sfp.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/acpi.h>
  3. #include <linux/ctype.h>
  4. #include <linux/delay.h>
  5. #include <linux/gpio/consumer.h>
  6. #include <linux/hwmon.h>
  7. #include <linux/i2c.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/jiffies.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/of.h>
  13. #include <linux/phy.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/rtnetlink.h>
  16. #include <linux/slab.h>
  17. #include <linux/workqueue.h>
  18. #include "mdio-i2c.h"
  19. #include "sfp.h"
  20. #include "swphy.h"
  21. enum {
  22. GPIO_MODDEF0,
  23. GPIO_LOS,
  24. GPIO_TX_FAULT,
  25. GPIO_TX_DISABLE,
  26. GPIO_RATE_SELECT,
  27. GPIO_MAX,
  28. SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  29. SFP_F_LOS = BIT(GPIO_LOS),
  30. SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  31. SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  32. SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  33. SFP_E_INSERT = 0,
  34. SFP_E_REMOVE,
  35. SFP_E_DEV_DOWN,
  36. SFP_E_DEV_UP,
  37. SFP_E_TX_FAULT,
  38. SFP_E_TX_CLEAR,
  39. SFP_E_LOS_HIGH,
  40. SFP_E_LOS_LOW,
  41. SFP_E_TIMEOUT,
  42. SFP_MOD_EMPTY = 0,
  43. SFP_MOD_PROBE,
  44. SFP_MOD_HPOWER,
  45. SFP_MOD_PRESENT,
  46. SFP_MOD_ERROR,
  47. SFP_DEV_DOWN = 0,
  48. SFP_DEV_UP,
  49. SFP_S_DOWN = 0,
  50. SFP_S_INIT,
  51. SFP_S_WAIT_LOS,
  52. SFP_S_LINK_UP,
  53. SFP_S_TX_FAULT,
  54. SFP_S_REINIT,
  55. SFP_S_TX_DISABLE,
  56. };
  57. static const char * const mod_state_strings[] = {
  58. [SFP_MOD_EMPTY] = "empty",
  59. [SFP_MOD_PROBE] = "probe",
  60. [SFP_MOD_HPOWER] = "hpower",
  61. [SFP_MOD_PRESENT] = "present",
  62. [SFP_MOD_ERROR] = "error",
  63. };
  64. static const char *mod_state_to_str(unsigned short mod_state)
  65. {
  66. if (mod_state >= ARRAY_SIZE(mod_state_strings))
  67. return "Unknown module state";
  68. return mod_state_strings[mod_state];
  69. }
  70. static const char * const dev_state_strings[] = {
  71. [SFP_DEV_DOWN] = "down",
  72. [SFP_DEV_UP] = "up",
  73. };
  74. static const char *dev_state_to_str(unsigned short dev_state)
  75. {
  76. if (dev_state >= ARRAY_SIZE(dev_state_strings))
  77. return "Unknown device state";
  78. return dev_state_strings[dev_state];
  79. }
  80. static const char * const event_strings[] = {
  81. [SFP_E_INSERT] = "insert",
  82. [SFP_E_REMOVE] = "remove",
  83. [SFP_E_DEV_DOWN] = "dev_down",
  84. [SFP_E_DEV_UP] = "dev_up",
  85. [SFP_E_TX_FAULT] = "tx_fault",
  86. [SFP_E_TX_CLEAR] = "tx_clear",
  87. [SFP_E_LOS_HIGH] = "los_high",
  88. [SFP_E_LOS_LOW] = "los_low",
  89. [SFP_E_TIMEOUT] = "timeout",
  90. };
  91. static const char *event_to_str(unsigned short event)
  92. {
  93. if (event >= ARRAY_SIZE(event_strings))
  94. return "Unknown event";
  95. return event_strings[event];
  96. }
  97. static const char * const sm_state_strings[] = {
  98. [SFP_S_DOWN] = "down",
  99. [SFP_S_INIT] = "init",
  100. [SFP_S_WAIT_LOS] = "wait_los",
  101. [SFP_S_LINK_UP] = "link_up",
  102. [SFP_S_TX_FAULT] = "tx_fault",
  103. [SFP_S_REINIT] = "reinit",
  104. [SFP_S_TX_DISABLE] = "rx_disable",
  105. };
  106. static const char *sm_state_to_str(unsigned short sm_state)
  107. {
  108. if (sm_state >= ARRAY_SIZE(sm_state_strings))
  109. return "Unknown state";
  110. return sm_state_strings[sm_state];
  111. }
  112. static const char *gpio_of_names[] = {
  113. "mod-def0",
  114. "los",
  115. "tx-fault",
  116. "tx-disable",
  117. "rate-select0",
  118. };
  119. static const enum gpiod_flags gpio_flags[] = {
  120. GPIOD_IN,
  121. GPIOD_IN,
  122. GPIOD_IN,
  123. GPIOD_ASIS,
  124. GPIOD_ASIS,
  125. };
  126. #define T_INIT_JIFFIES msecs_to_jiffies(300)
  127. #define T_RESET_US 10
  128. #define T_FAULT_RECOVER msecs_to_jiffies(1000)
  129. /* SFP module presence detection is poor: the three MOD DEF signals are
  130. * the same length on the PCB, which means it's possible for MOD DEF 0 to
  131. * connect before the I2C bus on MOD DEF 1/2.
  132. *
  133. * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
  134. * be deasserted) but makes no mention of the earliest time before we can
  135. * access the I2C EEPROM. However, Avago modules require 300ms.
  136. */
  137. #define T_PROBE_INIT msecs_to_jiffies(300)
  138. #define T_HPOWER_LEVEL msecs_to_jiffies(300)
  139. #define T_PROBE_RETRY msecs_to_jiffies(100)
  140. /* SFP modules appear to always have their PHY configured for bus address
  141. * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
  142. */
  143. #define SFP_PHY_ADDR 22
  144. /* Give this long for the PHY to reset. */
  145. #define T_PHY_RESET_MS 50
  146. struct sff_data {
  147. unsigned int gpios;
  148. bool (*module_supported)(const struct sfp_eeprom_id *id);
  149. };
  150. struct sfp {
  151. struct device *dev;
  152. struct i2c_adapter *i2c;
  153. struct mii_bus *i2c_mii;
  154. struct sfp_bus *sfp_bus;
  155. struct phy_device *mod_phy;
  156. const struct sff_data *type;
  157. u32 max_power_mW;
  158. unsigned int (*get_state)(struct sfp *);
  159. void (*set_state)(struct sfp *, unsigned int);
  160. int (*read)(struct sfp *, bool, u8, void *, size_t);
  161. int (*write)(struct sfp *, bool, u8, void *, size_t);
  162. struct gpio_desc *gpio[GPIO_MAX];
  163. int gpio_irq[GPIO_MAX];
  164. bool attached;
  165. struct mutex st_mutex; /* Protects state */
  166. unsigned int state;
  167. struct delayed_work poll;
  168. struct delayed_work timeout;
  169. struct mutex sm_mutex; /* Protects state machine */
  170. unsigned char sm_mod_state;
  171. unsigned char sm_dev_state;
  172. unsigned short sm_state;
  173. unsigned int sm_retries;
  174. struct sfp_eeprom_id id;
  175. #if IS_ENABLED(CONFIG_HWMON)
  176. struct sfp_diag diag;
  177. struct device *hwmon_dev;
  178. char *hwmon_name;
  179. #endif
  180. };
  181. static bool sff_module_supported(const struct sfp_eeprom_id *id)
  182. {
  183. return id->base.phys_id == SFP_PHYS_ID_SFF &&
  184. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  185. }
  186. static const struct sff_data sff_data = {
  187. .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
  188. .module_supported = sff_module_supported,
  189. };
  190. static bool sfp_module_supported(const struct sfp_eeprom_id *id)
  191. {
  192. return id->base.phys_id == SFP_PHYS_ID_SFP &&
  193. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  194. }
  195. static const struct sff_data sfp_data = {
  196. .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
  197. SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
  198. .module_supported = sfp_module_supported,
  199. };
  200. static const struct of_device_id sfp_of_match[] = {
  201. { .compatible = "sff,sff", .data = &sff_data, },
  202. { .compatible = "sff,sfp", .data = &sfp_data, },
  203. { },
  204. };
  205. MODULE_DEVICE_TABLE(of, sfp_of_match);
  206. static unsigned long poll_jiffies;
  207. static unsigned int sfp_gpio_get_state(struct sfp *sfp)
  208. {
  209. unsigned int i, state, v;
  210. for (i = state = 0; i < GPIO_MAX; i++) {
  211. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  212. continue;
  213. v = gpiod_get_value_cansleep(sfp->gpio[i]);
  214. if (v)
  215. state |= BIT(i);
  216. }
  217. return state;
  218. }
  219. static unsigned int sff_gpio_get_state(struct sfp *sfp)
  220. {
  221. return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
  222. }
  223. static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
  224. {
  225. if (state & SFP_F_PRESENT) {
  226. /* If the module is present, drive the signals */
  227. if (sfp->gpio[GPIO_TX_DISABLE])
  228. gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
  229. state & SFP_F_TX_DISABLE);
  230. if (state & SFP_F_RATE_SELECT)
  231. gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
  232. state & SFP_F_RATE_SELECT);
  233. } else {
  234. /* Otherwise, let them float to the pull-ups */
  235. if (sfp->gpio[GPIO_TX_DISABLE])
  236. gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
  237. if (state & SFP_F_RATE_SELECT)
  238. gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
  239. }
  240. }
  241. static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  242. size_t len)
  243. {
  244. struct i2c_msg msgs[2];
  245. u8 bus_addr = a2 ? 0x51 : 0x50;
  246. size_t this_len;
  247. int ret;
  248. msgs[0].addr = bus_addr;
  249. msgs[0].flags = 0;
  250. msgs[0].len = 1;
  251. msgs[0].buf = &dev_addr;
  252. msgs[1].addr = bus_addr;
  253. msgs[1].flags = I2C_M_RD;
  254. msgs[1].len = len;
  255. msgs[1].buf = buf;
  256. while (len) {
  257. this_len = len;
  258. if (this_len > 16)
  259. this_len = 16;
  260. msgs[1].len = this_len;
  261. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  262. if (ret < 0)
  263. return ret;
  264. if (ret != ARRAY_SIZE(msgs))
  265. break;
  266. msgs[1].buf += this_len;
  267. dev_addr += this_len;
  268. len -= this_len;
  269. }
  270. return msgs[1].buf - (u8 *)buf;
  271. }
  272. static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  273. size_t len)
  274. {
  275. struct i2c_msg msgs[1];
  276. u8 bus_addr = a2 ? 0x51 : 0x50;
  277. int ret;
  278. msgs[0].addr = bus_addr;
  279. msgs[0].flags = 0;
  280. msgs[0].len = 1 + len;
  281. msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
  282. if (!msgs[0].buf)
  283. return -ENOMEM;
  284. msgs[0].buf[0] = dev_addr;
  285. memcpy(&msgs[0].buf[1], buf, len);
  286. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  287. kfree(msgs[0].buf);
  288. if (ret < 0)
  289. return ret;
  290. return ret == ARRAY_SIZE(msgs) ? len : 0;
  291. }
  292. static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
  293. {
  294. struct mii_bus *i2c_mii;
  295. int ret;
  296. if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
  297. return -EINVAL;
  298. sfp->i2c = i2c;
  299. sfp->read = sfp_i2c_read;
  300. sfp->write = sfp_i2c_write;
  301. i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
  302. if (IS_ERR(i2c_mii))
  303. return PTR_ERR(i2c_mii);
  304. i2c_mii->name = "SFP I2C Bus";
  305. i2c_mii->phy_mask = ~0;
  306. ret = mdiobus_register(i2c_mii);
  307. if (ret < 0) {
  308. mdiobus_free(i2c_mii);
  309. return ret;
  310. }
  311. sfp->i2c_mii = i2c_mii;
  312. return 0;
  313. }
  314. /* Interface */
  315. static unsigned int sfp_get_state(struct sfp *sfp)
  316. {
  317. return sfp->get_state(sfp);
  318. }
  319. static void sfp_set_state(struct sfp *sfp, unsigned int state)
  320. {
  321. sfp->set_state(sfp, state);
  322. }
  323. static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  324. {
  325. return sfp->read(sfp, a2, addr, buf, len);
  326. }
  327. static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  328. {
  329. return sfp->write(sfp, a2, addr, buf, len);
  330. }
  331. static unsigned int sfp_check(void *buf, size_t len)
  332. {
  333. u8 *p, check;
  334. for (p = buf, check = 0; len; p++, len--)
  335. check += *p;
  336. return check;
  337. }
  338. /* hwmon */
  339. #if IS_ENABLED(CONFIG_HWMON)
  340. static umode_t sfp_hwmon_is_visible(const void *data,
  341. enum hwmon_sensor_types type,
  342. u32 attr, int channel)
  343. {
  344. const struct sfp *sfp = data;
  345. switch (type) {
  346. case hwmon_temp:
  347. switch (attr) {
  348. case hwmon_temp_min_alarm:
  349. case hwmon_temp_max_alarm:
  350. case hwmon_temp_lcrit_alarm:
  351. case hwmon_temp_crit_alarm:
  352. case hwmon_temp_min:
  353. case hwmon_temp_max:
  354. case hwmon_temp_lcrit:
  355. case hwmon_temp_crit:
  356. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  357. return 0;
  358. /* fall through */
  359. case hwmon_temp_input:
  360. case hwmon_temp_label:
  361. return 0444;
  362. default:
  363. return 0;
  364. }
  365. case hwmon_in:
  366. switch (attr) {
  367. case hwmon_in_min_alarm:
  368. case hwmon_in_max_alarm:
  369. case hwmon_in_lcrit_alarm:
  370. case hwmon_in_crit_alarm:
  371. case hwmon_in_min:
  372. case hwmon_in_max:
  373. case hwmon_in_lcrit:
  374. case hwmon_in_crit:
  375. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  376. return 0;
  377. /* fall through */
  378. case hwmon_in_input:
  379. case hwmon_in_label:
  380. return 0444;
  381. default:
  382. return 0;
  383. }
  384. case hwmon_curr:
  385. switch (attr) {
  386. case hwmon_curr_min_alarm:
  387. case hwmon_curr_max_alarm:
  388. case hwmon_curr_lcrit_alarm:
  389. case hwmon_curr_crit_alarm:
  390. case hwmon_curr_min:
  391. case hwmon_curr_max:
  392. case hwmon_curr_lcrit:
  393. case hwmon_curr_crit:
  394. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  395. return 0;
  396. /* fall through */
  397. case hwmon_curr_input:
  398. case hwmon_curr_label:
  399. return 0444;
  400. default:
  401. return 0;
  402. }
  403. case hwmon_power:
  404. /* External calibration of receive power requires
  405. * floating point arithmetic. Doing that in the kernel
  406. * is not easy, so just skip it. If the module does
  407. * not require external calibration, we can however
  408. * show receiver power, since FP is then not needed.
  409. */
  410. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
  411. channel == 1)
  412. return 0;
  413. switch (attr) {
  414. case hwmon_power_min_alarm:
  415. case hwmon_power_max_alarm:
  416. case hwmon_power_lcrit_alarm:
  417. case hwmon_power_crit_alarm:
  418. case hwmon_power_min:
  419. case hwmon_power_max:
  420. case hwmon_power_lcrit:
  421. case hwmon_power_crit:
  422. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  423. return 0;
  424. /* fall through */
  425. case hwmon_power_input:
  426. case hwmon_power_label:
  427. return 0444;
  428. default:
  429. return 0;
  430. }
  431. default:
  432. return 0;
  433. }
  434. }
  435. static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
  436. {
  437. __be16 val;
  438. int err;
  439. err = sfp_read(sfp, true, reg, &val, sizeof(val));
  440. if (err < 0)
  441. return err;
  442. *value = be16_to_cpu(val);
  443. return 0;
  444. }
  445. static void sfp_hwmon_to_rx_power(long *value)
  446. {
  447. *value = DIV_ROUND_CLOSEST(*value, 10);
  448. }
  449. static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
  450. long *value)
  451. {
  452. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
  453. *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
  454. }
  455. static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
  456. {
  457. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
  458. be16_to_cpu(sfp->diag.cal_t_offset), value);
  459. if (*value >= 0x8000)
  460. *value -= 0x10000;
  461. *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
  462. }
  463. static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
  464. {
  465. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
  466. be16_to_cpu(sfp->diag.cal_v_offset), value);
  467. *value = DIV_ROUND_CLOSEST(*value, 10);
  468. }
  469. static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
  470. {
  471. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
  472. be16_to_cpu(sfp->diag.cal_txi_offset), value);
  473. *value = DIV_ROUND_CLOSEST(*value, 500);
  474. }
  475. static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
  476. {
  477. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
  478. be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
  479. *value = DIV_ROUND_CLOSEST(*value, 10);
  480. }
  481. static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
  482. {
  483. int err;
  484. err = sfp_hwmon_read_sensor(sfp, reg, value);
  485. if (err < 0)
  486. return err;
  487. sfp_hwmon_calibrate_temp(sfp, value);
  488. return 0;
  489. }
  490. static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
  491. {
  492. int err;
  493. err = sfp_hwmon_read_sensor(sfp, reg, value);
  494. if (err < 0)
  495. return err;
  496. sfp_hwmon_calibrate_vcc(sfp, value);
  497. return 0;
  498. }
  499. static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
  500. {
  501. int err;
  502. err = sfp_hwmon_read_sensor(sfp, reg, value);
  503. if (err < 0)
  504. return err;
  505. sfp_hwmon_calibrate_bias(sfp, value);
  506. return 0;
  507. }
  508. static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
  509. {
  510. int err;
  511. err = sfp_hwmon_read_sensor(sfp, reg, value);
  512. if (err < 0)
  513. return err;
  514. sfp_hwmon_calibrate_tx_power(sfp, value);
  515. return 0;
  516. }
  517. static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
  518. {
  519. int err;
  520. err = sfp_hwmon_read_sensor(sfp, reg, value);
  521. if (err < 0)
  522. return err;
  523. sfp_hwmon_to_rx_power(value);
  524. return 0;
  525. }
  526. static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
  527. {
  528. u8 status;
  529. int err;
  530. switch (attr) {
  531. case hwmon_temp_input:
  532. return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
  533. case hwmon_temp_lcrit:
  534. *value = be16_to_cpu(sfp->diag.temp_low_alarm);
  535. sfp_hwmon_calibrate_temp(sfp, value);
  536. return 0;
  537. case hwmon_temp_min:
  538. *value = be16_to_cpu(sfp->diag.temp_low_warn);
  539. sfp_hwmon_calibrate_temp(sfp, value);
  540. return 0;
  541. case hwmon_temp_max:
  542. *value = be16_to_cpu(sfp->diag.temp_high_warn);
  543. sfp_hwmon_calibrate_temp(sfp, value);
  544. return 0;
  545. case hwmon_temp_crit:
  546. *value = be16_to_cpu(sfp->diag.temp_high_alarm);
  547. sfp_hwmon_calibrate_temp(sfp, value);
  548. return 0;
  549. case hwmon_temp_lcrit_alarm:
  550. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  551. if (err < 0)
  552. return err;
  553. *value = !!(status & SFP_ALARM0_TEMP_LOW);
  554. return 0;
  555. case hwmon_temp_min_alarm:
  556. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  557. if (err < 0)
  558. return err;
  559. *value = !!(status & SFP_WARN0_TEMP_LOW);
  560. return 0;
  561. case hwmon_temp_max_alarm:
  562. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  563. if (err < 0)
  564. return err;
  565. *value = !!(status & SFP_WARN0_TEMP_HIGH);
  566. return 0;
  567. case hwmon_temp_crit_alarm:
  568. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  569. if (err < 0)
  570. return err;
  571. *value = !!(status & SFP_ALARM0_TEMP_HIGH);
  572. return 0;
  573. default:
  574. return -EOPNOTSUPP;
  575. }
  576. return -EOPNOTSUPP;
  577. }
  578. static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
  579. {
  580. u8 status;
  581. int err;
  582. switch (attr) {
  583. case hwmon_in_input:
  584. return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
  585. case hwmon_in_lcrit:
  586. *value = be16_to_cpu(sfp->diag.volt_low_alarm);
  587. sfp_hwmon_calibrate_vcc(sfp, value);
  588. return 0;
  589. case hwmon_in_min:
  590. *value = be16_to_cpu(sfp->diag.volt_low_warn);
  591. sfp_hwmon_calibrate_vcc(sfp, value);
  592. return 0;
  593. case hwmon_in_max:
  594. *value = be16_to_cpu(sfp->diag.volt_high_warn);
  595. sfp_hwmon_calibrate_vcc(sfp, value);
  596. return 0;
  597. case hwmon_in_crit:
  598. *value = be16_to_cpu(sfp->diag.volt_high_alarm);
  599. sfp_hwmon_calibrate_vcc(sfp, value);
  600. return 0;
  601. case hwmon_in_lcrit_alarm:
  602. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  603. if (err < 0)
  604. return err;
  605. *value = !!(status & SFP_ALARM0_VCC_LOW);
  606. return 0;
  607. case hwmon_in_min_alarm:
  608. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  609. if (err < 0)
  610. return err;
  611. *value = !!(status & SFP_WARN0_VCC_LOW);
  612. return 0;
  613. case hwmon_in_max_alarm:
  614. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  615. if (err < 0)
  616. return err;
  617. *value = !!(status & SFP_WARN0_VCC_HIGH);
  618. return 0;
  619. case hwmon_in_crit_alarm:
  620. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  621. if (err < 0)
  622. return err;
  623. *value = !!(status & SFP_ALARM0_VCC_HIGH);
  624. return 0;
  625. default:
  626. return -EOPNOTSUPP;
  627. }
  628. return -EOPNOTSUPP;
  629. }
  630. static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
  631. {
  632. u8 status;
  633. int err;
  634. switch (attr) {
  635. case hwmon_curr_input:
  636. return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
  637. case hwmon_curr_lcrit:
  638. *value = be16_to_cpu(sfp->diag.bias_low_alarm);
  639. sfp_hwmon_calibrate_bias(sfp, value);
  640. return 0;
  641. case hwmon_curr_min:
  642. *value = be16_to_cpu(sfp->diag.bias_low_warn);
  643. sfp_hwmon_calibrate_bias(sfp, value);
  644. return 0;
  645. case hwmon_curr_max:
  646. *value = be16_to_cpu(sfp->diag.bias_high_warn);
  647. sfp_hwmon_calibrate_bias(sfp, value);
  648. return 0;
  649. case hwmon_curr_crit:
  650. *value = be16_to_cpu(sfp->diag.bias_high_alarm);
  651. sfp_hwmon_calibrate_bias(sfp, value);
  652. return 0;
  653. case hwmon_curr_lcrit_alarm:
  654. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  655. if (err < 0)
  656. return err;
  657. *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
  658. return 0;
  659. case hwmon_curr_min_alarm:
  660. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  661. if (err < 0)
  662. return err;
  663. *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
  664. return 0;
  665. case hwmon_curr_max_alarm:
  666. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  667. if (err < 0)
  668. return err;
  669. *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
  670. return 0;
  671. case hwmon_curr_crit_alarm:
  672. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  673. if (err < 0)
  674. return err;
  675. *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
  676. return 0;
  677. default:
  678. return -EOPNOTSUPP;
  679. }
  680. return -EOPNOTSUPP;
  681. }
  682. static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
  683. {
  684. u8 status;
  685. int err;
  686. switch (attr) {
  687. case hwmon_power_input:
  688. return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
  689. case hwmon_power_lcrit:
  690. *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
  691. sfp_hwmon_calibrate_tx_power(sfp, value);
  692. return 0;
  693. case hwmon_power_min:
  694. *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
  695. sfp_hwmon_calibrate_tx_power(sfp, value);
  696. return 0;
  697. case hwmon_power_max:
  698. *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
  699. sfp_hwmon_calibrate_tx_power(sfp, value);
  700. return 0;
  701. case hwmon_power_crit:
  702. *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
  703. sfp_hwmon_calibrate_tx_power(sfp, value);
  704. return 0;
  705. case hwmon_power_lcrit_alarm:
  706. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  707. if (err < 0)
  708. return err;
  709. *value = !!(status & SFP_ALARM0_TXPWR_LOW);
  710. return 0;
  711. case hwmon_power_min_alarm:
  712. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  713. if (err < 0)
  714. return err;
  715. *value = !!(status & SFP_WARN0_TXPWR_LOW);
  716. return 0;
  717. case hwmon_power_max_alarm:
  718. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  719. if (err < 0)
  720. return err;
  721. *value = !!(status & SFP_WARN0_TXPWR_HIGH);
  722. return 0;
  723. case hwmon_power_crit_alarm:
  724. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  725. if (err < 0)
  726. return err;
  727. *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
  728. return 0;
  729. default:
  730. return -EOPNOTSUPP;
  731. }
  732. return -EOPNOTSUPP;
  733. }
  734. static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
  735. {
  736. u8 status;
  737. int err;
  738. switch (attr) {
  739. case hwmon_power_input:
  740. return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
  741. case hwmon_power_lcrit:
  742. *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
  743. sfp_hwmon_to_rx_power(value);
  744. return 0;
  745. case hwmon_power_min:
  746. *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
  747. sfp_hwmon_to_rx_power(value);
  748. return 0;
  749. case hwmon_power_max:
  750. *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
  751. sfp_hwmon_to_rx_power(value);
  752. return 0;
  753. case hwmon_power_crit:
  754. *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
  755. sfp_hwmon_to_rx_power(value);
  756. return 0;
  757. case hwmon_power_lcrit_alarm:
  758. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  759. if (err < 0)
  760. return err;
  761. *value = !!(status & SFP_ALARM1_RXPWR_LOW);
  762. return 0;
  763. case hwmon_power_min_alarm:
  764. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  765. if (err < 0)
  766. return err;
  767. *value = !!(status & SFP_WARN1_RXPWR_LOW);
  768. return 0;
  769. case hwmon_power_max_alarm:
  770. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  771. if (err < 0)
  772. return err;
  773. *value = !!(status & SFP_WARN1_RXPWR_HIGH);
  774. return 0;
  775. case hwmon_power_crit_alarm:
  776. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  777. if (err < 0)
  778. return err;
  779. *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
  780. return 0;
  781. default:
  782. return -EOPNOTSUPP;
  783. }
  784. return -EOPNOTSUPP;
  785. }
  786. static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
  787. u32 attr, int channel, long *value)
  788. {
  789. struct sfp *sfp = dev_get_drvdata(dev);
  790. switch (type) {
  791. case hwmon_temp:
  792. return sfp_hwmon_temp(sfp, attr, value);
  793. case hwmon_in:
  794. return sfp_hwmon_vcc(sfp, attr, value);
  795. case hwmon_curr:
  796. return sfp_hwmon_bias(sfp, attr, value);
  797. case hwmon_power:
  798. switch (channel) {
  799. case 0:
  800. return sfp_hwmon_tx_power(sfp, attr, value);
  801. case 1:
  802. return sfp_hwmon_rx_power(sfp, attr, value);
  803. default:
  804. return -EOPNOTSUPP;
  805. }
  806. default:
  807. return -EOPNOTSUPP;
  808. }
  809. }
  810. static const char *const sfp_hwmon_power_labels[] = {
  811. "TX_power",
  812. "RX_power",
  813. };
  814. static int sfp_hwmon_read_string(struct device *dev,
  815. enum hwmon_sensor_types type,
  816. u32 attr, int channel, const char **str)
  817. {
  818. switch (type) {
  819. case hwmon_curr:
  820. switch (attr) {
  821. case hwmon_curr_label:
  822. *str = "bias";
  823. return 0;
  824. default:
  825. return -EOPNOTSUPP;
  826. }
  827. break;
  828. case hwmon_temp:
  829. switch (attr) {
  830. case hwmon_temp_label:
  831. *str = "temperature";
  832. return 0;
  833. default:
  834. return -EOPNOTSUPP;
  835. }
  836. break;
  837. case hwmon_in:
  838. switch (attr) {
  839. case hwmon_in_label:
  840. *str = "VCC";
  841. return 0;
  842. default:
  843. return -EOPNOTSUPP;
  844. }
  845. break;
  846. case hwmon_power:
  847. switch (attr) {
  848. case hwmon_power_label:
  849. *str = sfp_hwmon_power_labels[channel];
  850. return 0;
  851. default:
  852. return -EOPNOTSUPP;
  853. }
  854. break;
  855. default:
  856. return -EOPNOTSUPP;
  857. }
  858. return -EOPNOTSUPP;
  859. }
  860. static const struct hwmon_ops sfp_hwmon_ops = {
  861. .is_visible = sfp_hwmon_is_visible,
  862. .read = sfp_hwmon_read,
  863. .read_string = sfp_hwmon_read_string,
  864. };
  865. static u32 sfp_hwmon_chip_config[] = {
  866. HWMON_C_REGISTER_TZ,
  867. 0,
  868. };
  869. static const struct hwmon_channel_info sfp_hwmon_chip = {
  870. .type = hwmon_chip,
  871. .config = sfp_hwmon_chip_config,
  872. };
  873. static u32 sfp_hwmon_temp_config[] = {
  874. HWMON_T_INPUT |
  875. HWMON_T_MAX | HWMON_T_MIN |
  876. HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
  877. HWMON_T_CRIT | HWMON_T_LCRIT |
  878. HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
  879. HWMON_T_LABEL,
  880. 0,
  881. };
  882. static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
  883. .type = hwmon_temp,
  884. .config = sfp_hwmon_temp_config,
  885. };
  886. static u32 sfp_hwmon_vcc_config[] = {
  887. HWMON_I_INPUT |
  888. HWMON_I_MAX | HWMON_I_MIN |
  889. HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
  890. HWMON_I_CRIT | HWMON_I_LCRIT |
  891. HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
  892. HWMON_I_LABEL,
  893. 0,
  894. };
  895. static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
  896. .type = hwmon_in,
  897. .config = sfp_hwmon_vcc_config,
  898. };
  899. static u32 sfp_hwmon_bias_config[] = {
  900. HWMON_C_INPUT |
  901. HWMON_C_MAX | HWMON_C_MIN |
  902. HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
  903. HWMON_C_CRIT | HWMON_C_LCRIT |
  904. HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
  905. HWMON_C_LABEL,
  906. 0,
  907. };
  908. static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
  909. .type = hwmon_curr,
  910. .config = sfp_hwmon_bias_config,
  911. };
  912. static u32 sfp_hwmon_power_config[] = {
  913. /* Transmit power */
  914. HWMON_P_INPUT |
  915. HWMON_P_MAX | HWMON_P_MIN |
  916. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  917. HWMON_P_CRIT | HWMON_P_LCRIT |
  918. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
  919. HWMON_P_LABEL,
  920. /* Receive power */
  921. HWMON_P_INPUT |
  922. HWMON_P_MAX | HWMON_P_MIN |
  923. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  924. HWMON_P_CRIT | HWMON_P_LCRIT |
  925. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
  926. HWMON_P_LABEL,
  927. 0,
  928. };
  929. static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
  930. .type = hwmon_power,
  931. .config = sfp_hwmon_power_config,
  932. };
  933. static const struct hwmon_channel_info *sfp_hwmon_info[] = {
  934. &sfp_hwmon_chip,
  935. &sfp_hwmon_vcc_channel_info,
  936. &sfp_hwmon_temp_channel_info,
  937. &sfp_hwmon_bias_channel_info,
  938. &sfp_hwmon_power_channel_info,
  939. NULL,
  940. };
  941. static const struct hwmon_chip_info sfp_hwmon_chip_info = {
  942. .ops = &sfp_hwmon_ops,
  943. .info = sfp_hwmon_info,
  944. };
  945. static int sfp_hwmon_insert(struct sfp *sfp)
  946. {
  947. int err, i;
  948. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
  949. return 0;
  950. if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
  951. return 0;
  952. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  953. /* This driver in general does not support address
  954. * change.
  955. */
  956. return 0;
  957. err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
  958. if (err < 0)
  959. return err;
  960. sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
  961. if (!sfp->hwmon_name)
  962. return -ENODEV;
  963. for (i = 0; sfp->hwmon_name[i]; i++)
  964. if (hwmon_is_bad_char(sfp->hwmon_name[i]))
  965. sfp->hwmon_name[i] = '_';
  966. sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
  967. sfp->hwmon_name, sfp,
  968. &sfp_hwmon_chip_info,
  969. NULL);
  970. return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
  971. }
  972. static void sfp_hwmon_remove(struct sfp *sfp)
  973. {
  974. if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
  975. hwmon_device_unregister(sfp->hwmon_dev);
  976. sfp->hwmon_dev = NULL;
  977. kfree(sfp->hwmon_name);
  978. }
  979. }
  980. #else
  981. static int sfp_hwmon_insert(struct sfp *sfp)
  982. {
  983. return 0;
  984. }
  985. static void sfp_hwmon_remove(struct sfp *sfp)
  986. {
  987. }
  988. #endif
  989. /* Helpers */
  990. static void sfp_module_tx_disable(struct sfp *sfp)
  991. {
  992. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  993. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
  994. sfp->state |= SFP_F_TX_DISABLE;
  995. sfp_set_state(sfp, sfp->state);
  996. }
  997. static void sfp_module_tx_enable(struct sfp *sfp)
  998. {
  999. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  1000. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
  1001. sfp->state &= ~SFP_F_TX_DISABLE;
  1002. sfp_set_state(sfp, sfp->state);
  1003. }
  1004. static void sfp_module_tx_fault_reset(struct sfp *sfp)
  1005. {
  1006. unsigned int state = sfp->state;
  1007. if (state & SFP_F_TX_DISABLE)
  1008. return;
  1009. sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
  1010. udelay(T_RESET_US);
  1011. sfp_set_state(sfp, state);
  1012. }
  1013. /* SFP state machine */
  1014. static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
  1015. {
  1016. if (timeout)
  1017. mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
  1018. timeout);
  1019. else
  1020. cancel_delayed_work(&sfp->timeout);
  1021. }
  1022. static void sfp_sm_next(struct sfp *sfp, unsigned int state,
  1023. unsigned int timeout)
  1024. {
  1025. sfp->sm_state = state;
  1026. sfp_sm_set_timer(sfp, timeout);
  1027. }
  1028. static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
  1029. unsigned int timeout)
  1030. {
  1031. sfp->sm_mod_state = state;
  1032. sfp_sm_set_timer(sfp, timeout);
  1033. }
  1034. static void sfp_sm_phy_detach(struct sfp *sfp)
  1035. {
  1036. phy_stop(sfp->mod_phy);
  1037. sfp_remove_phy(sfp->sfp_bus);
  1038. phy_device_remove(sfp->mod_phy);
  1039. phy_device_free(sfp->mod_phy);
  1040. sfp->mod_phy = NULL;
  1041. }
  1042. static void sfp_sm_probe_phy(struct sfp *sfp)
  1043. {
  1044. struct phy_device *phy;
  1045. int err;
  1046. msleep(T_PHY_RESET_MS);
  1047. phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
  1048. if (phy == ERR_PTR(-ENODEV)) {
  1049. dev_info(sfp->dev, "no PHY detected\n");
  1050. return;
  1051. }
  1052. if (IS_ERR(phy)) {
  1053. dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
  1054. return;
  1055. }
  1056. err = sfp_add_phy(sfp->sfp_bus, phy);
  1057. if (err) {
  1058. phy_device_remove(phy);
  1059. phy_device_free(phy);
  1060. dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
  1061. return;
  1062. }
  1063. sfp->mod_phy = phy;
  1064. phy_start(phy);
  1065. }
  1066. static void sfp_sm_link_up(struct sfp *sfp)
  1067. {
  1068. sfp_link_up(sfp->sfp_bus);
  1069. sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
  1070. }
  1071. static void sfp_sm_link_down(struct sfp *sfp)
  1072. {
  1073. sfp_link_down(sfp->sfp_bus);
  1074. }
  1075. static void sfp_sm_link_check_los(struct sfp *sfp)
  1076. {
  1077. unsigned int los = sfp->state & SFP_F_LOS;
  1078. /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
  1079. * are set, we assume that no LOS signal is available.
  1080. */
  1081. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
  1082. los ^= SFP_F_LOS;
  1083. else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
  1084. los = 0;
  1085. if (los)
  1086. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  1087. else
  1088. sfp_sm_link_up(sfp);
  1089. }
  1090. static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
  1091. {
  1092. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  1093. event == SFP_E_LOS_LOW) ||
  1094. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  1095. event == SFP_E_LOS_HIGH);
  1096. }
  1097. static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
  1098. {
  1099. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  1100. event == SFP_E_LOS_HIGH) ||
  1101. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  1102. event == SFP_E_LOS_LOW);
  1103. }
  1104. static void sfp_sm_fault(struct sfp *sfp, bool warn)
  1105. {
  1106. if (sfp->sm_retries && !--sfp->sm_retries) {
  1107. dev_err(sfp->dev,
  1108. "module persistently indicates fault, disabling\n");
  1109. sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
  1110. } else {
  1111. if (warn)
  1112. dev_err(sfp->dev, "module transmit fault indicated\n");
  1113. sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
  1114. }
  1115. }
  1116. static void sfp_sm_mod_init(struct sfp *sfp)
  1117. {
  1118. sfp_module_tx_enable(sfp);
  1119. /* Wait t_init before indicating that the link is up, provided the
  1120. * current state indicates no TX_FAULT. If TX_FAULT clears before
  1121. * this time, that's fine too.
  1122. */
  1123. sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
  1124. sfp->sm_retries = 5;
  1125. /* Setting the serdes link mode is guesswork: there's no
  1126. * field in the EEPROM which indicates what mode should
  1127. * be used.
  1128. *
  1129. * If it's a gigabit-only fiber module, it probably does
  1130. * not have a PHY, so switch to 802.3z negotiation mode.
  1131. * Otherwise, switch to SGMII mode (which is required to
  1132. * support non-gigabit speeds) and probe for a PHY.
  1133. */
  1134. if (sfp->id.base.e1000_base_t ||
  1135. sfp->id.base.e100_base_lx ||
  1136. sfp->id.base.e100_base_fx)
  1137. sfp_sm_probe_phy(sfp);
  1138. }
  1139. static int sfp_sm_mod_hpower(struct sfp *sfp)
  1140. {
  1141. u32 power;
  1142. u8 val;
  1143. int err;
  1144. power = 1000;
  1145. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
  1146. power = 1500;
  1147. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
  1148. power = 2000;
  1149. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
  1150. (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
  1151. SFP_DIAGMON_DDM) {
  1152. /* The module appears not to implement bus address 0xa2,
  1153. * or requires an address change sequence, so assume that
  1154. * the module powers up in the indicated power mode.
  1155. */
  1156. if (power > sfp->max_power_mW) {
  1157. dev_err(sfp->dev,
  1158. "Host does not support %u.%uW modules\n",
  1159. power / 1000, (power / 100) % 10);
  1160. return -EINVAL;
  1161. }
  1162. return 0;
  1163. }
  1164. if (power > sfp->max_power_mW) {
  1165. dev_warn(sfp->dev,
  1166. "Host does not support %u.%uW modules, module left in power mode 1\n",
  1167. power / 1000, (power / 100) % 10);
  1168. return 0;
  1169. }
  1170. if (power <= 1000)
  1171. return 0;
  1172. err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1173. if (err != sizeof(val)) {
  1174. dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
  1175. err = -EAGAIN;
  1176. goto err;
  1177. }
  1178. val |= BIT(0);
  1179. err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1180. if (err != sizeof(val)) {
  1181. dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
  1182. err = -EAGAIN;
  1183. goto err;
  1184. }
  1185. dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
  1186. power / 1000, (power / 100) % 10);
  1187. return T_HPOWER_LEVEL;
  1188. err:
  1189. return err;
  1190. }
  1191. static int sfp_sm_mod_probe(struct sfp *sfp)
  1192. {
  1193. /* SFP module inserted - read I2C data */
  1194. struct sfp_eeprom_id id;
  1195. bool cotsworks;
  1196. u8 check;
  1197. int ret;
  1198. ret = sfp_read(sfp, false, 0, &id, sizeof(id));
  1199. if (ret < 0) {
  1200. dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
  1201. return -EAGAIN;
  1202. }
  1203. if (ret != sizeof(id)) {
  1204. dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
  1205. return -EAGAIN;
  1206. }
  1207. /* Cotsworks do not seem to update the checksums when they
  1208. * do the final programming with the final module part number,
  1209. * serial number and date code.
  1210. */
  1211. cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
  1212. /* Validate the checksum over the base structure */
  1213. check = sfp_check(&id.base, sizeof(id.base) - 1);
  1214. if (check != id.base.cc_base) {
  1215. if (cotsworks) {
  1216. dev_warn(sfp->dev,
  1217. "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
  1218. check, id.base.cc_base);
  1219. } else {
  1220. dev_err(sfp->dev,
  1221. "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
  1222. check, id.base.cc_base);
  1223. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1224. 16, 1, &id, sizeof(id), true);
  1225. return -EINVAL;
  1226. }
  1227. }
  1228. check = sfp_check(&id.ext, sizeof(id.ext) - 1);
  1229. if (check != id.ext.cc_ext) {
  1230. if (cotsworks) {
  1231. dev_warn(sfp->dev,
  1232. "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
  1233. check, id.ext.cc_ext);
  1234. } else {
  1235. dev_err(sfp->dev,
  1236. "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
  1237. check, id.ext.cc_ext);
  1238. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1239. 16, 1, &id, sizeof(id), true);
  1240. memset(&id.ext, 0, sizeof(id.ext));
  1241. }
  1242. }
  1243. sfp->id = id;
  1244. dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
  1245. (int)sizeof(id.base.vendor_name), id.base.vendor_name,
  1246. (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
  1247. (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
  1248. (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
  1249. (int)sizeof(id.ext.datecode), id.ext.datecode);
  1250. /* Check whether we support this module */
  1251. if (!sfp->type->module_supported(&sfp->id)) {
  1252. dev_err(sfp->dev,
  1253. "module is not supported - phys id 0x%02x 0x%02x\n",
  1254. sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
  1255. return -EINVAL;
  1256. }
  1257. /* If the module requires address swap mode, warn about it */
  1258. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  1259. dev_warn(sfp->dev,
  1260. "module address swap to access page 0xA2 is not supported.\n");
  1261. ret = sfp_hwmon_insert(sfp);
  1262. if (ret < 0)
  1263. return ret;
  1264. ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
  1265. if (ret < 0)
  1266. return ret;
  1267. return sfp_sm_mod_hpower(sfp);
  1268. }
  1269. static void sfp_sm_mod_remove(struct sfp *sfp)
  1270. {
  1271. sfp_module_remove(sfp->sfp_bus);
  1272. sfp_hwmon_remove(sfp);
  1273. if (sfp->mod_phy)
  1274. sfp_sm_phy_detach(sfp);
  1275. sfp_module_tx_disable(sfp);
  1276. memset(&sfp->id, 0, sizeof(sfp->id));
  1277. dev_info(sfp->dev, "module removed\n");
  1278. }
  1279. static void sfp_sm_event(struct sfp *sfp, unsigned int event)
  1280. {
  1281. mutex_lock(&sfp->sm_mutex);
  1282. dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
  1283. mod_state_to_str(sfp->sm_mod_state),
  1284. dev_state_to_str(sfp->sm_dev_state),
  1285. sm_state_to_str(sfp->sm_state),
  1286. event_to_str(event));
  1287. /* This state machine tracks the insert/remove state of
  1288. * the module, and handles probing the on-board EEPROM.
  1289. */
  1290. switch (sfp->sm_mod_state) {
  1291. default:
  1292. if (event == SFP_E_INSERT && sfp->attached) {
  1293. sfp_module_tx_disable(sfp);
  1294. sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
  1295. }
  1296. break;
  1297. case SFP_MOD_PROBE:
  1298. if (event == SFP_E_REMOVE) {
  1299. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  1300. } else if (event == SFP_E_TIMEOUT) {
  1301. int val = sfp_sm_mod_probe(sfp);
  1302. if (val == 0)
  1303. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  1304. else if (val > 0)
  1305. sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
  1306. else if (val != -EAGAIN)
  1307. sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
  1308. else
  1309. sfp_sm_set_timer(sfp, T_PROBE_RETRY);
  1310. }
  1311. break;
  1312. case SFP_MOD_HPOWER:
  1313. if (event == SFP_E_TIMEOUT) {
  1314. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  1315. break;
  1316. }
  1317. /* fallthrough */
  1318. case SFP_MOD_PRESENT:
  1319. case SFP_MOD_ERROR:
  1320. if (event == SFP_E_REMOVE) {
  1321. sfp_sm_mod_remove(sfp);
  1322. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  1323. }
  1324. break;
  1325. }
  1326. /* This state machine tracks the netdev up/down state */
  1327. switch (sfp->sm_dev_state) {
  1328. default:
  1329. if (event == SFP_E_DEV_UP)
  1330. sfp->sm_dev_state = SFP_DEV_UP;
  1331. break;
  1332. case SFP_DEV_UP:
  1333. if (event == SFP_E_DEV_DOWN) {
  1334. /* If the module has a PHY, avoid raising TX disable
  1335. * as this resets the PHY. Otherwise, raise it to
  1336. * turn the laser off.
  1337. */
  1338. if (!sfp->mod_phy)
  1339. sfp_module_tx_disable(sfp);
  1340. sfp->sm_dev_state = SFP_DEV_DOWN;
  1341. }
  1342. break;
  1343. }
  1344. /* Some events are global */
  1345. if (sfp->sm_state != SFP_S_DOWN &&
  1346. (sfp->sm_mod_state != SFP_MOD_PRESENT ||
  1347. sfp->sm_dev_state != SFP_DEV_UP)) {
  1348. if (sfp->sm_state == SFP_S_LINK_UP &&
  1349. sfp->sm_dev_state == SFP_DEV_UP)
  1350. sfp_sm_link_down(sfp);
  1351. if (sfp->mod_phy)
  1352. sfp_sm_phy_detach(sfp);
  1353. sfp_sm_next(sfp, SFP_S_DOWN, 0);
  1354. mutex_unlock(&sfp->sm_mutex);
  1355. return;
  1356. }
  1357. /* The main state machine */
  1358. switch (sfp->sm_state) {
  1359. case SFP_S_DOWN:
  1360. if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
  1361. sfp->sm_dev_state == SFP_DEV_UP)
  1362. sfp_sm_mod_init(sfp);
  1363. break;
  1364. case SFP_S_INIT:
  1365. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
  1366. sfp_sm_fault(sfp, true);
  1367. else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
  1368. sfp_sm_link_check_los(sfp);
  1369. break;
  1370. case SFP_S_WAIT_LOS:
  1371. if (event == SFP_E_TX_FAULT)
  1372. sfp_sm_fault(sfp, true);
  1373. else if (sfp_los_event_inactive(sfp, event))
  1374. sfp_sm_link_up(sfp);
  1375. break;
  1376. case SFP_S_LINK_UP:
  1377. if (event == SFP_E_TX_FAULT) {
  1378. sfp_sm_link_down(sfp);
  1379. sfp_sm_fault(sfp, true);
  1380. } else if (sfp_los_event_active(sfp, event)) {
  1381. sfp_sm_link_down(sfp);
  1382. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  1383. }
  1384. break;
  1385. case SFP_S_TX_FAULT:
  1386. if (event == SFP_E_TIMEOUT) {
  1387. sfp_module_tx_fault_reset(sfp);
  1388. sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
  1389. }
  1390. break;
  1391. case SFP_S_REINIT:
  1392. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
  1393. sfp_sm_fault(sfp, false);
  1394. } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
  1395. dev_info(sfp->dev, "module transmit fault recovered\n");
  1396. sfp_sm_link_check_los(sfp);
  1397. }
  1398. break;
  1399. case SFP_S_TX_DISABLE:
  1400. break;
  1401. }
  1402. dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
  1403. mod_state_to_str(sfp->sm_mod_state),
  1404. dev_state_to_str(sfp->sm_dev_state),
  1405. sm_state_to_str(sfp->sm_state));
  1406. mutex_unlock(&sfp->sm_mutex);
  1407. }
  1408. static void sfp_attach(struct sfp *sfp)
  1409. {
  1410. sfp->attached = true;
  1411. if (sfp->state & SFP_F_PRESENT)
  1412. sfp_sm_event(sfp, SFP_E_INSERT);
  1413. }
  1414. static void sfp_detach(struct sfp *sfp)
  1415. {
  1416. sfp->attached = false;
  1417. sfp_sm_event(sfp, SFP_E_REMOVE);
  1418. }
  1419. static void sfp_start(struct sfp *sfp)
  1420. {
  1421. sfp_sm_event(sfp, SFP_E_DEV_UP);
  1422. }
  1423. static void sfp_stop(struct sfp *sfp)
  1424. {
  1425. sfp_sm_event(sfp, SFP_E_DEV_DOWN);
  1426. }
  1427. static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
  1428. {
  1429. /* locking... and check module is present */
  1430. if (sfp->id.ext.sff8472_compliance &&
  1431. !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
  1432. modinfo->type = ETH_MODULE_SFF_8472;
  1433. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  1434. } else {
  1435. modinfo->type = ETH_MODULE_SFF_8079;
  1436. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  1437. }
  1438. return 0;
  1439. }
  1440. static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
  1441. u8 *data)
  1442. {
  1443. unsigned int first, last, len;
  1444. int ret;
  1445. if (ee->len == 0)
  1446. return -EINVAL;
  1447. first = ee->offset;
  1448. last = ee->offset + ee->len;
  1449. if (first < ETH_MODULE_SFF_8079_LEN) {
  1450. len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
  1451. len -= first;
  1452. ret = sfp_read(sfp, false, first, data, len);
  1453. if (ret < 0)
  1454. return ret;
  1455. first += len;
  1456. data += len;
  1457. }
  1458. if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
  1459. len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
  1460. len -= first;
  1461. first -= ETH_MODULE_SFF_8079_LEN;
  1462. ret = sfp_read(sfp, true, first, data, len);
  1463. if (ret < 0)
  1464. return ret;
  1465. }
  1466. return 0;
  1467. }
  1468. static const struct sfp_socket_ops sfp_module_ops = {
  1469. .attach = sfp_attach,
  1470. .detach = sfp_detach,
  1471. .start = sfp_start,
  1472. .stop = sfp_stop,
  1473. .module_info = sfp_module_info,
  1474. .module_eeprom = sfp_module_eeprom,
  1475. };
  1476. static void sfp_timeout(struct work_struct *work)
  1477. {
  1478. struct sfp *sfp = container_of(work, struct sfp, timeout.work);
  1479. rtnl_lock();
  1480. sfp_sm_event(sfp, SFP_E_TIMEOUT);
  1481. rtnl_unlock();
  1482. }
  1483. static void sfp_check_state(struct sfp *sfp)
  1484. {
  1485. unsigned int state, i, changed;
  1486. mutex_lock(&sfp->st_mutex);
  1487. state = sfp_get_state(sfp);
  1488. changed = state ^ sfp->state;
  1489. changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
  1490. for (i = 0; i < GPIO_MAX; i++)
  1491. if (changed & BIT(i))
  1492. dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
  1493. !!(sfp->state & BIT(i)), !!(state & BIT(i)));
  1494. state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
  1495. sfp->state = state;
  1496. rtnl_lock();
  1497. if (changed & SFP_F_PRESENT)
  1498. sfp_sm_event(sfp, state & SFP_F_PRESENT ?
  1499. SFP_E_INSERT : SFP_E_REMOVE);
  1500. if (changed & SFP_F_TX_FAULT)
  1501. sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
  1502. SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
  1503. if (changed & SFP_F_LOS)
  1504. sfp_sm_event(sfp, state & SFP_F_LOS ?
  1505. SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
  1506. rtnl_unlock();
  1507. mutex_unlock(&sfp->st_mutex);
  1508. }
  1509. static irqreturn_t sfp_irq(int irq, void *data)
  1510. {
  1511. struct sfp *sfp = data;
  1512. sfp_check_state(sfp);
  1513. return IRQ_HANDLED;
  1514. }
  1515. static void sfp_poll(struct work_struct *work)
  1516. {
  1517. struct sfp *sfp = container_of(work, struct sfp, poll.work);
  1518. sfp_check_state(sfp);
  1519. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  1520. }
  1521. static struct sfp *sfp_alloc(struct device *dev)
  1522. {
  1523. struct sfp *sfp;
  1524. sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
  1525. if (!sfp)
  1526. return ERR_PTR(-ENOMEM);
  1527. sfp->dev = dev;
  1528. mutex_init(&sfp->sm_mutex);
  1529. mutex_init(&sfp->st_mutex);
  1530. INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
  1531. INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
  1532. return sfp;
  1533. }
  1534. static void sfp_cleanup(void *data)
  1535. {
  1536. struct sfp *sfp = data;
  1537. cancel_delayed_work_sync(&sfp->poll);
  1538. cancel_delayed_work_sync(&sfp->timeout);
  1539. if (sfp->i2c_mii) {
  1540. mdiobus_unregister(sfp->i2c_mii);
  1541. mdiobus_free(sfp->i2c_mii);
  1542. }
  1543. if (sfp->i2c)
  1544. i2c_put_adapter(sfp->i2c);
  1545. kfree(sfp);
  1546. }
  1547. static int sfp_probe(struct platform_device *pdev)
  1548. {
  1549. const struct sff_data *sff;
  1550. struct i2c_adapter *i2c;
  1551. struct sfp *sfp;
  1552. bool poll = false;
  1553. int err, i;
  1554. sfp = sfp_alloc(&pdev->dev);
  1555. if (IS_ERR(sfp))
  1556. return PTR_ERR(sfp);
  1557. platform_set_drvdata(pdev, sfp);
  1558. err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
  1559. if (err < 0)
  1560. return err;
  1561. sff = sfp->type = &sfp_data;
  1562. if (pdev->dev.of_node) {
  1563. struct device_node *node = pdev->dev.of_node;
  1564. const struct of_device_id *id;
  1565. struct device_node *np;
  1566. id = of_match_node(sfp_of_match, node);
  1567. if (WARN_ON(!id))
  1568. return -EINVAL;
  1569. sff = sfp->type = id->data;
  1570. np = of_parse_phandle(node, "i2c-bus", 0);
  1571. if (!np) {
  1572. dev_err(sfp->dev, "missing 'i2c-bus' property\n");
  1573. return -ENODEV;
  1574. }
  1575. i2c = of_find_i2c_adapter_by_node(np);
  1576. of_node_put(np);
  1577. } else if (has_acpi_companion(&pdev->dev)) {
  1578. struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
  1579. struct fwnode_handle *fw = acpi_fwnode_handle(adev);
  1580. struct fwnode_reference_args args;
  1581. struct acpi_handle *acpi_handle;
  1582. int ret;
  1583. ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
  1584. if (ret || !is_acpi_device_node(args.fwnode)) {
  1585. dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
  1586. return -ENODEV;
  1587. }
  1588. acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
  1589. i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
  1590. } else {
  1591. return -EINVAL;
  1592. }
  1593. if (!i2c)
  1594. return -EPROBE_DEFER;
  1595. err = sfp_i2c_configure(sfp, i2c);
  1596. if (err < 0) {
  1597. i2c_put_adapter(i2c);
  1598. return err;
  1599. }
  1600. for (i = 0; i < GPIO_MAX; i++)
  1601. if (sff->gpios & BIT(i)) {
  1602. sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
  1603. gpio_of_names[i], gpio_flags[i]);
  1604. if (IS_ERR(sfp->gpio[i]))
  1605. return PTR_ERR(sfp->gpio[i]);
  1606. }
  1607. sfp->get_state = sfp_gpio_get_state;
  1608. sfp->set_state = sfp_gpio_set_state;
  1609. /* Modules that have no detect signal are always present */
  1610. if (!(sfp->gpio[GPIO_MODDEF0]))
  1611. sfp->get_state = sff_gpio_get_state;
  1612. device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
  1613. &sfp->max_power_mW);
  1614. if (!sfp->max_power_mW)
  1615. sfp->max_power_mW = 1000;
  1616. dev_info(sfp->dev, "Host maximum power %u.%uW\n",
  1617. sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
  1618. /* Get the initial state, and always signal TX disable,
  1619. * since the network interface will not be up.
  1620. */
  1621. sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
  1622. if (sfp->gpio[GPIO_RATE_SELECT] &&
  1623. gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
  1624. sfp->state |= SFP_F_RATE_SELECT;
  1625. sfp_set_state(sfp, sfp->state);
  1626. sfp_module_tx_disable(sfp);
  1627. for (i = 0; i < GPIO_MAX; i++) {
  1628. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  1629. continue;
  1630. sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
  1631. if (sfp->gpio_irq[i] < 0) {
  1632. sfp->gpio_irq[i] = 0;
  1633. poll = true;
  1634. continue;
  1635. }
  1636. err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
  1637. NULL, sfp_irq,
  1638. IRQF_ONESHOT |
  1639. IRQF_TRIGGER_RISING |
  1640. IRQF_TRIGGER_FALLING,
  1641. dev_name(sfp->dev), sfp);
  1642. if (err) {
  1643. sfp->gpio_irq[i] = 0;
  1644. poll = true;
  1645. }
  1646. }
  1647. if (poll)
  1648. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  1649. /* We could have an issue in cases no Tx disable pin is available or
  1650. * wired as modules using a laser as their light source will continue to
  1651. * be active when the fiber is removed. This could be a safety issue and
  1652. * we should at least warn the user about that.
  1653. */
  1654. if (!sfp->gpio[GPIO_TX_DISABLE])
  1655. dev_warn(sfp->dev,
  1656. "No tx_disable pin: SFP modules will always be emitting.\n");
  1657. sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
  1658. if (!sfp->sfp_bus)
  1659. return -ENOMEM;
  1660. return 0;
  1661. }
  1662. static int sfp_remove(struct platform_device *pdev)
  1663. {
  1664. struct sfp *sfp = platform_get_drvdata(pdev);
  1665. sfp_unregister_socket(sfp->sfp_bus);
  1666. return 0;
  1667. }
  1668. static void sfp_shutdown(struct platform_device *pdev)
  1669. {
  1670. struct sfp *sfp = platform_get_drvdata(pdev);
  1671. int i;
  1672. for (i = 0; i < GPIO_MAX; i++) {
  1673. if (!sfp->gpio_irq[i])
  1674. continue;
  1675. devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
  1676. }
  1677. cancel_delayed_work_sync(&sfp->poll);
  1678. cancel_delayed_work_sync(&sfp->timeout);
  1679. }
  1680. static struct platform_driver sfp_driver = {
  1681. .probe = sfp_probe,
  1682. .remove = sfp_remove,
  1683. .shutdown = sfp_shutdown,
  1684. .driver = {
  1685. .name = "sfp",
  1686. .of_match_table = sfp_of_match,
  1687. },
  1688. };
  1689. static int sfp_init(void)
  1690. {
  1691. poll_jiffies = msecs_to_jiffies(100);
  1692. return platform_driver_register(&sfp_driver);
  1693. }
  1694. module_init(sfp_init);
  1695. static void sfp_exit(void)
  1696. {
  1697. platform_driver_unregister(&sfp_driver);
  1698. }
  1699. module_exit(sfp_exit);
  1700. MODULE_ALIAS("platform:sfp");
  1701. MODULE_AUTHOR("Russell King");
  1702. MODULE_LICENSE("GPL v2");