123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _BCACHE_BSET_H
- #define _BCACHE_BSET_H
- #include <linux/bcache.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include "util.h" /* for time_stats */
- /*
- * BKEYS:
- *
- * A bkey contains a key, a size field, a variable number of pointers, and some
- * ancillary flag bits.
- *
- * We use two different functions for validating bkeys, bch_ptr_invalid and
- * bch_ptr_bad().
- *
- * bch_ptr_invalid() primarily filters out keys and pointers that would be
- * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
- * pointer that occur in normal practice but don't point to real data.
- *
- * The one exception to the rule that ptr_invalid() filters out invalid keys is
- * that it also filters out keys of size 0 - these are keys that have been
- * completely overwritten. It'd be safe to delete these in memory while leaving
- * them on disk, just unnecessary work - so we filter them out when resorting
- * instead.
- *
- * We can't filter out stale keys when we're resorting, because garbage
- * collection needs to find them to ensure bucket gens don't wrap around -
- * unless we're rewriting the btree node those stale keys still exist on disk.
- *
- * We also implement functions here for removing some number of sectors from the
- * front or the back of a bkey - this is mainly used for fixing overlapping
- * extents, by removing the overlapping sectors from the older key.
- *
- * BSETS:
- *
- * A bset is an array of bkeys laid out contiguously in memory in sorted order,
- * along with a header. A btree node is made up of a number of these, written at
- * different times.
- *
- * There could be many of them on disk, but we never allow there to be more than
- * 4 in memory - we lazily resort as needed.
- *
- * We implement code here for creating and maintaining auxiliary search trees
- * (described below) for searching an individial bset, and on top of that we
- * implement a btree iterator.
- *
- * BTREE ITERATOR:
- *
- * Most of the code in bcache doesn't care about an individual bset - it needs
- * to search entire btree nodes and iterate over them in sorted order.
- *
- * The btree iterator code serves both functions; it iterates through the keys
- * in a btree node in sorted order, starting from either keys after a specific
- * point (if you pass it a search key) or the start of the btree node.
- *
- * AUXILIARY SEARCH TREES:
- *
- * Since keys are variable length, we can't use a binary search on a bset - we
- * wouldn't be able to find the start of the next key. But binary searches are
- * slow anyways, due to terrible cache behaviour; bcache originally used binary
- * searches and that code topped out at under 50k lookups/second.
- *
- * So we need to construct some sort of lookup table. Since we only insert keys
- * into the last (unwritten) set, most of the keys within a given btree node are
- * usually in sets that are mostly constant. We use two different types of
- * lookup tables to take advantage of this.
- *
- * Both lookup tables share in common that they don't index every key in the
- * set; they index one key every BSET_CACHELINE bytes, and then a linear search
- * is used for the rest.
- *
- * For sets that have been written to disk and are no longer being inserted
- * into, we construct a binary search tree in an array - traversing a binary
- * search tree in an array gives excellent locality of reference and is very
- * fast, since both children of any node are adjacent to each other in memory
- * (and their grandchildren, and great grandchildren...) - this means
- * prefetching can be used to great effect.
- *
- * It's quite useful performance wise to keep these nodes small - not just
- * because they're more likely to be in L2, but also because we can prefetch
- * more nodes on a single cacheline and thus prefetch more iterations in advance
- * when traversing this tree.
- *
- * Nodes in the auxiliary search tree must contain both a key to compare against
- * (we don't want to fetch the key from the set, that would defeat the purpose),
- * and a pointer to the key. We use a few tricks to compress both of these.
- *
- * To compress the pointer, we take advantage of the fact that one node in the
- * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
- * a function (to_inorder()) that takes the index of a node in a binary tree and
- * returns what its index would be in an inorder traversal, so we only have to
- * store the low bits of the offset.
- *
- * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
- * compress that, we take advantage of the fact that when we're traversing the
- * search tree at every iteration we know that both our search key and the key
- * we're looking for lie within some range - bounded by our previous
- * comparisons. (We special case the start of a search so that this is true even
- * at the root of the tree).
- *
- * So we know the key we're looking for is between a and b, and a and b don't
- * differ higher than bit 50, we don't need to check anything higher than bit
- * 50.
- *
- * We don't usually need the rest of the bits, either; we only need enough bits
- * to partition the key range we're currently checking. Consider key n - the
- * key our auxiliary search tree node corresponds to, and key p, the key
- * immediately preceding n. The lowest bit we need to store in the auxiliary
- * search tree is the highest bit that differs between n and p.
- *
- * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
- * comparison. But we'd really like our nodes in the auxiliary search tree to be
- * of fixed size.
- *
- * The solution is to make them fixed size, and when we're constructing a node
- * check if p and n differed in the bits we needed them to. If they don't we
- * flag that node, and when doing lookups we fallback to comparing against the
- * real key. As long as this doesn't happen to often (and it seems to reliably
- * happen a bit less than 1% of the time), we win - even on failures, that key
- * is then more likely to be in cache than if we were doing binary searches all
- * the way, since we're touching so much less memory.
- *
- * The keys in the auxiliary search tree are stored in (software) floating
- * point, with an exponent and a mantissa. The exponent needs to be big enough
- * to address all the bits in the original key, but the number of bits in the
- * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
- *
- * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
- * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
- * We need one node per 128 bytes in the btree node, which means the auxiliary
- * search trees take up 3% as much memory as the btree itself.
- *
- * Constructing these auxiliary search trees is moderately expensive, and we
- * don't want to be constantly rebuilding the search tree for the last set
- * whenever we insert another key into it. For the unwritten set, we use a much
- * simpler lookup table - it's just a flat array, so index i in the lookup table
- * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
- * within each byte range works the same as with the auxiliary search trees.
- *
- * These are much easier to keep up to date when we insert a key - we do it
- * somewhat lazily; when we shift a key up we usually just increment the pointer
- * to it, only when it would overflow do we go to the trouble of finding the
- * first key in that range of bytes again.
- */
- struct btree_keys;
- struct btree_iter;
- struct btree_iter_set;
- struct bkey_float;
- #define MAX_BSETS 4U
- struct bset_tree {
- /*
- * We construct a binary tree in an array as if the array
- * started at 1, so that things line up on the same cachelines
- * better: see comments in bset.c at cacheline_to_bkey() for
- * details
- */
- /* size of the binary tree and prev array */
- unsigned int size;
- /* function of size - precalculated for to_inorder() */
- unsigned int extra;
- /* copy of the last key in the set */
- struct bkey end;
- struct bkey_float *tree;
- /*
- * The nodes in the bset tree point to specific keys - this
- * array holds the sizes of the previous key.
- *
- * Conceptually it's a member of struct bkey_float, but we want
- * to keep bkey_float to 4 bytes and prev isn't used in the fast
- * path.
- */
- uint8_t *prev;
- /* The actual btree node, with pointers to each sorted set */
- struct bset *data;
- };
- struct btree_keys_ops {
- bool (*sort_cmp)(struct btree_iter_set l,
- struct btree_iter_set r);
- struct bkey *(*sort_fixup)(struct btree_iter *iter,
- struct bkey *tmp);
- bool (*insert_fixup)(struct btree_keys *b,
- struct bkey *insert,
- struct btree_iter *iter,
- struct bkey *replace_key);
- bool (*key_invalid)(struct btree_keys *bk,
- const struct bkey *k);
- bool (*key_bad)(struct btree_keys *bk,
- const struct bkey *k);
- bool (*key_merge)(struct btree_keys *bk,
- struct bkey *l, struct bkey *r);
- void (*key_to_text)(char *buf,
- size_t size,
- const struct bkey *k);
- void (*key_dump)(struct btree_keys *keys,
- const struct bkey *k);
- /*
- * Only used for deciding whether to use START_KEY(k) or just the key
- * itself in a couple places
- */
- bool is_extents;
- };
- struct btree_keys {
- const struct btree_keys_ops *ops;
- uint8_t page_order;
- uint8_t nsets;
- unsigned int last_set_unwritten:1;
- bool *expensive_debug_checks;
- /*
- * Sets of sorted keys - the real btree node - plus a binary search tree
- *
- * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
- * to the memory we have allocated for this btree node. Additionally,
- * set[0]->data points to the entire btree node as it exists on disk.
- */
- struct bset_tree set[MAX_BSETS];
- };
- static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
- {
- return b->set + b->nsets;
- }
- static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
- {
- return t <= b->set + b->nsets - b->last_set_unwritten;
- }
- static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
- {
- return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
- }
- static inline unsigned int bset_byte_offset(struct btree_keys *b,
- struct bset *i)
- {
- return ((size_t) i) - ((size_t) b->set->data);
- }
- static inline unsigned int bset_sector_offset(struct btree_keys *b,
- struct bset *i)
- {
- return bset_byte_offset(b, i) >> 9;
- }
- #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
- #define set_bytes(i) __set_bytes(i, i->keys)
- #define __set_blocks(i, k, block_bytes) \
- DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
- #define set_blocks(i, block_bytes) \
- __set_blocks(i, (i)->keys, block_bytes)
- static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
- {
- struct bset_tree *t = bset_tree_last(b);
- BUG_ON((PAGE_SIZE << b->page_order) <
- (bset_byte_offset(b, t->data) + set_bytes(t->data)));
- if (!b->last_set_unwritten)
- return 0;
- return ((PAGE_SIZE << b->page_order) -
- (bset_byte_offset(b, t->data) + set_bytes(t->data))) /
- sizeof(u64);
- }
- static inline struct bset *bset_next_set(struct btree_keys *b,
- unsigned int block_bytes)
- {
- struct bset *i = bset_tree_last(b)->data;
- return ((void *) i) + roundup(set_bytes(i), block_bytes);
- }
- void bch_btree_keys_free(struct btree_keys *b);
- int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
- gfp_t gfp);
- void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
- bool *expensive_debug_checks);
- void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
- void bch_bset_build_written_tree(struct btree_keys *b);
- void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
- bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
- void bch_bset_insert(struct btree_keys *b, struct bkey *where,
- struct bkey *insert);
- unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
- struct bkey *replace_key);
- enum {
- BTREE_INSERT_STATUS_NO_INSERT = 0,
- BTREE_INSERT_STATUS_INSERT,
- BTREE_INSERT_STATUS_BACK_MERGE,
- BTREE_INSERT_STATUS_OVERWROTE,
- BTREE_INSERT_STATUS_FRONT_MERGE,
- };
- /* Btree key iteration */
- struct btree_iter {
- size_t size, used;
- #ifdef CONFIG_BCACHE_DEBUG
- struct btree_keys *b;
- #endif
- struct btree_iter_set {
- struct bkey *k, *end;
- } data[MAX_BSETS];
- };
- typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
- struct bkey *bch_btree_iter_next(struct btree_iter *iter);
- struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
- struct btree_keys *b,
- ptr_filter_fn fn);
- void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
- struct bkey *end);
- struct bkey *bch_btree_iter_init(struct btree_keys *b,
- struct btree_iter *iter,
- struct bkey *search);
- struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
- const struct bkey *search);
- /*
- * Returns the first key that is strictly greater than search
- */
- static inline struct bkey *bch_bset_search(struct btree_keys *b,
- struct bset_tree *t,
- const struct bkey *search)
- {
- return search ? __bch_bset_search(b, t, search) : t->data->start;
- }
- #define for_each_key_filter(b, k, iter, filter) \
- for (bch_btree_iter_init((b), (iter), NULL); \
- ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
- #define for_each_key(b, k, iter) \
- for (bch_btree_iter_init((b), (iter), NULL); \
- ((k) = bch_btree_iter_next(iter));)
- /* Sorting */
- struct bset_sort_state {
- mempool_t pool;
- unsigned int page_order;
- unsigned int crit_factor;
- struct time_stats time;
- };
- void bch_bset_sort_state_free(struct bset_sort_state *state);
- int bch_bset_sort_state_init(struct bset_sort_state *state,
- unsigned int page_order);
- void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
- void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
- struct bset_sort_state *state);
- void bch_btree_sort_and_fix_extents(struct btree_keys *b,
- struct btree_iter *iter,
- struct bset_sort_state *state);
- void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
- struct bset_sort_state *state);
- static inline void bch_btree_sort(struct btree_keys *b,
- struct bset_sort_state *state)
- {
- bch_btree_sort_partial(b, 0, state);
- }
- struct bset_stats {
- size_t sets_written, sets_unwritten;
- size_t bytes_written, bytes_unwritten;
- size_t floats, failed;
- };
- void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
- /* Bkey utility code */
- #define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, \
- (unsigned int)(i)->keys)
- static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
- {
- return bkey_idx(i->start, idx);
- }
- static inline void bkey_init(struct bkey *k)
- {
- *k = ZERO_KEY;
- }
- static __always_inline int64_t bkey_cmp(const struct bkey *l,
- const struct bkey *r)
- {
- return unlikely(KEY_INODE(l) != KEY_INODE(r))
- ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
- : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
- }
- void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
- unsigned int i);
- bool __bch_cut_front(const struct bkey *where, struct bkey *k);
- bool __bch_cut_back(const struct bkey *where, struct bkey *k);
- static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
- {
- BUG_ON(bkey_cmp(where, k) > 0);
- return __bch_cut_front(where, k);
- }
- static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
- {
- BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
- return __bch_cut_back(where, k);
- }
- /*
- * Pointer '*preceding_key_p' points to a memory object to store preceding
- * key of k. If the preceding key does not exist, set '*preceding_key_p' to
- * NULL. So the caller of preceding_key() needs to take care of memory
- * which '*preceding_key_p' pointed to before calling preceding_key().
- * Currently the only caller of preceding_key() is bch_btree_insert_key(),
- * and it points to an on-stack variable, so the memory release is handled
- * by stackframe itself.
- */
- static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
- {
- if (KEY_INODE(k) || KEY_OFFSET(k)) {
- (**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
- if (!(*preceding_key_p)->low)
- (*preceding_key_p)->high--;
- (*preceding_key_p)->low--;
- } else {
- (*preceding_key_p) = NULL;
- }
- }
- static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
- {
- return b->ops->key_invalid(b, k);
- }
- static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
- {
- return b->ops->key_bad(b, k);
- }
- static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
- size_t size, const struct bkey *k)
- {
- return b->ops->key_to_text(buf, size, k);
- }
- static inline bool bch_bkey_equal_header(const struct bkey *l,
- const struct bkey *r)
- {
- return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
- KEY_PTRS(l) == KEY_PTRS(r) &&
- KEY_CSUM(l) == KEY_CSUM(r));
- }
- /* Keylists */
- struct keylist {
- union {
- struct bkey *keys;
- uint64_t *keys_p;
- };
- union {
- struct bkey *top;
- uint64_t *top_p;
- };
- /* Enough room for btree_split's keys without realloc */
- #define KEYLIST_INLINE 16
- uint64_t inline_keys[KEYLIST_INLINE];
- };
- static inline void bch_keylist_init(struct keylist *l)
- {
- l->top_p = l->keys_p = l->inline_keys;
- }
- static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
- {
- l->keys = k;
- l->top = bkey_next(k);
- }
- static inline void bch_keylist_push(struct keylist *l)
- {
- l->top = bkey_next(l->top);
- }
- static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
- {
- bkey_copy(l->top, k);
- bch_keylist_push(l);
- }
- static inline bool bch_keylist_empty(struct keylist *l)
- {
- return l->top == l->keys;
- }
- static inline void bch_keylist_reset(struct keylist *l)
- {
- l->top = l->keys;
- }
- static inline void bch_keylist_free(struct keylist *l)
- {
- if (l->keys_p != l->inline_keys)
- kfree(l->keys_p);
- }
- static inline size_t bch_keylist_nkeys(struct keylist *l)
- {
- return l->top_p - l->keys_p;
- }
- static inline size_t bch_keylist_bytes(struct keylist *l)
- {
- return bch_keylist_nkeys(l) * sizeof(uint64_t);
- }
- struct bkey *bch_keylist_pop(struct keylist *l);
- void bch_keylist_pop_front(struct keylist *l);
- int __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
- /* Debug stuff */
- #ifdef CONFIG_BCACHE_DEBUG
- int __bch_count_data(struct btree_keys *b);
- void __printf(2, 3) __bch_check_keys(struct btree_keys *b,
- const char *fmt,
- ...);
- void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
- void bch_dump_bucket(struct btree_keys *b);
- #else
- static inline int __bch_count_data(struct btree_keys *b) { return -1; }
- static inline void __printf(2, 3)
- __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
- static inline void bch_dump_bucket(struct btree_keys *b) {}
- void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
- #endif
- static inline bool btree_keys_expensive_checks(struct btree_keys *b)
- {
- #ifdef CONFIG_BCACHE_DEBUG
- return *b->expensive_debug_checks;
- #else
- return false;
- #endif
- }
- static inline int bch_count_data(struct btree_keys *b)
- {
- return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
- }
- #define bch_check_keys(b, ...) \
- do { \
- if (btree_keys_expensive_checks(b)) \
- __bch_check_keys(b, __VA_ARGS__); \
- } while (0)
- #endif
|