  2168. }
  2169. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  2170. if (aes_dd == NULL) {
  2171. err = -ENOMEM;
  2172. goto aes_dd_err;
  2173. }
  2174. aes_dd->dev = dev;
  2175. platform_set_drvdata(pdev, aes_dd);
  2176. INIT_LIST_HEAD(&aes_dd->list);
  2177. spin_lock_init(&aes_dd->lock);
  2178. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  2179. (unsigned long)aes_dd);
  2180. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  2181. (unsigned long)aes_dd);
  2182. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  2183. /* Get the base address */
  2184. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2185. if (!aes_res) {
  2186. dev_err(dev, "no MEM resource info\n");
  2187. err = -ENODEV;
  2188. goto res_err;
  2189. }
  2190. aes_dd->phys_base = aes_res->start;
  2191. /* Get the IRQ */
  2192. aes_dd->irq = platform_get_irq(pdev, 0);
  2193. if (aes_dd->irq < 0) {
  2194. err = aes_dd->irq;
  2195. goto res_err;
  2196. }
  2197. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  2198. IRQF_SHARED, "atmel-aes", aes_dd);
  2199. if (err) {
  2200. dev_err(dev, "unable to request aes irq.\n");
  2201. goto res_err;
  2202. }
  2203. /* Initializing the clock */
  2204. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  2205. if (IS_ERR(aes_dd->iclk)) {
  2206. dev_err(dev, "clock initialization failed.\n");
  2207. err = PTR_ERR(aes_dd->iclk);
  2208. goto res_err;
  2209. }
  2210. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  2211. if (IS_ERR(aes_dd->io_base)) {
  2212. dev_err(dev, "can't ioremap\n");
  2213. err = PTR_ERR(aes_dd->io_base);
  2214. goto res_err;
  2215. }
  2216. err = clk_prepare(aes_dd->iclk);
  2217. if (err)
  2218. goto res_err;
  2219. err = atmel_aes_hw_version_init(aes_dd);
  2220. if (err)
  2221. goto iclk_unprepare;
  2222. atmel_aes_get_cap(aes_dd);
  2223. #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
  2224. if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
  2225. err = -EPROBE_DEFER;
  2226. goto iclk_unprepare;
  2227. }
  2228. #endif
  2229. err = atmel_aes_buff_init(aes_dd);
  2230. if (err)
  2231. goto err_aes_buff;
  2232. err = atmel_aes_dma_init(aes_dd, pdata);
  2233. if (err)
  2234. goto err_aes_dma;
  2235. spin_lock(&atmel_aes.lock);
  2236. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  2237. spin_unlock(&atmel_aes.lock);
  2238. err = atmel_aes_register_algs(aes_dd);
  2239. if (err)
  2240. goto err_algs;
  2241. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  2242. dma_chan_name(aes_dd->src.chan),
  2243. dma_chan_name(aes_dd->dst.chan));
  2244. return 0;
  2245. err_algs:
  2246. spin_lock(&atmel_aes.lock);
  2247. list_del(&aes_dd->list);
  2248. spin_unlock(&atmel_aes.lock);
  2249. atmel_aes_dma_cleanup(aes_dd);
  2250. err_aes_dma:
  2251. atmel_aes_buff_cleanup(aes_dd);
  2252. err_aes_buff:
  2253. iclk_unprepare:
  2254. clk_unprepare(aes_dd->iclk);
  2255. res_err:
  2256. tasklet_kill(&aes_dd->done_task);
  2257. tasklet_kill(&aes_dd->queue_task);
  2258. aes_dd_err:
  2259. if (err != -EPROBE_DEFER)
  2260. dev_err(dev, "initialization failed.\n");
  2261. return err;
  2262. }
  2263. static int atmel_aes_remove(struct platform_device *pdev)
  2264. {
  2265. struct atmel_aes_dev *aes_dd;
  2266. aes_dd = platform_get_drvdata(pdev);
  2267. if (!aes_dd)
  2268. return -ENODEV;
  2269. spin_lock(&atmel_aes.lock);
  2270. list_del(&aes_dd->list);
  2271. spin_unlock(&atmel_aes.lock);
  2272. atmel_aes_unregister_algs(aes_dd);
  2273. tasklet_kill(&aes_dd->done_task);
  2274. tasklet_kill(&aes_dd->queue_task);
  2275. atmel_aes_dma_cleanup(aes_dd);
  2276. atmel_aes_buff_cleanup(aes_dd);
  2277. clk_unprepare(aes_dd->iclk);
  2278. return 0;
  2279. }
  2280. static struct platform_driver atmel_aes_driver = {
  2281. .probe = atmel_aes_probe,
  2282. .remove = atmel_aes_remove,
  2283. .driver = {
  2284. .name = "atmel_aes",
  2285. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  2286. },
  2287. };
  2288. module_platform_driver(atmel_aes_driver);
  2289. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  2290. MODULE_LICENSE("GPL v2");
  2291. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");