netcp_core.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Keystone NetCP Core driver
  4. *
  5. * Copyright (C) 2014 Texas Instruments Incorporated
  6. * Authors: Sandeep Nair <sandeep_n@ti.com>
  7. * Sandeep Paulraj <s-paulraj@ti.com>
  8. * Cyril Chemparathy <cyril@ti.com>
  9. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  10. * Murali Karicheri <m-karicheri2@ti.com>
  11. * Wingman Kwok <w-kwok2@ti.com>
  12. */
  13. #include <linux/io.h>
  14. #include <linux/module.h>
  15. #include <linux/of_net.h>
  16. #include <linux/of_address.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/pm_runtime.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/soc/ti/knav_qmss.h>
  21. #include <linux/soc/ti/knav_dma.h>
  22. #include "netcp.h"
  23. #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
  24. #define NETCP_NAPI_WEIGHT 64
  25. #define NETCP_TX_TIMEOUT (5 * HZ)
  26. #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
  27. #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
  28. #define NETCP_MAX_MCAST_ADDR 16
  29. #define NETCP_EFUSE_REG_INDEX 0
  30. #define NETCP_MOD_PROBE_SKIPPED 1
  31. #define NETCP_MOD_PROBE_FAILED 2
  32. #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
  33. NETIF_MSG_DRV | NETIF_MSG_LINK | \
  34. NETIF_MSG_IFUP | NETIF_MSG_INTR | \
  35. NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
  36. NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
  37. NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
  38. NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
  39. NETIF_MSG_RX_STATUS)
  40. #define NETCP_EFUSE_ADDR_SWAP 2
  41. #define knav_queue_get_id(q) knav_queue_device_control(q, \
  42. KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  43. #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
  44. KNAV_QUEUE_ENABLE_NOTIFY, \
  45. (unsigned long)NULL)
  46. #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
  47. KNAV_QUEUE_DISABLE_NOTIFY, \
  48. (unsigned long)NULL)
  49. #define knav_queue_get_count(q) knav_queue_device_control(q, \
  50. KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  51. #define for_each_netcp_module(module) \
  52. list_for_each_entry(module, &netcp_modules, module_list)
  53. #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  54. list_for_each_entry(inst_modpriv, \
  55. &((netcp_device)->modpriv_head), inst_list)
  56. #define for_each_module(netcp, intf_modpriv) \
  57. list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  58. /* Module management structures */
  59. struct netcp_device {
  60. struct list_head device_list;
  61. struct list_head interface_head;
  62. struct list_head modpriv_head;
  63. struct device *device;
  64. };
  65. struct netcp_inst_modpriv {
  66. struct netcp_device *netcp_device;
  67. struct netcp_module *netcp_module;
  68. struct list_head inst_list;
  69. void *module_priv;
  70. };
  71. struct netcp_intf_modpriv {
  72. struct netcp_intf *netcp_priv;
  73. struct netcp_module *netcp_module;
  74. struct list_head intf_list;
  75. void *module_priv;
  76. };
  77. struct netcp_tx_cb {
  78. void *ts_context;
  79. void (*txtstamp)(void *context, struct sk_buff *skb);
  80. };
  81. static LIST_HEAD(netcp_devices);
  82. static LIST_HEAD(netcp_modules);
  83. static DEFINE_MUTEX(netcp_modules_lock);
  84. static int netcp_debug_level = -1;
  85. module_param(netcp_debug_level, int, 0);
  86. MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
  87. /* Helper functions - Get/Set */
  88. static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
  89. struct knav_dma_desc *desc)
  90. {
  91. *buff_len = le32_to_cpu(desc->buff_len);
  92. *buff = le32_to_cpu(desc->buff);
  93. *ndesc = le32_to_cpu(desc->next_desc);
  94. }
  95. static void get_desc_info(u32 *desc_info, u32 *pkt_info,
  96. struct knav_dma_desc *desc)
  97. {
  98. *desc_info = le32_to_cpu(desc->desc_info);
  99. *pkt_info = le32_to_cpu(desc->packet_info);
  100. }
  101. static u32 get_sw_data(int index, struct knav_dma_desc *desc)
  102. {
  103. /* No Endian conversion needed as this data is untouched by hw */
  104. return desc->sw_data[index];
  105. }
  106. /* use these macros to get sw data */
  107. #define GET_SW_DATA0(desc) get_sw_data(0, desc)
  108. #define GET_SW_DATA1(desc) get_sw_data(1, desc)
  109. #define GET_SW_DATA2(desc) get_sw_data(2, desc)
  110. #define GET_SW_DATA3(desc) get_sw_data(3, desc)
  111. static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
  112. struct knav_dma_desc *desc)
  113. {
  114. *buff = le32_to_cpu(desc->orig_buff);
  115. *buff_len = le32_to_cpu(desc->orig_len);
  116. }
  117. static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
  118. {
  119. int i;
  120. for (i = 0; i < num_words; i++)
  121. words[i] = le32_to_cpu(desc[i]);
  122. }
  123. static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
  124. struct knav_dma_desc *desc)
  125. {
  126. desc->buff_len = cpu_to_le32(buff_len);
  127. desc->buff = cpu_to_le32(buff);
  128. desc->next_desc = cpu_to_le32(ndesc);
  129. }
  130. static void set_desc_info(u32 desc_info, u32 pkt_info,
  131. struct knav_dma_desc *desc)
  132. {
  133. desc->desc_info = cpu_to_le32(desc_info);
  134. desc->packet_info = cpu_to_le32(pkt_info);
  135. }
  136. static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
  137. {
  138. /* No Endian conversion needed as this data is untouched by hw */
  139. desc->sw_data[index] = data;
  140. }
  141. /* use these macros to set sw data */
  142. #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
  143. #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
  144. #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
  145. #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
  146. static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
  147. struct knav_dma_desc *desc)
  148. {
  149. desc->orig_buff = cpu_to_le32(buff);
  150. desc->orig_len = cpu_to_le32(buff_len);
  151. }
  152. static void set_words(u32 *words, int num_words, __le32 *desc)
  153. {
  154. int i;
  155. for (i = 0; i < num_words; i++)
  156. desc[i] = cpu_to_le32(words[i]);
  157. }
  158. /* Read the e-fuse value as 32 bit values to be endian independent */
  159. static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
  160. {
  161. unsigned int addr0, addr1;
  162. addr1 = readl(efuse_mac + 4);
  163. addr0 = readl(efuse_mac);
  164. switch (swap) {
  165. case NETCP_EFUSE_ADDR_SWAP:
  166. addr0 = addr1;
  167. addr1 = readl(efuse_mac);
  168. break;
  169. default:
  170. break;
  171. }
  172. x[0] = (addr1 & 0x0000ff00) >> 8;
  173. x[1] = addr1 & 0x000000ff;
  174. x[2] = (addr0 & 0xff000000) >> 24;
  175. x[3] = (addr0 & 0x00ff0000) >> 16;
  176. x[4] = (addr0 & 0x0000ff00) >> 8;
  177. x[5] = addr0 & 0x000000ff;
  178. return 0;
  179. }
  180. /* Module management routines */
  181. static int netcp_register_interface(struct netcp_intf *netcp)
  182. {
  183. int ret;
  184. ret = register_netdev(netcp->ndev);
  185. if (!ret)
  186. netcp->netdev_registered = true;
  187. return ret;
  188. }
  189. static int netcp_module_probe(struct netcp_device *netcp_device,
  190. struct netcp_module *module)
  191. {
  192. struct device *dev = netcp_device->device;
  193. struct device_node *devices, *interface, *node = dev->of_node;
  194. struct device_node *child;
  195. struct netcp_inst_modpriv *inst_modpriv;
  196. struct netcp_intf *netcp_intf;
  197. struct netcp_module *tmp;
  198. bool primary_module_registered = false;
  199. int ret;
  200. /* Find this module in the sub-tree for this device */
  201. devices = of_get_child_by_name(node, "netcp-devices");
  202. if (!devices) {
  203. dev_err(dev, "could not find netcp-devices node\n");
  204. return NETCP_MOD_PROBE_SKIPPED;
  205. }
  206. for_each_available_child_of_node(devices, child) {
  207. const char *name;
  208. char node_name[32];
  209. if (of_property_read_string(child, "label", &name) < 0) {
  210. snprintf(node_name, sizeof(node_name), "%pOFn", child);
  211. name = node_name;
  212. }
  213. if (!strcasecmp(module->name, name))
  214. break;
  215. }
  216. of_node_put(devices);
  217. /* If module not used for this device, skip it */
  218. if (!child) {
  219. dev_warn(dev, "module(%s) not used for device\n", module->name);
  220. return NETCP_MOD_PROBE_SKIPPED;
  221. }
  222. inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
  223. if (!inst_modpriv) {
  224. of_node_put(child);
  225. return -ENOMEM;
  226. }
  227. inst_modpriv->netcp_device = netcp_device;
  228. inst_modpriv->netcp_module = module;
  229. list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
  230. ret = module->probe(netcp_device, dev, child,
  231. &inst_modpriv->module_priv);
  232. of_node_put(child);
  233. if (ret) {
  234. dev_err(dev, "Probe of module(%s) failed with %d\n",
  235. module->name, ret);
  236. list_del(&inst_modpriv->inst_list);
  237. devm_kfree(dev, inst_modpriv);
  238. return NETCP_MOD_PROBE_FAILED;
  239. }
  240. /* Attach modules only if the primary module is probed */
  241. for_each_netcp_module(tmp) {
  242. if (tmp->primary)
  243. primary_module_registered = true;
  244. }
  245. if (!primary_module_registered)
  246. return 0;
  247. /* Attach module to interfaces */
  248. list_for_each_entry(netcp_intf, &netcp_device->interface_head,
  249. interface_list) {
  250. struct netcp_intf_modpriv *intf_modpriv;
  251. intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
  252. GFP_KERNEL);
  253. if (!intf_modpriv)
  254. return -ENOMEM;
  255. interface = of_parse_phandle(netcp_intf->node_interface,
  256. module->name, 0);
  257. if (!interface) {
  258. devm_kfree(dev, intf_modpriv);
  259. continue;
  260. }
  261. intf_modpriv->netcp_priv = netcp_intf;
  262. intf_modpriv->netcp_module = module;
  263. list_add_tail(&intf_modpriv->intf_list,
  264. &netcp_intf->module_head);
  265. ret = module->attach(inst_modpriv->module_priv,
  266. netcp_intf->ndev, interface,
  267. &intf_modpriv->module_priv);
  268. of_node_put(interface);
  269. if (ret) {
  270. dev_dbg(dev, "Attach of module %s declined with %d\n",
  271. module->name, ret);
  272. list_del(&intf_modpriv->intf_list);
  273. devm_kfree(dev, intf_modpriv);
  274. continue;
  275. }
  276. }
  277. /* Now register the interface with netdev */
  278. list_for_each_entry(netcp_intf,
  279. &netcp_device->interface_head,
  280. interface_list) {
  281. /* If interface not registered then register now */
  282. if (!netcp_intf->netdev_registered) {
  283. ret = netcp_register_interface(netcp_intf);
  284. if (ret)
  285. return -ENODEV;
  286. }
  287. }
  288. return 0;
  289. }
  290. int netcp_register_module(struct netcp_module *module)
  291. {
  292. struct netcp_device *netcp_device;
  293. struct netcp_module *tmp;
  294. int ret;
  295. if (!module->name) {
  296. WARN(1, "error registering netcp module: no name\n");
  297. return -EINVAL;
  298. }
  299. if (!module->probe) {
  300. WARN(1, "error registering netcp module: no probe\n");
  301. return -EINVAL;
  302. }
  303. mutex_lock(&netcp_modules_lock);
  304. for_each_netcp_module(tmp) {
  305. if (!strcasecmp(tmp->name, module->name)) {
  306. mutex_unlock(&netcp_modules_lock);
  307. return -EEXIST;
  308. }
  309. }
  310. list_add_tail(&module->module_list, &netcp_modules);
  311. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  312. ret = netcp_module_probe(netcp_device, module);
  313. if (ret < 0)
  314. goto fail;
  315. }
  316. mutex_unlock(&netcp_modules_lock);
  317. return 0;
  318. fail:
  319. mutex_unlock(&netcp_modules_lock);
  320. netcp_unregister_module(module);
  321. return ret;
  322. }
  323. EXPORT_SYMBOL_GPL(netcp_register_module);
  324. static void netcp_release_module(struct netcp_device *netcp_device,
  325. struct netcp_module *module)
  326. {
  327. struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
  328. struct netcp_intf *netcp_intf, *netcp_tmp;
  329. struct device *dev = netcp_device->device;
  330. /* Release the module from each interface */
  331. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  332. &netcp_device->interface_head,
  333. interface_list) {
  334. struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
  335. list_for_each_entry_safe(intf_modpriv, intf_tmp,
  336. &netcp_intf->module_head,
  337. intf_list) {
  338. if (intf_modpriv->netcp_module == module) {
  339. module->release(intf_modpriv->module_priv);
  340. list_del(&intf_modpriv->intf_list);
  341. devm_kfree(dev, intf_modpriv);
  342. break;
  343. }
  344. }
  345. }
  346. /* Remove the module from each instance */
  347. list_for_each_entry_safe(inst_modpriv, inst_tmp,
  348. &netcp_device->modpriv_head, inst_list) {
  349. if (inst_modpriv->netcp_module == module) {
  350. module->remove(netcp_device,
  351. inst_modpriv->module_priv);
  352. list_del(&inst_modpriv->inst_list);
  353. devm_kfree(dev, inst_modpriv);
  354. break;
  355. }
  356. }
  357. }
  358. void netcp_unregister_module(struct netcp_module *module)
  359. {
  360. struct netcp_device *netcp_device;
  361. struct netcp_module *module_tmp;
  362. mutex_lock(&netcp_modules_lock);
  363. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  364. netcp_release_module(netcp_device, module);
  365. }
  366. /* Remove the module from the module list */
  367. for_each_netcp_module(module_tmp) {
  368. if (module == module_tmp) {
  369. list_del(&module->module_list);
  370. break;
  371. }
  372. }
  373. mutex_unlock(&netcp_modules_lock);
  374. }
  375. EXPORT_SYMBOL_GPL(netcp_unregister_module);
  376. void *netcp_module_get_intf_data(struct netcp_module *module,
  377. struct netcp_intf *intf)
  378. {
  379. struct netcp_intf_modpriv *intf_modpriv;
  380. list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
  381. if (intf_modpriv->netcp_module == module)
  382. return intf_modpriv->module_priv;
  383. return NULL;
  384. }
  385. EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
  386. /* Module TX and RX Hook management */
  387. struct netcp_hook_list {
  388. struct list_head list;
  389. netcp_hook_rtn *hook_rtn;
  390. void *hook_data;
  391. int order;
  392. };
  393. int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
  394. netcp_hook_rtn *hook_rtn, void *hook_data)
  395. {
  396. struct netcp_hook_list *entry;
  397. struct netcp_hook_list *next;
  398. unsigned long flags;
  399. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  400. if (!entry)
  401. return -ENOMEM;
  402. entry->hook_rtn = hook_rtn;
  403. entry->hook_data = hook_data;
  404. entry->order = order;
  405. spin_lock_irqsave(&netcp_priv->lock, flags);
  406. list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
  407. if (next->order > order)
  408. break;
  409. }
  410. __list_add(&entry->list, next->list.prev, &next->list);
  411. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  412. return 0;
  413. }
  414. EXPORT_SYMBOL_GPL(netcp_register_txhook);
  415. int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
  416. netcp_hook_rtn *hook_rtn, void *hook_data)
  417. {
  418. struct netcp_hook_list *next, *n;
  419. unsigned long flags;
  420. spin_lock_irqsave(&netcp_priv->lock, flags);
  421. list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
  422. if ((next->order == order) &&
  423. (next->hook_rtn == hook_rtn) &&
  424. (next->hook_data == hook_data)) {
  425. list_del(&next->list);
  426. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  427. devm_kfree(netcp_priv->dev, next);
  428. return 0;
  429. }
  430. }
  431. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  432. return -ENOENT;
  433. }
  434. EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
  435. int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
  436. netcp_hook_rtn *hook_rtn, void *hook_data)
  437. {
  438. struct netcp_hook_list *entry;
  439. struct netcp_hook_list *next;
  440. unsigned long flags;
  441. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  442. if (!entry)
  443. return -ENOMEM;
  444. entry->hook_rtn = hook_rtn;
  445. entry->hook_data = hook_data;
  446. entry->order = order;
  447. spin_lock_irqsave(&netcp_priv->lock, flags);
  448. list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
  449. if (next->order > order)
  450. break;
  451. }
  452. __list_add(&entry->list, next->list.prev, &next->list);
  453. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  454. return 0;
  455. }
  456. EXPORT_SYMBOL_GPL(netcp_register_rxhook);
  457. int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
  458. netcp_hook_rtn *hook_rtn, void *hook_data)
  459. {
  460. struct netcp_hook_list *next, *n;
  461. unsigned long flags;
  462. spin_lock_irqsave(&netcp_priv->lock, flags);
  463. list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
  464. if ((next->order == order) &&
  465. (next->hook_rtn == hook_rtn) &&
  466. (next->hook_data == hook_data)) {
  467. list_del(&next->list);
  468. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  469. devm_kfree(netcp_priv->dev, next);
  470. return 0;
  471. }
  472. }
  473. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  474. return -ENOENT;
  475. }
  476. EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
  477. static void netcp_frag_free(bool is_frag, void *ptr)
  478. {
  479. if (is_frag)
  480. skb_free_frag(ptr);
  481. else
  482. kfree(ptr);
  483. }
  484. static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
  485. struct knav_dma_desc *desc)
  486. {
  487. struct knav_dma_desc *ndesc;
  488. dma_addr_t dma_desc, dma_buf;
  489. unsigned int buf_len, dma_sz = sizeof(*ndesc);
  490. void *buf_ptr;
  491. u32 tmp;
  492. get_words(&dma_desc, 1, &desc->next_desc);
  493. while (dma_desc) {
  494. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  495. if (unlikely(!ndesc)) {
  496. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  497. break;
  498. }
  499. get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
  500. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  501. * field as a 32bit value. Will not work on 64bit machines
  502. */
  503. buf_ptr = (void *)GET_SW_DATA0(ndesc);
  504. buf_len = (int)GET_SW_DATA1(desc);
  505. dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
  506. __free_page(buf_ptr);
  507. knav_pool_desc_put(netcp->rx_pool, desc);
  508. }
  509. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  510. * field as a 32bit value. Will not work on 64bit machines
  511. */
  512. buf_ptr = (void *)GET_SW_DATA0(desc);
  513. buf_len = (int)GET_SW_DATA1(desc);
  514. if (buf_ptr)
  515. netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
  516. knav_pool_desc_put(netcp->rx_pool, desc);
  517. }
  518. static void netcp_empty_rx_queue(struct netcp_intf *netcp)
  519. {
  520. struct netcp_stats *rx_stats = &netcp->stats;
  521. struct knav_dma_desc *desc;
  522. unsigned int dma_sz;
  523. dma_addr_t dma;
  524. for (; ;) {
  525. dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
  526. if (!dma)
  527. break;
  528. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  529. if (unlikely(!desc)) {
  530. dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
  531. __func__);
  532. rx_stats->rx_errors++;
  533. continue;
  534. }
  535. netcp_free_rx_desc_chain(netcp, desc);
  536. rx_stats->rx_dropped++;
  537. }
  538. }
  539. static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
  540. {
  541. struct netcp_stats *rx_stats = &netcp->stats;
  542. unsigned int dma_sz, buf_len, org_buf_len;
  543. struct knav_dma_desc *desc, *ndesc;
  544. unsigned int pkt_sz = 0, accum_sz;
  545. struct netcp_hook_list *rx_hook;
  546. dma_addr_t dma_desc, dma_buff;
  547. struct netcp_packet p_info;
  548. struct sk_buff *skb;
  549. void *org_buf_ptr;
  550. u32 tmp;
  551. dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
  552. if (!dma_desc)
  553. return -1;
  554. desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  555. if (unlikely(!desc)) {
  556. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  557. return 0;
  558. }
  559. get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
  560. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  561. * field as a 32bit value. Will not work on 64bit machines
  562. */
  563. org_buf_ptr = (void *)GET_SW_DATA0(desc);
  564. org_buf_len = (int)GET_SW_DATA1(desc);
  565. if (unlikely(!org_buf_ptr)) {
  566. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  567. goto free_desc;
  568. }
  569. pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
  570. accum_sz = buf_len;
  571. dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
  572. /* Build a new sk_buff for the primary buffer */
  573. skb = build_skb(org_buf_ptr, org_buf_len);
  574. if (unlikely(!skb)) {
  575. dev_err(netcp->ndev_dev, "build_skb() failed\n");
  576. goto free_desc;
  577. }
  578. /* update data, tail and len */
  579. skb_reserve(skb, NETCP_SOP_OFFSET);
  580. __skb_put(skb, buf_len);
  581. /* Fill in the page fragment list */
  582. while (dma_desc) {
  583. struct page *page;
  584. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  585. if (unlikely(!ndesc)) {
  586. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  587. goto free_desc;
  588. }
  589. get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
  590. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  591. * field as a 32bit value. Will not work on 64bit machines
  592. */
  593. page = (struct page *)GET_SW_DATA0(ndesc);
  594. if (likely(dma_buff && buf_len && page)) {
  595. dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
  596. DMA_FROM_DEVICE);
  597. } else {
  598. dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
  599. &dma_buff, buf_len, page);
  600. goto free_desc;
  601. }
  602. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  603. offset_in_page(dma_buff), buf_len, PAGE_SIZE);
  604. accum_sz += buf_len;
  605. /* Free the descriptor */
  606. knav_pool_desc_put(netcp->rx_pool, ndesc);
  607. }
  608. /* check for packet len and warn */
  609. if (unlikely(pkt_sz != accum_sz))
  610. dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
  611. pkt_sz, accum_sz);
  612. /* Newer version of the Ethernet switch can trim the Ethernet FCS
  613. * from the packet and is indicated in hw_cap. So trim it only for
  614. * older h/w
  615. */
  616. if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
  617. __pskb_trim(skb, skb->len - ETH_FCS_LEN);
  618. /* Call each of the RX hooks */
  619. p_info.skb = skb;
  620. skb->dev = netcp->ndev;
  621. p_info.rxtstamp_complete = false;
  622. get_desc_info(&tmp, &p_info.eflags, desc);
  623. p_info.epib = desc->epib;
  624. p_info.psdata = (u32 __force *)desc->psdata;
  625. p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
  626. KNAV_DMA_DESC_EFLAGS_MASK);
  627. list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
  628. int ret;
  629. ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
  630. &p_info);
  631. if (unlikely(ret)) {
  632. dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
  633. rx_hook->order, ret);
  634. /* Free the primary descriptor */
  635. rx_stats->rx_dropped++;
  636. knav_pool_desc_put(netcp->rx_pool, desc);
  637. dev_kfree_skb(skb);
  638. return 0;
  639. }
  640. }
  641. /* Free the primary descriptor */
  642. knav_pool_desc_put(netcp->rx_pool, desc);
  643. u64_stats_update_begin(&rx_stats->syncp_rx);
  644. rx_stats->rx_packets++;
  645. rx_stats->rx_bytes += skb->len;
  646. u64_stats_update_end(&rx_stats->syncp_rx);
  647. /* push skb up the stack */
  648. skb->protocol = eth_type_trans(skb, netcp->ndev);
  649. netif_receive_skb(skb);
  650. return 0;
  651. free_desc:
  652. netcp_free_rx_desc_chain(netcp, desc);
  653. rx_stats->rx_errors++;
  654. return 0;
  655. }
  656. static int netcp_process_rx_packets(struct netcp_intf *netcp,
  657. unsigned int budget)
  658. {
  659. int i;
  660. for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
  661. ;
  662. return i;
  663. }
  664. /* Release descriptors and attached buffers from Rx FDQ */
  665. static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
  666. {
  667. struct knav_dma_desc *desc;
  668. unsigned int buf_len, dma_sz;
  669. dma_addr_t dma;
  670. void *buf_ptr;
  671. /* Allocate descriptor */
  672. while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
  673. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  674. if (unlikely(!desc)) {
  675. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  676. continue;
  677. }
  678. get_org_pkt_info(&dma, &buf_len, desc);
  679. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  680. * field as a 32bit value. Will not work on 64bit machines
  681. */
  682. buf_ptr = (void *)GET_SW_DATA0(desc);
  683. if (unlikely(!dma)) {
  684. dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
  685. knav_pool_desc_put(netcp->rx_pool, desc);
  686. continue;
  687. }
  688. if (unlikely(!buf_ptr)) {
  689. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  690. knav_pool_desc_put(netcp->rx_pool, desc);
  691. continue;
  692. }
  693. if (fdq == 0) {
  694. dma_unmap_single(netcp->dev, dma, buf_len,
  695. DMA_FROM_DEVICE);
  696. netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
  697. } else {
  698. dma_unmap_page(netcp->dev, dma, buf_len,
  699. DMA_FROM_DEVICE);
  700. __free_page(buf_ptr);
  701. }
  702. knav_pool_desc_put(netcp->rx_pool, desc);
  703. }
  704. }
  705. static void netcp_rxpool_free(struct netcp_intf *netcp)
  706. {
  707. int i;
  708. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  709. !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
  710. netcp_free_rx_buf(netcp, i);
  711. if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
  712. dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
  713. netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
  714. knav_pool_destroy(netcp->rx_pool);
  715. netcp->rx_pool = NULL;
  716. }
  717. static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
  718. {
  719. struct knav_dma_desc *hwdesc;
  720. unsigned int buf_len, dma_sz;
  721. u32 desc_info, pkt_info;
  722. struct page *page;
  723. dma_addr_t dma;
  724. void *bufptr;
  725. u32 sw_data[2];
  726. /* Allocate descriptor */
  727. hwdesc = knav_pool_desc_get(netcp->rx_pool);
  728. if (IS_ERR_OR_NULL(hwdesc)) {
  729. dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
  730. return -ENOMEM;
  731. }
  732. if (likely(fdq == 0)) {
  733. unsigned int primary_buf_len;
  734. /* Allocate a primary receive queue entry */
  735. buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
  736. primary_buf_len = SKB_DATA_ALIGN(buf_len) +
  737. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  738. bufptr = netdev_alloc_frag(primary_buf_len);
  739. sw_data[1] = primary_buf_len;
  740. if (unlikely(!bufptr)) {
  741. dev_warn_ratelimited(netcp->ndev_dev,
  742. "Primary RX buffer alloc failed\n");
  743. goto fail;
  744. }
  745. dma = dma_map_single(netcp->dev, bufptr, buf_len,
  746. DMA_TO_DEVICE);
  747. if (unlikely(dma_mapping_error(netcp->dev, dma)))
  748. goto fail;
  749. /* warning!!!! We are saving the virtual ptr in the sw_data
  750. * field as a 32bit value. Will not work on 64bit machines
  751. */
  752. sw_data[0] = (u32)bufptr;
  753. } else {
  754. /* Allocate a secondary receive queue entry */
  755. page = alloc_page(GFP_ATOMIC | GFP_DMA);
  756. if (unlikely(!page)) {
  757. dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
  758. goto fail;
  759. }
  760. buf_len = PAGE_SIZE;
  761. dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
  762. /* warning!!!! We are saving the virtual ptr in the sw_data
  763. * field as a 32bit value. Will not work on 64bit machines
  764. */
  765. sw_data[0] = (u32)page;
  766. sw_data[1] = 0;
  767. }
  768. desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
  769. desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
  770. pkt_info = KNAV_DMA_DESC_HAS_EPIB;
  771. pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
  772. pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
  773. KNAV_DMA_DESC_RETQ_SHIFT;
  774. set_org_pkt_info(dma, buf_len, hwdesc);
  775. SET_SW_DATA0(sw_data[0], hwdesc);
  776. SET_SW_DATA1(sw_data[1], hwdesc);
  777. set_desc_info(desc_info, pkt_info, hwdesc);
  778. /* Push to FDQs */
  779. knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
  780. &dma_sz);
  781. knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
  782. return 0;
  783. fail:
  784. knav_pool_desc_put(netcp->rx_pool, hwdesc);
  785. return -ENOMEM;
  786. }
  787. /* Refill Rx FDQ with descriptors & attached buffers */
  788. static void netcp_rxpool_refill(struct netcp_intf *netcp)
  789. {
  790. u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
  791. int i, ret = 0;
  792. /* Calculate the FDQ deficit and refill */
  793. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
  794. fdq_deficit[i] = netcp->rx_queue_depths[i] -
  795. knav_queue_get_count(netcp->rx_fdq[i]);
  796. while (fdq_deficit[i]-- && !ret)
  797. ret = netcp_allocate_rx_buf(netcp, i);
  798. } /* end for fdqs */
  799. }
  800. /* NAPI poll */
  801. static int netcp_rx_poll(struct napi_struct *napi, int budget)
  802. {
  803. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  804. rx_napi);
  805. unsigned int packets;
  806. packets = netcp_process_rx_packets(netcp, budget);
  807. netcp_rxpool_refill(netcp);
  808. if (packets < budget) {
  809. napi_complete_done(&netcp->rx_napi, packets);
  810. knav_queue_enable_notify(netcp->rx_queue);
  811. }
  812. return packets;
  813. }
  814. static void netcp_rx_notify(void *arg)
  815. {
  816. struct netcp_intf *netcp = arg;
  817. knav_queue_disable_notify(netcp->rx_queue);
  818. napi_schedule(&netcp->rx_napi);
  819. }
  820. static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
  821. struct knav_dma_desc *desc,
  822. unsigned int desc_sz)
  823. {
  824. struct knav_dma_desc *ndesc = desc;
  825. dma_addr_t dma_desc, dma_buf;
  826. unsigned int buf_len;
  827. while (ndesc) {
  828. get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
  829. if (dma_buf && buf_len)
  830. dma_unmap_single(netcp->dev, dma_buf, buf_len,
  831. DMA_TO_DEVICE);
  832. else
  833. dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
  834. &dma_buf, buf_len);
  835. knav_pool_desc_put(netcp->tx_pool, ndesc);
  836. ndesc = NULL;
  837. if (dma_desc) {
  838. ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
  839. desc_sz);
  840. if (!ndesc)
  841. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  842. }
  843. }
  844. }
  845. static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
  846. unsigned int budget)
  847. {
  848. struct netcp_stats *tx_stats = &netcp->stats;
  849. struct knav_dma_desc *desc;
  850. struct netcp_tx_cb *tx_cb;
  851. struct sk_buff *skb;
  852. unsigned int dma_sz;
  853. dma_addr_t dma;
  854. int pkts = 0;
  855. while (budget--) {
  856. dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
  857. if (!dma)
  858. break;
  859. desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
  860. if (unlikely(!desc)) {
  861. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  862. tx_stats->tx_errors++;
  863. continue;
  864. }
  865. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  866. * field as a 32bit value. Will not work on 64bit machines
  867. */
  868. skb = (struct sk_buff *)GET_SW_DATA0(desc);
  869. netcp_free_tx_desc_chain(netcp, desc, dma_sz);
  870. if (!skb) {
  871. dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
  872. tx_stats->tx_errors++;
  873. continue;
  874. }
  875. tx_cb = (struct netcp_tx_cb *)skb->cb;
  876. if (tx_cb->txtstamp)
  877. tx_cb->txtstamp(tx_cb->ts_context, skb);
  878. if (netif_subqueue_stopped(netcp->ndev, skb) &&
  879. netif_running(netcp->ndev) &&
  880. (knav_pool_count(netcp->tx_pool) >
  881. netcp->tx_resume_threshold)) {
  882. u16 subqueue = skb_get_queue_mapping(skb);
  883. netif_wake_subqueue(netcp->ndev, subqueue);
  884. }
  885. u64_stats_update_begin(&tx_stats->syncp_tx);
  886. tx_stats->tx_packets++;
  887. tx_stats->tx_bytes += skb->len;
  888. u64_stats_update_end(&tx_stats->syncp_tx);
  889. dev_kfree_skb(skb);
  890. pkts++;
  891. }
  892. return pkts;
  893. }
  894. static int netcp_tx_poll(struct napi_struct *napi, int budget)
  895. {
  896. int packets;
  897. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  898. tx_napi);
  899. packets = netcp_process_tx_compl_packets(netcp, budget);
  900. if (packets < budget) {
  901. napi_complete(&netcp->tx_napi);
  902. knav_queue_enable_notify(netcp->tx_compl_q);
  903. }
  904. return packets;
  905. }
  906. static void netcp_tx_notify(void *arg)
  907. {
  908. struct netcp_intf *netcp = arg;
  909. knav_queue_disable_notify(netcp->tx_compl_q);
  910. napi_schedule(&netcp->tx_napi);
  911. }
  912. static struct knav_dma_desc*
  913. netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
  914. {
  915. struct knav_dma_desc *desc, *ndesc, *pdesc;
  916. unsigned int pkt_len = skb_headlen(skb);
  917. struct device *dev = netcp->dev;
  918. dma_addr_t dma_addr;
  919. unsigned int dma_sz;
  920. int i;
  921. /* Map the linear buffer */
  922. dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
  923. if (unlikely(dma_mapping_error(dev, dma_addr))) {
  924. dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
  925. return NULL;
  926. }
  927. desc = knav_pool_desc_get(netcp->tx_pool);
  928. if (IS_ERR_OR_NULL(desc)) {
  929. dev_err(netcp->ndev_dev, "out of TX desc\n");
  930. dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
  931. return NULL;
  932. }
  933. set_pkt_info(dma_addr, pkt_len, 0, desc);
  934. if (skb_is_nonlinear(skb)) {
  935. prefetchw(skb_shinfo(skb));
  936. } else {
  937. desc->next_desc = 0;
  938. goto upd_pkt_len;
  939. }
  940. pdesc = desc;
  941. /* Handle the case where skb is fragmented in pages */
  942. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  943. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  944. struct page *page = skb_frag_page(frag);
  945. u32 page_offset = skb_frag_off(frag);
  946. u32 buf_len = skb_frag_size(frag);
  947. dma_addr_t desc_dma;
  948. u32 desc_dma_32;
  949. dma_addr = dma_map_page(dev, page, page_offset, buf_len,
  950. DMA_TO_DEVICE);
  951. if (unlikely(!dma_addr)) {
  952. dev_err(netcp->ndev_dev, "Failed to map skb page\n");
  953. goto free_descs;
  954. }
  955. ndesc = knav_pool_desc_get(netcp->tx_pool);
  956. if (IS_ERR_OR_NULL(ndesc)) {
  957. dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
  958. dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
  959. goto free_descs;
  960. }
  961. desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
  962. set_pkt_info(dma_addr, buf_len, 0, ndesc);
  963. desc_dma_32 = (u32)desc_dma;
  964. set_words(&desc_dma_32, 1, &pdesc->next_desc);
  965. pkt_len += buf_len;
  966. if (pdesc != desc)
  967. knav_pool_desc_map(netcp->tx_pool, pdesc,
  968. sizeof(*pdesc), &desc_dma, &dma_sz);
  969. pdesc = ndesc;
  970. }
  971. if (pdesc != desc)
  972. knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
  973. &dma_addr, &dma_sz);
  974. /* frag list based linkage is not supported for now. */
  975. if (skb_shinfo(skb)->frag_list) {
  976. dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
  977. goto free_descs;
  978. }
  979. upd_pkt_len:
  980. WARN_ON(pkt_len != skb->len);
  981. pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
  982. set_words(&pkt_len, 1, &desc->desc_info);
  983. return desc;
  984. free_descs:
  985. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  986. return NULL;
  987. }
  988. static int netcp_tx_submit_skb(struct netcp_intf *netcp,
  989. struct sk_buff *skb,
  990. struct knav_dma_desc *desc)
  991. {
  992. struct netcp_tx_pipe *tx_pipe = NULL;
  993. struct netcp_hook_list *tx_hook;
  994. struct netcp_packet p_info;
  995. struct netcp_tx_cb *tx_cb;
  996. unsigned int dma_sz;
  997. dma_addr_t dma;
  998. u32 tmp = 0;
  999. int ret = 0;
  1000. p_info.netcp = netcp;
  1001. p_info.skb = skb;
  1002. p_info.tx_pipe = NULL;
  1003. p_info.psdata_len = 0;
  1004. p_info.ts_context = NULL;
  1005. p_info.txtstamp = NULL;
  1006. p_info.epib = desc->epib;
  1007. p_info.psdata = (u32 __force *)desc->psdata;
  1008. memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
  1009. /* Find out where to inject the packet for transmission */
  1010. list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
  1011. ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
  1012. &p_info);
  1013. if (unlikely(ret != 0)) {
  1014. dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
  1015. tx_hook->order, ret);
  1016. ret = (ret < 0) ? ret : NETDEV_TX_OK;
  1017. goto out;
  1018. }
  1019. }
  1020. /* Make sure some TX hook claimed the packet */
  1021. tx_pipe = p_info.tx_pipe;
  1022. if (!tx_pipe) {
  1023. dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
  1024. ret = -ENXIO;
  1025. goto out;
  1026. }
  1027. tx_cb = (struct netcp_tx_cb *)skb->cb;
  1028. tx_cb->ts_context = p_info.ts_context;
  1029. tx_cb->txtstamp = p_info.txtstamp;
  1030. /* update descriptor */
  1031. if (p_info.psdata_len) {
  1032. /* psdata points to both native-endian and device-endian data */
  1033. __le32 *psdata = (void __force *)p_info.psdata;
  1034. set_words((u32 *)psdata +
  1035. (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
  1036. p_info.psdata_len, psdata);
  1037. tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
  1038. KNAV_DMA_DESC_PSLEN_SHIFT;
  1039. }
  1040. tmp |= KNAV_DMA_DESC_HAS_EPIB |
  1041. ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
  1042. KNAV_DMA_DESC_RETQ_SHIFT);
  1043. if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
  1044. tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
  1045. KNAV_DMA_DESC_PSFLAG_SHIFT);
  1046. }
  1047. set_words(&tmp, 1, &desc->packet_info);
  1048. /* warning!!!! We are saving the virtual ptr in the sw_data
  1049. * field as a 32bit value. Will not work on 64bit machines
  1050. */
  1051. SET_SW_DATA0((u32)skb, desc);
  1052. if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
  1053. tmp = tx_pipe->switch_to_port;
  1054. set_words(&tmp, 1, &desc->tag_info);
  1055. }
  1056. /* submit packet descriptor */
  1057. ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
  1058. &dma_sz);
  1059. if (unlikely(ret)) {
  1060. dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
  1061. ret = -ENOMEM;
  1062. goto out;
  1063. }
  1064. skb_tx_timestamp(skb);
  1065. knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
  1066. out:
  1067. return ret;
  1068. }
  1069. /* Submit the packet */
  1070. static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1071. {
  1072. struct netcp_intf *netcp = netdev_priv(ndev);
  1073. struct netcp_stats *tx_stats = &netcp->stats;
  1074. int subqueue = skb_get_queue_mapping(skb);
  1075. struct knav_dma_desc *desc;
  1076. int desc_count, ret = 0;
  1077. if (unlikely(skb->len <= 0)) {
  1078. dev_kfree_skb(skb);
  1079. return NETDEV_TX_OK;
  1080. }
  1081. if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
  1082. ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
  1083. if (ret < 0) {
  1084. /* If we get here, the skb has already been dropped */
  1085. dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
  1086. ret);
  1087. tx_stats->tx_dropped++;
  1088. return ret;
  1089. }
  1090. skb->len = NETCP_MIN_PACKET_SIZE;
  1091. }
  1092. desc = netcp_tx_map_skb(skb, netcp);
  1093. if (unlikely(!desc)) {
  1094. netif_stop_subqueue(ndev, subqueue);
  1095. ret = -ENOBUFS;
  1096. goto drop;
  1097. }
  1098. ret = netcp_tx_submit_skb(netcp, skb, desc);
  1099. if (ret)
  1100. goto drop;
  1101. /* Check Tx pool count & stop subqueue if needed */
  1102. desc_count = knav_pool_count(netcp->tx_pool);
  1103. if (desc_count < netcp->tx_pause_threshold) {
  1104. dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
  1105. netif_stop_subqueue(ndev, subqueue);
  1106. }
  1107. return NETDEV_TX_OK;
  1108. drop:
  1109. tx_stats->tx_dropped++;
  1110. if (desc)
  1111. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  1112. dev_kfree_skb(skb);
  1113. return ret;
  1114. }
  1115. int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
  1116. {
  1117. if (tx_pipe->dma_channel) {
  1118. knav_dma_close_channel(tx_pipe->dma_channel);
  1119. tx_pipe->dma_channel = NULL;
  1120. }
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(netcp_txpipe_close);
  1124. int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
  1125. {
  1126. struct device *dev = tx_pipe->netcp_device->device;
  1127. struct knav_dma_cfg config;
  1128. int ret = 0;
  1129. u8 name[16];
  1130. memset(&config, 0, sizeof(config));
  1131. config.direction = DMA_MEM_TO_DEV;
  1132. config.u.tx.filt_einfo = false;
  1133. config.u.tx.filt_pswords = false;
  1134. config.u.tx.priority = DMA_PRIO_MED_L;
  1135. tx_pipe->dma_channel = knav_dma_open_channel(dev,
  1136. tx_pipe->dma_chan_name, &config);
  1137. if (IS_ERR(tx_pipe->dma_channel)) {
  1138. dev_err(dev, "failed opening tx chan(%s)\n",
  1139. tx_pipe->dma_chan_name);
  1140. ret = PTR_ERR(tx_pipe->dma_channel);
  1141. goto err;
  1142. }
  1143. snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
  1144. tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
  1145. KNAV_QUEUE_SHARED);
  1146. if (IS_ERR(tx_pipe->dma_queue)) {
  1147. ret = PTR_ERR(tx_pipe->dma_queue);
  1148. dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
  1149. name, ret);
  1150. goto err;
  1151. }
  1152. dev_dbg(dev, "opened tx pipe %s\n", name);
  1153. return 0;
  1154. err:
  1155. if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
  1156. knav_dma_close_channel(tx_pipe->dma_channel);
  1157. tx_pipe->dma_channel = NULL;
  1158. return ret;
  1159. }
  1160. EXPORT_SYMBOL_GPL(netcp_txpipe_open);
  1161. int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
  1162. struct netcp_device *netcp_device,
  1163. const char *dma_chan_name, unsigned int dma_queue_id)
  1164. {
  1165. memset(tx_pipe, 0, sizeof(*tx_pipe));
  1166. tx_pipe->netcp_device = netcp_device;
  1167. tx_pipe->dma_chan_name = dma_chan_name;
  1168. tx_pipe->dma_queue_id = dma_queue_id;
  1169. return 0;
  1170. }
  1171. EXPORT_SYMBOL_GPL(netcp_txpipe_init);
  1172. static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
  1173. const u8 *addr,
  1174. enum netcp_addr_type type)
  1175. {
  1176. struct netcp_addr *naddr;
  1177. list_for_each_entry(naddr, &netcp->addr_list, node) {
  1178. if (naddr->type != type)
  1179. continue;
  1180. if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
  1181. continue;
  1182. return naddr;
  1183. }
  1184. return NULL;
  1185. }
  1186. static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
  1187. const u8 *addr,
  1188. enum netcp_addr_type type)
  1189. {
  1190. struct netcp_addr *naddr;
  1191. naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
  1192. if (!naddr)
  1193. return NULL;
  1194. naddr->type = type;
  1195. naddr->flags = 0;
  1196. naddr->netcp = netcp;
  1197. if (addr)
  1198. ether_addr_copy(naddr->addr, addr);
  1199. else
  1200. eth_zero_addr(naddr->addr);
  1201. list_add_tail(&naddr->node, &netcp->addr_list);
  1202. return naddr;
  1203. }
  1204. static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
  1205. {
  1206. list_del(&naddr->node);
  1207. devm_kfree(netcp->dev, naddr);
  1208. }
  1209. static void netcp_addr_clear_mark(struct netcp_intf *netcp)
  1210. {
  1211. struct netcp_addr *naddr;
  1212. list_for_each_entry(naddr, &netcp->addr_list, node)
  1213. naddr->flags = 0;
  1214. }
  1215. static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
  1216. enum netcp_addr_type type)
  1217. {
  1218. struct netcp_addr *naddr;
  1219. naddr = netcp_addr_find(netcp, addr, type);
  1220. if (naddr) {
  1221. naddr->flags |= ADDR_VALID;
  1222. return;
  1223. }
  1224. naddr = netcp_addr_add(netcp, addr, type);
  1225. if (!WARN_ON(!naddr))
  1226. naddr->flags |= ADDR_NEW;
  1227. }
  1228. static void netcp_addr_sweep_del(struct netcp_intf *netcp)
  1229. {
  1230. struct netcp_addr *naddr, *tmp;
  1231. struct netcp_intf_modpriv *priv;
  1232. struct netcp_module *module;
  1233. int error;
  1234. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1235. if (naddr->flags & (ADDR_VALID | ADDR_NEW))
  1236. continue;
  1237. dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
  1238. naddr->addr, naddr->type);
  1239. for_each_module(netcp, priv) {
  1240. module = priv->netcp_module;
  1241. if (!module->del_addr)
  1242. continue;
  1243. error = module->del_addr(priv->module_priv,
  1244. naddr);
  1245. WARN_ON(error);
  1246. }
  1247. netcp_addr_del(netcp, naddr);
  1248. }
  1249. }
  1250. static void netcp_addr_sweep_add(struct netcp_intf *netcp)
  1251. {
  1252. struct netcp_addr *naddr, *tmp;
  1253. struct netcp_intf_modpriv *priv;
  1254. struct netcp_module *module;
  1255. int error;
  1256. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1257. if (!(naddr->flags & ADDR_NEW))
  1258. continue;
  1259. dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
  1260. naddr->addr, naddr->type);
  1261. for_each_module(netcp, priv) {
  1262. module = priv->netcp_module;
  1263. if (!module->add_addr)
  1264. continue;
  1265. error = module->add_addr(priv->module_priv, naddr);
  1266. WARN_ON(error);
  1267. }
  1268. }
  1269. }
  1270. static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
  1271. {
  1272. struct netcp_intf_modpriv *priv;
  1273. struct netcp_module *module;
  1274. int error;
  1275. for_each_module(netcp, priv) {
  1276. module = priv->netcp_module;
  1277. if (!module->set_rx_mode)
  1278. continue;
  1279. error = module->set_rx_mode(priv->module_priv, promisc);
  1280. if (error)
  1281. return error;
  1282. }
  1283. return 0;
  1284. }
  1285. static void netcp_set_rx_mode(struct net_device *ndev)
  1286. {
  1287. struct netcp_intf *netcp = netdev_priv(ndev);
  1288. struct netdev_hw_addr *ndev_addr;
  1289. bool promisc;
  1290. promisc = (ndev->flags & IFF_PROMISC ||
  1291. ndev->flags & IFF_ALLMULTI ||
  1292. netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
  1293. spin_lock(&netcp->lock);
  1294. /* first clear all marks */
  1295. netcp_addr_clear_mark(netcp);
  1296. /* next add new entries, mark existing ones */
  1297. netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
  1298. for_each_dev_addr(ndev, ndev_addr)
  1299. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
  1300. netdev_for_each_uc_addr(ndev_addr, ndev)
  1301. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
  1302. netdev_for_each_mc_addr(ndev_addr, ndev)
  1303. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
  1304. if (promisc)
  1305. netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
  1306. /* finally sweep and callout into modules */
  1307. netcp_addr_sweep_del(netcp);
  1308. netcp_addr_sweep_add(netcp);
  1309. netcp_set_promiscuous(netcp, promisc);
  1310. spin_unlock(&netcp->lock);
  1311. }
  1312. static void netcp_free_navigator_resources(struct netcp_intf *netcp)
  1313. {
  1314. int i;
  1315. if (netcp->rx_channel) {
  1316. knav_dma_close_channel(netcp->rx_channel);
  1317. netcp->rx_channel = NULL;
  1318. }
  1319. if (!IS_ERR_OR_NULL(netcp->rx_pool))
  1320. netcp_rxpool_free(netcp);
  1321. if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
  1322. knav_queue_close(netcp->rx_queue);
  1323. netcp->rx_queue = NULL;
  1324. }
  1325. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  1326. !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
  1327. knav_queue_close(netcp->rx_fdq[i]);
  1328. netcp->rx_fdq[i] = NULL;
  1329. }
  1330. if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
  1331. knav_queue_close(netcp->tx_compl_q);
  1332. netcp->tx_compl_q = NULL;
  1333. }
  1334. if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
  1335. knav_pool_destroy(netcp->tx_pool);
  1336. netcp->tx_pool = NULL;
  1337. }
  1338. }
  1339. static int netcp_setup_navigator_resources(struct net_device *ndev)
  1340. {
  1341. struct netcp_intf *netcp = netdev_priv(ndev);
  1342. struct knav_queue_notify_config notify_cfg;
  1343. struct knav_dma_cfg config;
  1344. u32 last_fdq = 0;
  1345. u8 name[16];
  1346. int ret;
  1347. int i;
  1348. /* Create Rx/Tx descriptor pools */
  1349. snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
  1350. netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
  1351. netcp->rx_pool_region_id);
  1352. if (IS_ERR_OR_NULL(netcp->rx_pool)) {
  1353. dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
  1354. ret = PTR_ERR(netcp->rx_pool);
  1355. goto fail;
  1356. }
  1357. snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
  1358. netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
  1359. netcp->tx_pool_region_id);
  1360. if (IS_ERR_OR_NULL(netcp->tx_pool)) {
  1361. dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
  1362. ret = PTR_ERR(netcp->tx_pool);
  1363. goto fail;
  1364. }
  1365. /* open Tx completion queue */
  1366. snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
  1367. netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
  1368. if (IS_ERR(netcp->tx_compl_q)) {
  1369. ret = PTR_ERR(netcp->tx_compl_q);
  1370. goto fail;
  1371. }
  1372. netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
  1373. /* Set notification for Tx completion */
  1374. notify_cfg.fn = netcp_tx_notify;
  1375. notify_cfg.fn_arg = netcp;
  1376. ret = knav_queue_device_control(netcp->tx_compl_q,
  1377. KNAV_QUEUE_SET_NOTIFIER,
  1378. (unsigned long)&notify_cfg);
  1379. if (ret)
  1380. goto fail;
  1381. knav_queue_disable_notify(netcp->tx_compl_q);
  1382. /* open Rx completion queue */
  1383. snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
  1384. netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
  1385. if (IS_ERR(netcp->rx_queue)) {
  1386. ret = PTR_ERR(netcp->rx_queue);
  1387. goto fail;
  1388. }
  1389. netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
  1390. /* Set notification for Rx completion */
  1391. notify_cfg.fn = netcp_rx_notify;
  1392. notify_cfg.fn_arg = netcp;
  1393. ret = knav_queue_device_control(netcp->rx_queue,
  1394. KNAV_QUEUE_SET_NOTIFIER,
  1395. (unsigned long)&notify_cfg);
  1396. if (ret)
  1397. goto fail;
  1398. knav_queue_disable_notify(netcp->rx_queue);
  1399. /* open Rx FDQs */
  1400. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
  1401. ++i) {
  1402. snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
  1403. netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  1404. if (IS_ERR(netcp->rx_fdq[i])) {
  1405. ret = PTR_ERR(netcp->rx_fdq[i]);
  1406. goto fail;
  1407. }
  1408. }
  1409. memset(&config, 0, sizeof(config));
  1410. config.direction = DMA_DEV_TO_MEM;
  1411. config.u.rx.einfo_present = true;
  1412. config.u.rx.psinfo_present = true;
  1413. config.u.rx.err_mode = DMA_DROP;
  1414. config.u.rx.desc_type = DMA_DESC_HOST;
  1415. config.u.rx.psinfo_at_sop = false;
  1416. config.u.rx.sop_offset = NETCP_SOP_OFFSET;
  1417. config.u.rx.dst_q = netcp->rx_queue_id;
  1418. config.u.rx.thresh = DMA_THRESH_NONE;
  1419. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
  1420. if (netcp->rx_fdq[i])
  1421. last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
  1422. config.u.rx.fdq[i] = last_fdq;
  1423. }
  1424. netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
  1425. netcp->dma_chan_name, &config);
  1426. if (IS_ERR(netcp->rx_channel)) {
  1427. dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
  1428. netcp->dma_chan_name);
  1429. ret = PTR_ERR(netcp->rx_channel);
  1430. goto fail;
  1431. }
  1432. dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
  1433. return 0;
  1434. fail:
  1435. netcp_free_navigator_resources(netcp);
  1436. return ret;
  1437. }
  1438. /* Open the device */
  1439. static int netcp_ndo_open(struct net_device *ndev)
  1440. {
  1441. struct netcp_intf *netcp = netdev_priv(ndev);
  1442. struct netcp_intf_modpriv *intf_modpriv;
  1443. struct netcp_module *module;
  1444. int ret;
  1445. netif_carrier_off(ndev);
  1446. ret = netcp_setup_navigator_resources(ndev);
  1447. if (ret) {
  1448. dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
  1449. goto fail;
  1450. }
  1451. for_each_module(netcp, intf_modpriv) {
  1452. module = intf_modpriv->netcp_module;
  1453. if (module->open) {
  1454. ret = module->open(intf_modpriv->module_priv, ndev);
  1455. if (ret != 0) {
  1456. dev_err(netcp->ndev_dev, "module open failed\n");
  1457. goto fail_open;
  1458. }
  1459. }
  1460. }
  1461. napi_enable(&netcp->rx_napi);
  1462. napi_enable(&netcp->tx_napi);
  1463. knav_queue_enable_notify(netcp->tx_compl_q);
  1464. knav_queue_enable_notify(netcp->rx_queue);
  1465. netcp_rxpool_refill(netcp);
  1466. netif_tx_wake_all_queues(ndev);
  1467. dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
  1468. return 0;
  1469. fail_open:
  1470. for_each_module(netcp, intf_modpriv) {
  1471. module = intf_modpriv->netcp_module;
  1472. if (module->close)
  1473. module->close(intf_modpriv->module_priv, ndev);
  1474. }
  1475. fail:
  1476. netcp_free_navigator_resources(netcp);
  1477. return ret;
  1478. }
  1479. /* Close the device */
  1480. static int netcp_ndo_stop(struct net_device *ndev)
  1481. {
  1482. struct netcp_intf *netcp = netdev_priv(ndev);
  1483. struct netcp_intf_modpriv *intf_modpriv;
  1484. struct netcp_module *module;
  1485. int err = 0;
  1486. netif_tx_stop_all_queues(ndev);
  1487. netif_carrier_off(ndev);
  1488. netcp_addr_clear_mark(netcp);
  1489. netcp_addr_sweep_del(netcp);
  1490. knav_queue_disable_notify(netcp->rx_queue);
  1491. knav_queue_disable_notify(netcp->tx_compl_q);
  1492. napi_disable(&netcp->rx_napi);
  1493. napi_disable(&netcp->tx_napi);
  1494. for_each_module(netcp, intf_modpriv) {
  1495. module = intf_modpriv->netcp_module;
  1496. if (module->close) {
  1497. err = module->close(intf_modpriv->module_priv, ndev);
  1498. if (err != 0)
  1499. dev_err(netcp->ndev_dev, "Close failed\n");
  1500. }
  1501. }
  1502. /* Recycle Rx descriptors from completion queue */
  1503. netcp_empty_rx_queue(netcp);
  1504. /* Recycle Tx descriptors from completion queue */
  1505. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1506. if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
  1507. dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
  1508. netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
  1509. netcp_free_navigator_resources(netcp);
  1510. dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
  1511. return 0;
  1512. }
  1513. static int netcp_ndo_ioctl(struct net_device *ndev,
  1514. struct ifreq *req, int cmd)
  1515. {
  1516. struct netcp_intf *netcp = netdev_priv(ndev);
  1517. struct netcp_intf_modpriv *intf_modpriv;
  1518. struct netcp_module *module;
  1519. int ret = -1, err = -EOPNOTSUPP;
  1520. if (!netif_running(ndev))
  1521. return -EINVAL;
  1522. for_each_module(netcp, intf_modpriv) {
  1523. module = intf_modpriv->netcp_module;
  1524. if (!module->ioctl)
  1525. continue;
  1526. err = module->ioctl(intf_modpriv->module_priv, req, cmd);
  1527. if ((err < 0) && (err != -EOPNOTSUPP)) {
  1528. ret = err;
  1529. goto out;
  1530. }
  1531. if (err == 0)
  1532. ret = err;
  1533. }
  1534. out:
  1535. return (ret == 0) ? 0 : err;
  1536. }
  1537. static void netcp_ndo_tx_timeout(struct net_device *ndev)
  1538. {
  1539. struct netcp_intf *netcp = netdev_priv(ndev);
  1540. unsigned int descs = knav_pool_count(netcp->tx_pool);
  1541. dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
  1542. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1543. netif_trans_update(ndev);
  1544. netif_tx_wake_all_queues(ndev);
  1545. }
  1546. static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1547. {
  1548. struct netcp_intf *netcp = netdev_priv(ndev);
  1549. struct netcp_intf_modpriv *intf_modpriv;
  1550. struct netcp_module *module;
  1551. unsigned long flags;
  1552. int err = 0;
  1553. dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
  1554. spin_lock_irqsave(&netcp->lock, flags);
  1555. for_each_module(netcp, intf_modpriv) {
  1556. module = intf_modpriv->netcp_module;
  1557. if ((module->add_vid) && (vid != 0)) {
  1558. err = module->add_vid(intf_modpriv->module_priv, vid);
  1559. if (err != 0) {
  1560. dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
  1561. vid);
  1562. break;
  1563. }
  1564. }
  1565. }
  1566. spin_unlock_irqrestore(&netcp->lock, flags);
  1567. return err;
  1568. }
  1569. static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1570. {
  1571. struct netcp_intf *netcp = netdev_priv(ndev);
  1572. struct netcp_intf_modpriv *intf_modpriv;
  1573. struct netcp_module *module;
  1574. unsigned long flags;
  1575. int err = 0;
  1576. dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
  1577. spin_lock_irqsave(&netcp->lock, flags);
  1578. for_each_module(netcp, intf_modpriv) {
  1579. module = intf_modpriv->netcp_module;
  1580. if (module->del_vid) {
  1581. err = module->del_vid(intf_modpriv->module_priv, vid);
  1582. if (err != 0) {
  1583. dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
  1584. vid);
  1585. break;
  1586. }
  1587. }
  1588. }
  1589. spin_unlock_irqrestore(&netcp->lock, flags);
  1590. return err;
  1591. }
  1592. static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
  1593. void *type_data)
  1594. {
  1595. struct tc_mqprio_qopt *mqprio = type_data;
  1596. u8 num_tc;
  1597. int i;
  1598. /* setup tc must be called under rtnl lock */
  1599. ASSERT_RTNL();
  1600. if (type != TC_SETUP_QDISC_MQPRIO)
  1601. return -EOPNOTSUPP;
  1602. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  1603. num_tc = mqprio->num_tc;
  1604. /* Sanity-check the number of traffic classes requested */
  1605. if ((dev->real_num_tx_queues <= 1) ||
  1606. (dev->real_num_tx_queues < num_tc))
  1607. return -EINVAL;
  1608. /* Configure traffic class to queue mappings */
  1609. if (num_tc) {
  1610. netdev_set_num_tc(dev, num_tc);
  1611. for (i = 0; i < num_tc; i++)
  1612. netdev_set_tc_queue(dev, i, 1, i);
  1613. } else {
  1614. netdev_reset_tc(dev);
  1615. }
  1616. return 0;
  1617. }
  1618. static void
  1619. netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
  1620. {
  1621. struct netcp_intf *netcp = netdev_priv(ndev);
  1622. struct netcp_stats *p = &netcp->stats;
  1623. u64 rxpackets, rxbytes, txpackets, txbytes;
  1624. unsigned int start;
  1625. do {
  1626. start = u64_stats_fetch_begin_irq(&p->syncp_rx);
  1627. rxpackets = p->rx_packets;
  1628. rxbytes = p->rx_bytes;
  1629. } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
  1630. do {
  1631. start = u64_stats_fetch_begin_irq(&p->syncp_tx);
  1632. txpackets = p->tx_packets;
  1633. txbytes = p->tx_bytes;
  1634. } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
  1635. stats->rx_packets = rxpackets;
  1636. stats->rx_bytes = rxbytes;
  1637. stats->tx_packets = txpackets;
  1638. stats->tx_bytes = txbytes;
  1639. /* The following are stored as 32 bit */
  1640. stats->rx_errors = p->rx_errors;
  1641. stats->rx_dropped = p->rx_dropped;
  1642. stats->tx_dropped = p->tx_dropped;
  1643. }
  1644. static const struct net_device_ops netcp_netdev_ops = {
  1645. .ndo_open = netcp_ndo_open,
  1646. .ndo_stop = netcp_ndo_stop,
  1647. .ndo_start_xmit = netcp_ndo_start_xmit,
  1648. .ndo_set_rx_mode = netcp_set_rx_mode,
  1649. .ndo_do_ioctl = netcp_ndo_ioctl,
  1650. .ndo_get_stats64 = netcp_get_stats,
  1651. .ndo_set_mac_address = eth_mac_addr,
  1652. .ndo_validate_addr = eth_validate_addr,
  1653. .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
  1654. .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
  1655. .ndo_tx_timeout = netcp_ndo_tx_timeout,
  1656. .ndo_select_queue = dev_pick_tx_zero,
  1657. .ndo_setup_tc = netcp_setup_tc,
  1658. };
  1659. static int netcp_create_interface(struct netcp_device *netcp_device,
  1660. struct device_node *node_interface)
  1661. {
  1662. struct device *dev = netcp_device->device;
  1663. struct device_node *node = dev->of_node;
  1664. struct netcp_intf *netcp;
  1665. struct net_device *ndev;
  1666. resource_size_t size;
  1667. struct resource res;
  1668. void __iomem *efuse = NULL;
  1669. u32 efuse_mac = 0;
  1670. const void *mac_addr;
  1671. u8 efuse_mac_addr[6];
  1672. u32 temp[2];
  1673. int ret = 0;
  1674. ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
  1675. if (!ndev) {
  1676. dev_err(dev, "Error allocating netdev\n");
  1677. return -ENOMEM;
  1678. }
  1679. ndev->features |= NETIF_F_SG;
  1680. ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  1681. ndev->hw_features = ndev->features;
  1682. ndev->vlan_features |= NETIF_F_SG;
  1683. /* MTU range: 68 - 9486 */
  1684. ndev->min_mtu = ETH_MIN_MTU;
  1685. ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
  1686. netcp = netdev_priv(ndev);
  1687. spin_lock_init(&netcp->lock);
  1688. INIT_LIST_HEAD(&netcp->module_head);
  1689. INIT_LIST_HEAD(&netcp->txhook_list_head);
  1690. INIT_LIST_HEAD(&netcp->rxhook_list_head);
  1691. INIT_LIST_HEAD(&netcp->addr_list);
  1692. u64_stats_init(&netcp->stats.syncp_rx);
  1693. u64_stats_init(&netcp->stats.syncp_tx);
  1694. netcp->netcp_device = netcp_device;
  1695. netcp->dev = netcp_device->device;
  1696. netcp->ndev = ndev;
  1697. netcp->ndev_dev = &ndev->dev;
  1698. netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
  1699. netcp->tx_pause_threshold = MAX_SKB_FRAGS;
  1700. netcp->tx_resume_threshold = netcp->tx_pause_threshold;
  1701. netcp->node_interface = node_interface;
  1702. ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
  1703. if (efuse_mac) {
  1704. if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
  1705. dev_err(dev, "could not find efuse-mac reg resource\n");
  1706. ret = -ENODEV;
  1707. goto quit;
  1708. }
  1709. size = resource_size(&res);
  1710. if (!devm_request_mem_region(dev, res.start, size,
  1711. dev_name(dev))) {
  1712. dev_err(dev, "could not reserve resource\n");
  1713. ret = -ENOMEM;
  1714. goto quit;
  1715. }
  1716. efuse = devm_ioremap_nocache(dev, res.start, size);
  1717. if (!efuse) {
  1718. dev_err(dev, "could not map resource\n");
  1719. devm_release_mem_region(dev, res.start, size);
  1720. ret = -ENOMEM;
  1721. goto quit;
  1722. }
  1723. emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
  1724. if (is_valid_ether_addr(efuse_mac_addr))
  1725. ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
  1726. else
  1727. eth_random_addr(ndev->dev_addr);
  1728. devm_iounmap(dev, efuse);
  1729. devm_release_mem_region(dev, res.start, size);
  1730. } else {
  1731. mac_addr = of_get_mac_address(node_interface);
  1732. if (!IS_ERR(mac_addr))
  1733. ether_addr_copy(ndev->dev_addr, mac_addr);
  1734. else
  1735. eth_random_addr(ndev->dev_addr);
  1736. }
  1737. ret = of_property_read_string(node_interface, "rx-channel",
  1738. &netcp->dma_chan_name);
  1739. if (ret < 0) {
  1740. dev_err(dev, "missing \"rx-channel\" parameter\n");
  1741. ret = -ENODEV;
  1742. goto quit;
  1743. }
  1744. ret = of_property_read_u32(node_interface, "rx-queue",
  1745. &netcp->rx_queue_id);
  1746. if (ret < 0) {
  1747. dev_warn(dev, "missing \"rx-queue\" parameter\n");
  1748. netcp->rx_queue_id = KNAV_QUEUE_QPEND;
  1749. }
  1750. ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
  1751. netcp->rx_queue_depths,
  1752. KNAV_DMA_FDQ_PER_CHAN);
  1753. if (ret < 0) {
  1754. dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
  1755. netcp->rx_queue_depths[0] = 128;
  1756. }
  1757. ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
  1758. if (ret < 0) {
  1759. dev_err(dev, "missing \"rx-pool\" parameter\n");
  1760. ret = -ENODEV;
  1761. goto quit;
  1762. }
  1763. netcp->rx_pool_size = temp[0];
  1764. netcp->rx_pool_region_id = temp[1];
  1765. ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
  1766. if (ret < 0) {
  1767. dev_err(dev, "missing \"tx-pool\" parameter\n");
  1768. ret = -ENODEV;
  1769. goto quit;
  1770. }
  1771. netcp->tx_pool_size = temp[0];
  1772. netcp->tx_pool_region_id = temp[1];
  1773. if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
  1774. dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
  1775. MAX_SKB_FRAGS);
  1776. ret = -ENODEV;
  1777. goto quit;
  1778. }
  1779. ret = of_property_read_u32(node_interface, "tx-completion-queue",
  1780. &netcp->tx_compl_qid);
  1781. if (ret < 0) {
  1782. dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
  1783. netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
  1784. }
  1785. /* NAPI register */
  1786. netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
  1787. netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
  1788. /* Register the network device */
  1789. ndev->dev_id = 0;
  1790. ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
  1791. ndev->netdev_ops = &netcp_netdev_ops;
  1792. SET_NETDEV_DEV(ndev, dev);
  1793. list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
  1794. return 0;
  1795. quit:
  1796. free_netdev(ndev);
  1797. return ret;
  1798. }
  1799. static void netcp_delete_interface(struct netcp_device *netcp_device,
  1800. struct net_device *ndev)
  1801. {
  1802. struct netcp_intf_modpriv *intf_modpriv, *tmp;
  1803. struct netcp_intf *netcp = netdev_priv(ndev);
  1804. struct netcp_module *module;
  1805. dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
  1806. ndev->name);
  1807. /* Notify each of the modules that the interface is going away */
  1808. list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
  1809. intf_list) {
  1810. module = intf_modpriv->netcp_module;
  1811. dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
  1812. module->name);
  1813. if (module->release)
  1814. module->release(intf_modpriv->module_priv);
  1815. list_del(&intf_modpriv->intf_list);
  1816. }
  1817. WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
  1818. ndev->name);
  1819. list_del(&netcp->interface_list);
  1820. of_node_put(netcp->node_interface);
  1821. unregister_netdev(ndev);
  1822. free_netdev(ndev);
  1823. }
  1824. static int netcp_probe(struct platform_device *pdev)
  1825. {
  1826. struct device_node *node = pdev->dev.of_node;
  1827. struct netcp_intf *netcp_intf, *netcp_tmp;
  1828. struct device_node *child, *interfaces;
  1829. struct netcp_device *netcp_device;
  1830. struct device *dev = &pdev->dev;
  1831. struct netcp_module *module;
  1832. int ret;
  1833. if (!knav_dma_device_ready() ||
  1834. !knav_qmss_device_ready())
  1835. return -EPROBE_DEFER;
  1836. if (!node) {
  1837. dev_err(dev, "could not find device info\n");
  1838. return -ENODEV;
  1839. }
  1840. /* Allocate a new NETCP device instance */
  1841. netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
  1842. if (!netcp_device)
  1843. return -ENOMEM;
  1844. pm_runtime_enable(&pdev->dev);
  1845. ret = pm_runtime_get_sync(&pdev->dev);
  1846. if (ret < 0) {
  1847. dev_err(dev, "Failed to enable NETCP power-domain\n");
  1848. pm_runtime_disable(&pdev->dev);
  1849. return ret;
  1850. }
  1851. /* Initialize the NETCP device instance */
  1852. INIT_LIST_HEAD(&netcp_device->interface_head);
  1853. INIT_LIST_HEAD(&netcp_device->modpriv_head);
  1854. netcp_device->device = dev;
  1855. platform_set_drvdata(pdev, netcp_device);
  1856. /* create interfaces */
  1857. interfaces = of_get_child_by_name(node, "netcp-interfaces");
  1858. if (!interfaces) {
  1859. dev_err(dev, "could not find netcp-interfaces node\n");
  1860. ret = -ENODEV;
  1861. goto probe_quit;
  1862. }
  1863. for_each_available_child_of_node(interfaces, child) {
  1864. ret = netcp_create_interface(netcp_device, child);
  1865. if (ret) {
  1866. dev_err(dev, "could not create interface(%pOFn)\n",
  1867. child);
  1868. goto probe_quit_interface;
  1869. }
  1870. }
  1871. of_node_put(interfaces);
  1872. /* Add the device instance to the list */
  1873. list_add_tail(&netcp_device->device_list, &netcp_devices);
  1874. /* Probe & attach any modules already registered */
  1875. mutex_lock(&netcp_modules_lock);
  1876. for_each_netcp_module(module) {
  1877. ret = netcp_module_probe(netcp_device, module);
  1878. if (ret < 0)
  1879. dev_err(dev, "module(%s) probe failed\n", module->name);
  1880. }
  1881. mutex_unlock(&netcp_modules_lock);
  1882. return 0;
  1883. probe_quit_interface:
  1884. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  1885. &netcp_device->interface_head,
  1886. interface_list) {
  1887. netcp_delete_interface(netcp_device, netcp_intf->ndev);
  1888. }
  1889. of_node_put(interfaces);
  1890. probe_quit:
  1891. pm_runtime_put_sync(&pdev->dev);
  1892. pm_runtime_disable(&pdev->dev);
  1893. platform_set_drvdata(pdev, NULL);
  1894. return ret;
  1895. }
  1896. static int netcp_remove(struct platform_device *pdev)
  1897. {
  1898. struct netcp_device *netcp_device = platform_get_drvdata(pdev);
  1899. struct netcp_intf *netcp_intf, *netcp_tmp;
  1900. struct netcp_inst_modpriv *inst_modpriv, *tmp;
  1901. struct netcp_module *module;
  1902. list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
  1903. inst_list) {
  1904. module = inst_modpriv->netcp_module;
  1905. dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
  1906. module->remove(netcp_device, inst_modpriv->module_priv);
  1907. list_del(&inst_modpriv->inst_list);
  1908. }
  1909. /* now that all modules are removed, clean up the interfaces */
  1910. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  1911. &netcp_device->interface_head,
  1912. interface_list) {
  1913. netcp_delete_interface(netcp_device, netcp_intf->ndev);
  1914. }
  1915. WARN(!list_empty(&netcp_device->interface_head),
  1916. "%s interface list not empty!\n", pdev->name);
  1917. pm_runtime_put_sync(&pdev->dev);
  1918. pm_runtime_disable(&pdev->dev);
  1919. platform_set_drvdata(pdev, NULL);
  1920. return 0;
  1921. }
  1922. static const struct of_device_id of_match[] = {
  1923. { .compatible = "ti,netcp-1.0", },
  1924. {},
  1925. };
  1926. MODULE_DEVICE_TABLE(of, of_match);
  1927. static struct platform_driver netcp_driver = {
  1928. .driver = {
  1929. .name = "netcp-1.0",
  1930. .of_match_table = of_match,
  1931. },
  1932. .probe = netcp_probe,
  1933. .remove = netcp_remove,
  1934. };
  1935. module_platform_driver(netcp_driver);
  1936. MODULE_LICENSE("GPL v2");
  1937. MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
  1938. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");