123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628 |
- /* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Freescale Semiconductor nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * ALTERNATIVELY, this software may be distributed under the terms of the
- * GNU General Public License ("GPL") as published by the Free Software
- * Foundation, either version 2 of that License or (at your option) any
- * later version.
- *
- * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include "qman_test.h"
- #include <linux/dma-mapping.h>
- #include <linux/delay.h>
- /*
- * Algorithm:
- *
- * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
- * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
- * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
- * shuttle a "hot potato" frame around them such that every forwarding action
- * moves it from one cpu to another. (The use of more than one handler per cpu
- * is to allow enough handlers/FQs to truly test the significance of caching -
- * ie. when cache-expiries are occurring.)
- *
- * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
- * first and last words of the frame data will undergo a transformation step on
- * each forwarding action. To achieve this, each handler will be assigned a
- * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
- * received by a handler, the mixer of the expected sender is XOR'd into all
- * words of the entire frame, which is then validated against the original
- * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
- * the current handler. Apart from validating that the frame is taking the
- * expected path, this also provides some quasi-realistic overheads to each
- * forwarding action - dereferencing *all* the frame data, computation, and
- * conditional branching. There is a "special" handler designated to act as the
- * instigator of the test by creating an enqueuing the "hot potato" frame, and
- * to determine when the test has completed by counting HP_LOOPS iterations.
- *
- * Init phases:
- *
- * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
- * into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
- * handlers and link-list them (but do no other handler setup).
- *
- * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
- * hp_cpu's 'iterator' to point to its first handler. With each loop,
- * allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
- * and advance the iterator for the next loop. This includes a final fixup,
- * which connects the last handler to the first (and which is why phase 2
- * and 3 are separate).
- *
- * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
- * hp_cpu's 'iterator' to point to its first handler. With each loop,
- * initialise FQ objects and advance the iterator for the next loop.
- * Moreover, do this initialisation on the cpu it applies to so that Rx FQ
- * initialisation targets the correct cpu.
- */
- /*
- * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
- * the fn from irq context, which is too restrictive).
- */
- struct bstrap {
- int (*fn)(void);
- atomic_t started;
- };
- static int bstrap_fn(void *bs)
- {
- struct bstrap *bstrap = bs;
- int err;
- atomic_inc(&bstrap->started);
- err = bstrap->fn();
- if (err)
- return err;
- while (!kthread_should_stop())
- msleep(20);
- return 0;
- }
- static int on_all_cpus(int (*fn)(void))
- {
- int cpu;
- for_each_cpu(cpu, cpu_online_mask) {
- struct bstrap bstrap = {
- .fn = fn,
- .started = ATOMIC_INIT(0)
- };
- struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
- "hotpotato%d", cpu);
- int ret;
- if (IS_ERR(k))
- return -ENOMEM;
- kthread_bind(k, cpu);
- wake_up_process(k);
- /*
- * If we call kthread_stop() before the "wake up" has had an
- * effect, then the thread may exit with -EINTR without ever
- * running the function. So poll until it's started before
- * requesting it to stop.
- */
- while (!atomic_read(&bstrap.started))
- msleep(20);
- ret = kthread_stop(k);
- if (ret)
- return ret;
- }
- return 0;
- }
- struct hp_handler {
- /* The following data is stashed when 'rx' is dequeued; */
- /* -------------- */
- /* The Rx FQ, dequeues of which will stash the entire hp_handler */
- struct qman_fq rx;
- /* The Tx FQ we should forward to */
- struct qman_fq tx;
- /* The value we XOR post-dequeue, prior to validating */
- u32 rx_mixer;
- /* The value we XOR pre-enqueue, after validating */
- u32 tx_mixer;
- /* what the hotpotato address should be on dequeue */
- dma_addr_t addr;
- u32 *frame_ptr;
- /* The following data isn't (necessarily) stashed on dequeue; */
- /* -------------- */
- u32 fqid_rx, fqid_tx;
- /* list node for linking us into 'hp_cpu' */
- struct list_head node;
- /* Just to check ... */
- unsigned int processor_id;
- } ____cacheline_aligned;
- struct hp_cpu {
- /* identify the cpu we run on; */
- unsigned int processor_id;
- /* root node for the per-cpu list of handlers */
- struct list_head handlers;
- /* list node for linking us into 'hp_cpu_list' */
- struct list_head node;
- /*
- * when repeatedly scanning 'hp_list', each time linking the n'th
- * handlers together, this is used as per-cpu iterator state
- */
- struct hp_handler *iterator;
- };
- /* Each cpu has one of these */
- static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
- /* links together the hp_cpu structs, in first-come first-serve order. */
- static LIST_HEAD(hp_cpu_list);
- static DEFINE_SPINLOCK(hp_lock);
- static unsigned int hp_cpu_list_length;
- /* the "special" handler, that starts and terminates the test. */
- static struct hp_handler *special_handler;
- static int loop_counter;
- /* handlers are allocated out of this, so they're properly aligned. */
- static struct kmem_cache *hp_handler_slab;
- /* this is the frame data */
- static void *__frame_ptr;
- static u32 *frame_ptr;
- static dma_addr_t frame_dma;
- /* needed for dma_map*() */
- static const struct qm_portal_config *pcfg;
- /* the main function waits on this */
- static DECLARE_WAIT_QUEUE_HEAD(queue);
- #define HP_PER_CPU 2
- #define HP_LOOPS 8
- /* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
- #define HP_NUM_WORDS 80
- /* First word of the LFSR-based frame data */
- #define HP_FIRST_WORD 0xabbaf00d
- static inline u32 do_lfsr(u32 prev)
- {
- return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
- }
- static int allocate_frame_data(void)
- {
- u32 lfsr = HP_FIRST_WORD;
- int loop;
- if (!qman_dma_portal) {
- pr_crit("portal not available\n");
- return -EIO;
- }
- pcfg = qman_get_qm_portal_config(qman_dma_portal);
- __frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
- if (!__frame_ptr)
- return -ENOMEM;
- frame_ptr = PTR_ALIGN(__frame_ptr, 64);
- for (loop = 0; loop < HP_NUM_WORDS; loop++) {
- frame_ptr[loop] = lfsr;
- lfsr = do_lfsr(lfsr);
- }
- frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
- DMA_BIDIRECTIONAL);
- if (dma_mapping_error(pcfg->dev, frame_dma)) {
- pr_crit("dma mapping failure\n");
- kfree(__frame_ptr);
- return -EIO;
- }
- return 0;
- }
- static void deallocate_frame_data(void)
- {
- dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
- DMA_BIDIRECTIONAL);
- kfree(__frame_ptr);
- }
- static inline int process_frame_data(struct hp_handler *handler,
- const struct qm_fd *fd)
- {
- u32 *p = handler->frame_ptr;
- u32 lfsr = HP_FIRST_WORD;
- int loop;
- if (qm_fd_addr_get64(fd) != handler->addr) {
- pr_crit("bad frame address, [%llX != %llX]\n",
- qm_fd_addr_get64(fd), handler->addr);
- return -EIO;
- }
- for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
- *p ^= handler->rx_mixer;
- if (*p != lfsr) {
- pr_crit("corrupt frame data");
- return -EIO;
- }
- *p ^= handler->tx_mixer;
- lfsr = do_lfsr(lfsr);
- }
- return 0;
- }
- static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
- struct qman_fq *fq,
- const struct qm_dqrr_entry *dqrr)
- {
- struct hp_handler *handler = (struct hp_handler *)fq;
- if (process_frame_data(handler, &dqrr->fd)) {
- WARN_ON(1);
- goto skip;
- }
- if (qman_enqueue(&handler->tx, &dqrr->fd)) {
- pr_crit("qman_enqueue() failed");
- WARN_ON(1);
- }
- skip:
- return qman_cb_dqrr_consume;
- }
- static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
- struct qman_fq *fq,
- const struct qm_dqrr_entry *dqrr)
- {
- struct hp_handler *handler = (struct hp_handler *)fq;
- process_frame_data(handler, &dqrr->fd);
- if (++loop_counter < HP_LOOPS) {
- if (qman_enqueue(&handler->tx, &dqrr->fd)) {
- pr_crit("qman_enqueue() failed");
- WARN_ON(1);
- goto skip;
- }
- } else {
- pr_info("Received final (%dth) frame\n", loop_counter);
- wake_up(&queue);
- }
- skip:
- return qman_cb_dqrr_consume;
- }
- static int create_per_cpu_handlers(void)
- {
- struct hp_handler *handler;
- int loop;
- struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
- hp_cpu->processor_id = smp_processor_id();
- spin_lock(&hp_lock);
- list_add_tail(&hp_cpu->node, &hp_cpu_list);
- hp_cpu_list_length++;
- spin_unlock(&hp_lock);
- INIT_LIST_HEAD(&hp_cpu->handlers);
- for (loop = 0; loop < HP_PER_CPU; loop++) {
- handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
- if (!handler) {
- pr_crit("kmem_cache_alloc() failed");
- WARN_ON(1);
- return -EIO;
- }
- handler->processor_id = hp_cpu->processor_id;
- handler->addr = frame_dma;
- handler->frame_ptr = frame_ptr;
- list_add_tail(&handler->node, &hp_cpu->handlers);
- }
- return 0;
- }
- static int destroy_per_cpu_handlers(void)
- {
- struct list_head *loop, *tmp;
- struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
- spin_lock(&hp_lock);
- list_del(&hp_cpu->node);
- spin_unlock(&hp_lock);
- list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
- u32 flags = 0;
- struct hp_handler *handler = list_entry(loop, struct hp_handler,
- node);
- if (qman_retire_fq(&handler->rx, &flags) ||
- (flags & QMAN_FQ_STATE_BLOCKOOS)) {
- pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
- WARN_ON(1);
- return -EIO;
- }
- if (qman_oos_fq(&handler->rx)) {
- pr_crit("qman_oos_fq(rx) failed");
- WARN_ON(1);
- return -EIO;
- }
- qman_destroy_fq(&handler->rx);
- qman_destroy_fq(&handler->tx);
- qman_release_fqid(handler->fqid_rx);
- list_del(&handler->node);
- kmem_cache_free(hp_handler_slab, handler);
- }
- return 0;
- }
- static inline u8 num_cachelines(u32 offset)
- {
- u8 res = (offset + (L1_CACHE_BYTES - 1))
- / (L1_CACHE_BYTES);
- if (res > 3)
- return 3;
- return res;
- }
- #define STASH_DATA_CL \
- num_cachelines(HP_NUM_WORDS * 4)
- #define STASH_CTX_CL \
- num_cachelines(offsetof(struct hp_handler, fqid_rx))
- static int init_handler(void *h)
- {
- struct qm_mcc_initfq opts;
- struct hp_handler *handler = h;
- int err;
- if (handler->processor_id != smp_processor_id()) {
- err = -EIO;
- goto failed;
- }
- /* Set up rx */
- memset(&handler->rx, 0, sizeof(handler->rx));
- if (handler == special_handler)
- handler->rx.cb.dqrr = special_dqrr;
- else
- handler->rx.cb.dqrr = normal_dqrr;
- err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
- if (err) {
- pr_crit("qman_create_fq(rx) failed");
- goto failed;
- }
- memset(&opts, 0, sizeof(opts));
- opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
- QM_INITFQ_WE_CONTEXTA);
- opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
- qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
- err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
- QMAN_INITFQ_FLAG_LOCAL, &opts);
- if (err) {
- pr_crit("qman_init_fq(rx) failed");
- goto failed;
- }
- /* Set up tx */
- memset(&handler->tx, 0, sizeof(handler->tx));
- err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
- &handler->tx);
- if (err) {
- pr_crit("qman_create_fq(tx) failed");
- goto failed;
- }
- return 0;
- failed:
- return err;
- }
- static void init_handler_cb(void *h)
- {
- if (init_handler(h))
- WARN_ON(1);
- }
- static int init_phase2(void)
- {
- int loop;
- u32 fqid = 0;
- u32 lfsr = 0xdeadbeef;
- struct hp_cpu *hp_cpu;
- struct hp_handler *handler;
- for (loop = 0; loop < HP_PER_CPU; loop++) {
- list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
- int err;
- if (!loop)
- hp_cpu->iterator = list_first_entry(
- &hp_cpu->handlers,
- struct hp_handler, node);
- else
- hp_cpu->iterator = list_entry(
- hp_cpu->iterator->node.next,
- struct hp_handler, node);
- /* Rx FQID is the previous handler's Tx FQID */
- hp_cpu->iterator->fqid_rx = fqid;
- /* Allocate new FQID for Tx */
- err = qman_alloc_fqid(&fqid);
- if (err) {
- pr_crit("qman_alloc_fqid() failed");
- return err;
- }
- hp_cpu->iterator->fqid_tx = fqid;
- /* Rx mixer is the previous handler's Tx mixer */
- hp_cpu->iterator->rx_mixer = lfsr;
- /* Get new mixer for Tx */
- lfsr = do_lfsr(lfsr);
- hp_cpu->iterator->tx_mixer = lfsr;
- }
- }
- /* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
- hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
- handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
- if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
- return 1;
- handler->fqid_rx = fqid;
- handler->rx_mixer = lfsr;
- /* and tag it as our "special" handler */
- special_handler = handler;
- return 0;
- }
- static int init_phase3(void)
- {
- int loop, err;
- struct hp_cpu *hp_cpu;
- for (loop = 0; loop < HP_PER_CPU; loop++) {
- list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
- if (!loop)
- hp_cpu->iterator = list_first_entry(
- &hp_cpu->handlers,
- struct hp_handler, node);
- else
- hp_cpu->iterator = list_entry(
- hp_cpu->iterator->node.next,
- struct hp_handler, node);
- preempt_disable();
- if (hp_cpu->processor_id == smp_processor_id()) {
- err = init_handler(hp_cpu->iterator);
- if (err)
- return err;
- } else {
- smp_call_function_single(hp_cpu->processor_id,
- init_handler_cb, hp_cpu->iterator, 1);
- }
- preempt_enable();
- }
- }
- return 0;
- }
- static int send_first_frame(void *ignore)
- {
- u32 *p = special_handler->frame_ptr;
- u32 lfsr = HP_FIRST_WORD;
- int loop, err;
- struct qm_fd fd;
- if (special_handler->processor_id != smp_processor_id()) {
- err = -EIO;
- goto failed;
- }
- memset(&fd, 0, sizeof(fd));
- qm_fd_addr_set64(&fd, special_handler->addr);
- qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
- for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
- if (*p != lfsr) {
- err = -EIO;
- pr_crit("corrupt frame data");
- goto failed;
- }
- *p ^= special_handler->tx_mixer;
- lfsr = do_lfsr(lfsr);
- }
- pr_info("Sending first frame\n");
- err = qman_enqueue(&special_handler->tx, &fd);
- if (err) {
- pr_crit("qman_enqueue() failed");
- goto failed;
- }
- return 0;
- failed:
- return err;
- }
- static void send_first_frame_cb(void *ignore)
- {
- if (send_first_frame(NULL))
- WARN_ON(1);
- }
- int qman_test_stash(void)
- {
- int err;
- if (cpumask_weight(cpu_online_mask) < 2) {
- pr_info("%s(): skip - only 1 CPU\n", __func__);
- return 0;
- }
- pr_info("%s(): Starting\n", __func__);
- hp_cpu_list_length = 0;
- loop_counter = 0;
- hp_handler_slab = kmem_cache_create("hp_handler_slab",
- sizeof(struct hp_handler), L1_CACHE_BYTES,
- SLAB_HWCACHE_ALIGN, NULL);
- if (!hp_handler_slab) {
- err = -EIO;
- pr_crit("kmem_cache_create() failed");
- goto failed;
- }
- err = allocate_frame_data();
- if (err)
- goto failed;
- /* Init phase 1 */
- pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
- if (on_all_cpus(create_per_cpu_handlers)) {
- err = -EIO;
- pr_crit("on_each_cpu() failed");
- goto failed;
- }
- pr_info("Number of cpus: %d, total of %d handlers\n",
- hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
- err = init_phase2();
- if (err)
- goto failed;
- err = init_phase3();
- if (err)
- goto failed;
- preempt_disable();
- if (special_handler->processor_id == smp_processor_id()) {
- err = send_first_frame(NULL);
- if (err)
- goto failed;
- } else {
- smp_call_function_single(special_handler->processor_id,
- send_first_frame_cb, NULL, 1);
- }
- preempt_enable();
- wait_event(queue, loop_counter == HP_LOOPS);
- deallocate_frame_data();
- if (on_all_cpus(destroy_per_cpu_handlers)) {
- err = -EIO;
- pr_crit("on_each_cpu() failed");
- goto failed;
- }
- kmem_cache_destroy(hp_handler_slab);
- pr_info("%s(): Finished\n", __func__);
- return 0;
- failed:
- WARN_ON(1);
- return err;
- }
|