vmalloc.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/notifier.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/radix-tree.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/pfn.h>
  28. #include <linux/kmemleak.h>
  29. #include <linux/atomic.h>
  30. #include <linux/compiler.h>
  31. #include <linux/llist.h>
  32. #include <linux/bitops.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/shmparam.h>
  36. #include "internal.h"
  37. struct vfree_deferred {
  38. struct llist_head list;
  39. struct work_struct wq;
  40. };
  41. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42. static void __vunmap(const void *, int);
  43. static void free_work(struct work_struct *w)
  44. {
  45. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  46. struct llist_node *llnode = llist_del_all(&p->list);
  47. while (llnode) {
  48. void *p = llnode;
  49. llnode = llist_next(llnode);
  50. __vunmap(p, 1);
  51. }
  52. }
  53. /*** Page table manipulation functions ***/
  54. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  55. {
  56. pte_t *pte;
  57. pte = pte_offset_kernel(pmd, addr);
  58. do {
  59. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  60. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  61. } while (pte++, addr += PAGE_SIZE, addr != end);
  62. }
  63. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  64. {
  65. pmd_t *pmd;
  66. unsigned long next;
  67. pmd = pmd_offset(pud, addr);
  68. do {
  69. next = pmd_addr_end(addr, end);
  70. if (pmd_clear_huge(pmd))
  71. continue;
  72. if (pmd_none_or_clear_bad(pmd))
  73. continue;
  74. vunmap_pte_range(pmd, addr, next);
  75. } while (pmd++, addr = next, addr != end);
  76. }
  77. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  78. {
  79. pud_t *pud;
  80. unsigned long next;
  81. pud = pud_offset(pgd, addr);
  82. do {
  83. next = pud_addr_end(addr, end);
  84. if (pud_clear_huge(pud))
  85. continue;
  86. if (pud_none_or_clear_bad(pud))
  87. continue;
  88. vunmap_pmd_range(pud, addr, next);
  89. } while (pud++, addr = next, addr != end);
  90. }
  91. static void vunmap_page_range(unsigned long addr, unsigned long end)
  92. {
  93. pgd_t *pgd;
  94. unsigned long next;
  95. BUG_ON(addr >= end);
  96. pgd = pgd_offset_k(addr);
  97. do {
  98. next = pgd_addr_end(addr, end);
  99. if (pgd_none_or_clear_bad(pgd))
  100. continue;
  101. vunmap_pud_range(pgd, addr, next);
  102. } while (pgd++, addr = next, addr != end);
  103. }
  104. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  105. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  106. {
  107. pte_t *pte;
  108. /*
  109. * nr is a running index into the array which helps higher level
  110. * callers keep track of where we're up to.
  111. */
  112. pte = pte_alloc_kernel(pmd, addr);
  113. if (!pte)
  114. return -ENOMEM;
  115. do {
  116. struct page *page = pages[*nr];
  117. if (WARN_ON(!pte_none(*pte)))
  118. return -EBUSY;
  119. if (WARN_ON(!page))
  120. return -ENOMEM;
  121. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  122. (*nr)++;
  123. } while (pte++, addr += PAGE_SIZE, addr != end);
  124. return 0;
  125. }
  126. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  127. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  128. {
  129. pmd_t *pmd;
  130. unsigned long next;
  131. pmd = pmd_alloc(&init_mm, pud, addr);
  132. if (!pmd)
  133. return -ENOMEM;
  134. do {
  135. next = pmd_addr_end(addr, end);
  136. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  137. return -ENOMEM;
  138. } while (pmd++, addr = next, addr != end);
  139. return 0;
  140. }
  141. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  142. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  143. {
  144. pud_t *pud;
  145. unsigned long next;
  146. pud = pud_alloc(&init_mm, pgd, addr);
  147. if (!pud)
  148. return -ENOMEM;
  149. do {
  150. next = pud_addr_end(addr, end);
  151. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  152. return -ENOMEM;
  153. } while (pud++, addr = next, addr != end);
  154. return 0;
  155. }
  156. /*
  157. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  158. * will have pfns corresponding to the "pages" array.
  159. *
  160. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  161. */
  162. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  163. pgprot_t prot, struct page **pages)
  164. {
  165. pgd_t *pgd;
  166. unsigned long next;
  167. unsigned long addr = start;
  168. int err = 0;
  169. int nr = 0;
  170. BUG_ON(addr >= end);
  171. pgd = pgd_offset_k(addr);
  172. do {
  173. next = pgd_addr_end(addr, end);
  174. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  175. if (err)
  176. return err;
  177. } while (pgd++, addr = next, addr != end);
  178. return nr;
  179. }
  180. static int vmap_page_range(unsigned long start, unsigned long end,
  181. pgprot_t prot, struct page **pages)
  182. {
  183. int ret;
  184. ret = vmap_page_range_noflush(start, end, prot, pages);
  185. flush_cache_vmap(start, end);
  186. return ret;
  187. }
  188. int is_vmalloc_or_module_addr(const void *x)
  189. {
  190. /*
  191. * ARM, x86-64 and sparc64 put modules in a special place,
  192. * and fall back on vmalloc() if that fails. Others
  193. * just put it in the vmalloc space.
  194. */
  195. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  196. unsigned long addr = (unsigned long)x;
  197. if (addr >= MODULES_VADDR && addr < MODULES_END)
  198. return 1;
  199. #endif
  200. return is_vmalloc_addr(x);
  201. }
  202. /*
  203. * Walk a vmap address to the struct page it maps.
  204. */
  205. struct page *vmalloc_to_page(const void *vmalloc_addr)
  206. {
  207. unsigned long addr = (unsigned long) vmalloc_addr;
  208. struct page *page = NULL;
  209. pgd_t *pgd = pgd_offset_k(addr);
  210. /*
  211. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  212. * architectures that do not vmalloc module space
  213. */
  214. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  215. /*
  216. * Don't dereference bad PUD or PMD (below) entries. This will also
  217. * identify huge mappings, which we may encounter on architectures
  218. * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
  219. * identified as vmalloc addresses by is_vmalloc_addr(), but are
  220. * not [unambiguously] associated with a struct page, so there is
  221. * no correct value to return for them.
  222. */
  223. if (!pgd_none(*pgd)) {
  224. pud_t *pud = pud_offset(pgd, addr);
  225. WARN_ON_ONCE(pud_bad(*pud));
  226. if (!pud_none(*pud) && !pud_bad(*pud)) {
  227. pmd_t *pmd = pmd_offset(pud, addr);
  228. WARN_ON_ONCE(pmd_bad(*pmd));
  229. if (!pmd_none(*pmd) && !pmd_bad(*pmd)) {
  230. pte_t *ptep, pte;
  231. ptep = pte_offset_map(pmd, addr);
  232. pte = *ptep;
  233. if (pte_present(pte))
  234. page = pte_page(pte);
  235. pte_unmap(ptep);
  236. }
  237. }
  238. }
  239. return page;
  240. }
  241. EXPORT_SYMBOL(vmalloc_to_page);
  242. /*
  243. * Map a vmalloc()-space virtual address to the physical page frame number.
  244. */
  245. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  246. {
  247. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  248. }
  249. EXPORT_SYMBOL(vmalloc_to_pfn);
  250. /*** Global kva allocator ***/
  251. #define VM_VM_AREA 0x04
  252. static DEFINE_SPINLOCK(vmap_area_lock);
  253. /* Export for kexec only */
  254. LIST_HEAD(vmap_area_list);
  255. static LLIST_HEAD(vmap_purge_list);
  256. static struct rb_root vmap_area_root = RB_ROOT;
  257. /* The vmap cache globals are protected by vmap_area_lock */
  258. static struct rb_node *free_vmap_cache;
  259. static unsigned long cached_hole_size;
  260. static unsigned long cached_vstart;
  261. static unsigned long cached_align;
  262. static unsigned long vmap_area_pcpu_hole;
  263. static struct vmap_area *__find_vmap_area(unsigned long addr)
  264. {
  265. struct rb_node *n = vmap_area_root.rb_node;
  266. while (n) {
  267. struct vmap_area *va;
  268. va = rb_entry(n, struct vmap_area, rb_node);
  269. if (addr < va->va_start)
  270. n = n->rb_left;
  271. else if (addr >= va->va_end)
  272. n = n->rb_right;
  273. else
  274. return va;
  275. }
  276. return NULL;
  277. }
  278. static void __insert_vmap_area(struct vmap_area *va)
  279. {
  280. struct rb_node **p = &vmap_area_root.rb_node;
  281. struct rb_node *parent = NULL;
  282. struct rb_node *tmp;
  283. while (*p) {
  284. struct vmap_area *tmp_va;
  285. parent = *p;
  286. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  287. if (va->va_start < tmp_va->va_end)
  288. p = &(*p)->rb_left;
  289. else if (va->va_end > tmp_va->va_start)
  290. p = &(*p)->rb_right;
  291. else
  292. BUG();
  293. }
  294. rb_link_node(&va->rb_node, parent, p);
  295. rb_insert_color(&va->rb_node, &vmap_area_root);
  296. /* address-sort this list */
  297. tmp = rb_prev(&va->rb_node);
  298. if (tmp) {
  299. struct vmap_area *prev;
  300. prev = rb_entry(tmp, struct vmap_area, rb_node);
  301. list_add_rcu(&va->list, &prev->list);
  302. } else
  303. list_add_rcu(&va->list, &vmap_area_list);
  304. }
  305. static void purge_vmap_area_lazy(void);
  306. static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
  307. /*
  308. * Allocate a region of KVA of the specified size and alignment, within the
  309. * vstart and vend.
  310. */
  311. static struct vmap_area *alloc_vmap_area(unsigned long size,
  312. unsigned long align,
  313. unsigned long vstart, unsigned long vend,
  314. int node, gfp_t gfp_mask)
  315. {
  316. struct vmap_area *va;
  317. struct rb_node *n;
  318. unsigned long addr;
  319. int purged = 0;
  320. struct vmap_area *first;
  321. BUG_ON(!size);
  322. BUG_ON(offset_in_page(size));
  323. BUG_ON(!is_power_of_2(align));
  324. might_sleep_if(gfpflags_allow_blocking(gfp_mask));
  325. va = kmalloc_node(sizeof(struct vmap_area),
  326. gfp_mask & GFP_RECLAIM_MASK, node);
  327. if (unlikely(!va))
  328. return ERR_PTR(-ENOMEM);
  329. /*
  330. * Only scan the relevant parts containing pointers to other objects
  331. * to avoid false negatives.
  332. */
  333. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  334. retry:
  335. spin_lock(&vmap_area_lock);
  336. /*
  337. * Invalidate cache if we have more permissive parameters.
  338. * cached_hole_size notes the largest hole noticed _below_
  339. * the vmap_area cached in free_vmap_cache: if size fits
  340. * into that hole, we want to scan from vstart to reuse
  341. * the hole instead of allocating above free_vmap_cache.
  342. * Note that __free_vmap_area may update free_vmap_cache
  343. * without updating cached_hole_size or cached_align.
  344. */
  345. if (!free_vmap_cache ||
  346. size < cached_hole_size ||
  347. vstart < cached_vstart ||
  348. align < cached_align) {
  349. nocache:
  350. cached_hole_size = 0;
  351. free_vmap_cache = NULL;
  352. }
  353. /* record if we encounter less permissive parameters */
  354. cached_vstart = vstart;
  355. cached_align = align;
  356. /* find starting point for our search */
  357. if (free_vmap_cache) {
  358. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  359. addr = ALIGN(first->va_end, align);
  360. if (addr < vstart)
  361. goto nocache;
  362. if (addr + size < addr)
  363. goto overflow;
  364. } else {
  365. addr = ALIGN(vstart, align);
  366. if (addr + size < addr)
  367. goto overflow;
  368. n = vmap_area_root.rb_node;
  369. first = NULL;
  370. while (n) {
  371. struct vmap_area *tmp;
  372. tmp = rb_entry(n, struct vmap_area, rb_node);
  373. if (tmp->va_end >= addr) {
  374. first = tmp;
  375. if (tmp->va_start <= addr)
  376. break;
  377. n = n->rb_left;
  378. } else
  379. n = n->rb_right;
  380. }
  381. if (!first)
  382. goto found;
  383. }
  384. /* from the starting point, walk areas until a suitable hole is found */
  385. while (addr + size > first->va_start && addr + size <= vend) {
  386. if (addr + cached_hole_size < first->va_start)
  387. cached_hole_size = first->va_start - addr;
  388. addr = ALIGN(first->va_end, align);
  389. if (addr + size < addr)
  390. goto overflow;
  391. if (list_is_last(&first->list, &vmap_area_list))
  392. goto found;
  393. first = list_next_entry(first, list);
  394. }
  395. found:
  396. /*
  397. * Check also calculated address against the vstart,
  398. * because it can be 0 because of big align request.
  399. */
  400. if (addr + size > vend || addr < vstart)
  401. goto overflow;
  402. va->va_start = addr;
  403. va->va_end = addr + size;
  404. va->flags = 0;
  405. __insert_vmap_area(va);
  406. free_vmap_cache = &va->rb_node;
  407. spin_unlock(&vmap_area_lock);
  408. BUG_ON(!IS_ALIGNED(va->va_start, align));
  409. BUG_ON(va->va_start < vstart);
  410. BUG_ON(va->va_end > vend);
  411. return va;
  412. overflow:
  413. spin_unlock(&vmap_area_lock);
  414. if (!purged) {
  415. purge_vmap_area_lazy();
  416. purged = 1;
  417. goto retry;
  418. }
  419. if (gfpflags_allow_blocking(gfp_mask)) {
  420. unsigned long freed = 0;
  421. blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
  422. if (freed > 0) {
  423. purged = 0;
  424. goto retry;
  425. }
  426. }
  427. if (printk_ratelimit())
  428. pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
  429. size);
  430. kfree(va);
  431. return ERR_PTR(-EBUSY);
  432. }
  433. int register_vmap_purge_notifier(struct notifier_block *nb)
  434. {
  435. return blocking_notifier_chain_register(&vmap_notify_list, nb);
  436. }
  437. EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
  438. int unregister_vmap_purge_notifier(struct notifier_block *nb)
  439. {
  440. return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
  441. }
  442. EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
  443. static void __free_vmap_area(struct vmap_area *va)
  444. {
  445. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  446. if (free_vmap_cache) {
  447. if (va->va_end < cached_vstart) {
  448. free_vmap_cache = NULL;
  449. } else {
  450. struct vmap_area *cache;
  451. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  452. if (va->va_start <= cache->va_start) {
  453. free_vmap_cache = rb_prev(&va->rb_node);
  454. /*
  455. * We don't try to update cached_hole_size or
  456. * cached_align, but it won't go very wrong.
  457. */
  458. }
  459. }
  460. }
  461. rb_erase(&va->rb_node, &vmap_area_root);
  462. RB_CLEAR_NODE(&va->rb_node);
  463. list_del_rcu(&va->list);
  464. /*
  465. * Track the highest possible candidate for pcpu area
  466. * allocation. Areas outside of vmalloc area can be returned
  467. * here too, consider only end addresses which fall inside
  468. * vmalloc area proper.
  469. */
  470. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  471. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  472. kfree_rcu(va, rcu_head);
  473. }
  474. /*
  475. * Free a region of KVA allocated by alloc_vmap_area
  476. */
  477. static void free_vmap_area(struct vmap_area *va)
  478. {
  479. spin_lock(&vmap_area_lock);
  480. __free_vmap_area(va);
  481. spin_unlock(&vmap_area_lock);
  482. }
  483. /*
  484. * Clear the pagetable entries of a given vmap_area
  485. */
  486. static void unmap_vmap_area(struct vmap_area *va)
  487. {
  488. vunmap_page_range(va->va_start, va->va_end);
  489. }
  490. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  491. {
  492. /*
  493. * Unmap page tables and force a TLB flush immediately if pagealloc
  494. * debugging is enabled. This catches use after free bugs similarly to
  495. * those in linear kernel virtual address space after a page has been
  496. * freed.
  497. *
  498. * All the lazy freeing logic is still retained, in order to minimise
  499. * intrusiveness of this debugging feature.
  500. *
  501. * This is going to be *slow* (linear kernel virtual address debugging
  502. * doesn't do a broadcast TLB flush so it is a lot faster).
  503. */
  504. if (debug_pagealloc_enabled()) {
  505. vunmap_page_range(start, end);
  506. flush_tlb_kernel_range(start, end);
  507. }
  508. }
  509. /*
  510. * lazy_max_pages is the maximum amount of virtual address space we gather up
  511. * before attempting to purge with a TLB flush.
  512. *
  513. * There is a tradeoff here: a larger number will cover more kernel page tables
  514. * and take slightly longer to purge, but it will linearly reduce the number of
  515. * global TLB flushes that must be performed. It would seem natural to scale
  516. * this number up linearly with the number of CPUs (because vmapping activity
  517. * could also scale linearly with the number of CPUs), however it is likely
  518. * that in practice, workloads might be constrained in other ways that mean
  519. * vmap activity will not scale linearly with CPUs. Also, I want to be
  520. * conservative and not introduce a big latency on huge systems, so go with
  521. * a less aggressive log scale. It will still be an improvement over the old
  522. * code, and it will be simple to change the scale factor if we find that it
  523. * becomes a problem on bigger systems.
  524. */
  525. static unsigned long lazy_max_pages(void)
  526. {
  527. unsigned int log;
  528. log = fls(num_online_cpus());
  529. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  530. }
  531. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  532. /* for per-CPU blocks */
  533. static void purge_fragmented_blocks_allcpus(void);
  534. /*
  535. * called before a call to iounmap() if the caller wants vm_area_struct's
  536. * immediately freed.
  537. */
  538. void set_iounmap_nonlazy(void)
  539. {
  540. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  541. }
  542. /*
  543. * Purges all lazily-freed vmap areas.
  544. *
  545. * If sync is 0 then don't purge if there is already a purge in progress.
  546. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  547. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  548. * their own TLB flushing).
  549. * Returns with *start = min(*start, lowest purged address)
  550. * *end = max(*end, highest purged address)
  551. */
  552. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  553. int sync, int force_flush)
  554. {
  555. static DEFINE_SPINLOCK(purge_lock);
  556. struct llist_node *valist;
  557. struct vmap_area *va;
  558. struct vmap_area *n_va;
  559. int nr = 0;
  560. /*
  561. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  562. * should not expect such behaviour. This just simplifies locking for
  563. * the case that isn't actually used at the moment anyway.
  564. */
  565. if (!sync && !force_flush) {
  566. if (!spin_trylock(&purge_lock))
  567. return;
  568. } else
  569. spin_lock(&purge_lock);
  570. if (sync)
  571. purge_fragmented_blocks_allcpus();
  572. valist = llist_del_all(&vmap_purge_list);
  573. llist_for_each_entry(va, valist, purge_list) {
  574. if (va->va_start < *start)
  575. *start = va->va_start;
  576. if (va->va_end > *end)
  577. *end = va->va_end;
  578. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  579. }
  580. if (nr)
  581. atomic_sub(nr, &vmap_lazy_nr);
  582. if (nr || force_flush)
  583. flush_tlb_kernel_range(*start, *end);
  584. if (nr) {
  585. spin_lock(&vmap_area_lock);
  586. llist_for_each_entry_safe(va, n_va, valist, purge_list)
  587. __free_vmap_area(va);
  588. spin_unlock(&vmap_area_lock);
  589. }
  590. spin_unlock(&purge_lock);
  591. }
  592. /*
  593. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  594. * is already purging.
  595. */
  596. static void try_purge_vmap_area_lazy(void)
  597. {
  598. unsigned long start = ULONG_MAX, end = 0;
  599. __purge_vmap_area_lazy(&start, &end, 0, 0);
  600. }
  601. /*
  602. * Kick off a purge of the outstanding lazy areas.
  603. */
  604. static void purge_vmap_area_lazy(void)
  605. {
  606. unsigned long start = ULONG_MAX, end = 0;
  607. __purge_vmap_area_lazy(&start, &end, 1, 0);
  608. }
  609. /*
  610. * Free a vmap area, caller ensuring that the area has been unmapped
  611. * and flush_cache_vunmap had been called for the correct range
  612. * previously.
  613. */
  614. static void free_vmap_area_noflush(struct vmap_area *va)
  615. {
  616. int nr_lazy;
  617. nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
  618. &vmap_lazy_nr);
  619. /* After this point, we may free va at any time */
  620. llist_add(&va->purge_list, &vmap_purge_list);
  621. if (unlikely(nr_lazy > lazy_max_pages()))
  622. try_purge_vmap_area_lazy();
  623. }
  624. /*
  625. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  626. * called for the correct range previously.
  627. */
  628. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  629. {
  630. unmap_vmap_area(va);
  631. free_vmap_area_noflush(va);
  632. }
  633. /*
  634. * Free and unmap a vmap area
  635. */
  636. static void free_unmap_vmap_area(struct vmap_area *va)
  637. {
  638. flush_cache_vunmap(va->va_start, va->va_end);
  639. free_unmap_vmap_area_noflush(va);
  640. }
  641. static struct vmap_area *find_vmap_area(unsigned long addr)
  642. {
  643. struct vmap_area *va;
  644. spin_lock(&vmap_area_lock);
  645. va = __find_vmap_area(addr);
  646. spin_unlock(&vmap_area_lock);
  647. return va;
  648. }
  649. static void free_unmap_vmap_area_addr(unsigned long addr)
  650. {
  651. struct vmap_area *va;
  652. va = find_vmap_area(addr);
  653. BUG_ON(!va);
  654. free_unmap_vmap_area(va);
  655. }
  656. /*** Per cpu kva allocator ***/
  657. /*
  658. * vmap space is limited especially on 32 bit architectures. Ensure there is
  659. * room for at least 16 percpu vmap blocks per CPU.
  660. */
  661. /*
  662. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  663. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  664. * instead (we just need a rough idea)
  665. */
  666. #if BITS_PER_LONG == 32
  667. #define VMALLOC_SPACE (128UL*1024*1024)
  668. #else
  669. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  670. #endif
  671. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  672. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  673. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  674. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  675. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  676. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  677. #define VMAP_BBMAP_BITS \
  678. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  679. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  680. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  681. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  682. static bool vmap_initialized __read_mostly = false;
  683. struct vmap_block_queue {
  684. spinlock_t lock;
  685. struct list_head free;
  686. };
  687. struct vmap_block {
  688. spinlock_t lock;
  689. struct vmap_area *va;
  690. unsigned long free, dirty;
  691. unsigned long dirty_min, dirty_max; /*< dirty range */
  692. struct list_head free_list;
  693. struct rcu_head rcu_head;
  694. struct list_head purge;
  695. };
  696. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  697. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  698. /*
  699. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  700. * in the free path. Could get rid of this if we change the API to return a
  701. * "cookie" from alloc, to be passed to free. But no big deal yet.
  702. */
  703. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  704. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  705. /*
  706. * We should probably have a fallback mechanism to allocate virtual memory
  707. * out of partially filled vmap blocks. However vmap block sizing should be
  708. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  709. * big problem.
  710. */
  711. static unsigned long addr_to_vb_idx(unsigned long addr)
  712. {
  713. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  714. addr /= VMAP_BLOCK_SIZE;
  715. return addr;
  716. }
  717. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  718. {
  719. unsigned long addr;
  720. addr = va_start + (pages_off << PAGE_SHIFT);
  721. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  722. return (void *)addr;
  723. }
  724. /**
  725. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  726. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  727. * @order: how many 2^order pages should be occupied in newly allocated block
  728. * @gfp_mask: flags for the page level allocator
  729. *
  730. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  731. */
  732. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  733. {
  734. struct vmap_block_queue *vbq;
  735. struct vmap_block *vb;
  736. struct vmap_area *va;
  737. unsigned long vb_idx;
  738. int node, err;
  739. void *vaddr;
  740. node = numa_node_id();
  741. vb = kmalloc_node(sizeof(struct vmap_block),
  742. gfp_mask & GFP_RECLAIM_MASK, node);
  743. if (unlikely(!vb))
  744. return ERR_PTR(-ENOMEM);
  745. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  746. VMALLOC_START, VMALLOC_END,
  747. node, gfp_mask);
  748. if (IS_ERR(va)) {
  749. kfree(vb);
  750. return ERR_CAST(va);
  751. }
  752. err = radix_tree_preload(gfp_mask);
  753. if (unlikely(err)) {
  754. kfree(vb);
  755. free_vmap_area(va);
  756. return ERR_PTR(err);
  757. }
  758. vaddr = vmap_block_vaddr(va->va_start, 0);
  759. spin_lock_init(&vb->lock);
  760. vb->va = va;
  761. /* At least something should be left free */
  762. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  763. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  764. vb->dirty = 0;
  765. vb->dirty_min = VMAP_BBMAP_BITS;
  766. vb->dirty_max = 0;
  767. INIT_LIST_HEAD(&vb->free_list);
  768. vb_idx = addr_to_vb_idx(va->va_start);
  769. spin_lock(&vmap_block_tree_lock);
  770. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  771. spin_unlock(&vmap_block_tree_lock);
  772. BUG_ON(err);
  773. radix_tree_preload_end();
  774. vbq = &get_cpu_var(vmap_block_queue);
  775. spin_lock(&vbq->lock);
  776. list_add_tail_rcu(&vb->free_list, &vbq->free);
  777. spin_unlock(&vbq->lock);
  778. put_cpu_var(vmap_block_queue);
  779. return vaddr;
  780. }
  781. static void free_vmap_block(struct vmap_block *vb)
  782. {
  783. struct vmap_block *tmp;
  784. unsigned long vb_idx;
  785. vb_idx = addr_to_vb_idx(vb->va->va_start);
  786. spin_lock(&vmap_block_tree_lock);
  787. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  788. spin_unlock(&vmap_block_tree_lock);
  789. BUG_ON(tmp != vb);
  790. free_vmap_area_noflush(vb->va);
  791. kfree_rcu(vb, rcu_head);
  792. }
  793. static void purge_fragmented_blocks(int cpu)
  794. {
  795. LIST_HEAD(purge);
  796. struct vmap_block *vb;
  797. struct vmap_block *n_vb;
  798. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  799. rcu_read_lock();
  800. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  801. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  802. continue;
  803. spin_lock(&vb->lock);
  804. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  805. vb->free = 0; /* prevent further allocs after releasing lock */
  806. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  807. vb->dirty_min = 0;
  808. vb->dirty_max = VMAP_BBMAP_BITS;
  809. spin_lock(&vbq->lock);
  810. list_del_rcu(&vb->free_list);
  811. spin_unlock(&vbq->lock);
  812. spin_unlock(&vb->lock);
  813. list_add_tail(&vb->purge, &purge);
  814. } else
  815. spin_unlock(&vb->lock);
  816. }
  817. rcu_read_unlock();
  818. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  819. list_del(&vb->purge);
  820. free_vmap_block(vb);
  821. }
  822. }
  823. static void purge_fragmented_blocks_allcpus(void)
  824. {
  825. int cpu;
  826. for_each_possible_cpu(cpu)
  827. purge_fragmented_blocks(cpu);
  828. }
  829. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  830. {
  831. struct vmap_block_queue *vbq;
  832. struct vmap_block *vb;
  833. void *vaddr = NULL;
  834. unsigned int order;
  835. BUG_ON(offset_in_page(size));
  836. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  837. if (WARN_ON(size == 0)) {
  838. /*
  839. * Allocating 0 bytes isn't what caller wants since
  840. * get_order(0) returns funny result. Just warn and terminate
  841. * early.
  842. */
  843. return NULL;
  844. }
  845. order = get_order(size);
  846. rcu_read_lock();
  847. vbq = &get_cpu_var(vmap_block_queue);
  848. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  849. unsigned long pages_off;
  850. spin_lock(&vb->lock);
  851. if (vb->free < (1UL << order)) {
  852. spin_unlock(&vb->lock);
  853. continue;
  854. }
  855. pages_off = VMAP_BBMAP_BITS - vb->free;
  856. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  857. vb->free -= 1UL << order;
  858. if (vb->free == 0) {
  859. spin_lock(&vbq->lock);
  860. list_del_rcu(&vb->free_list);
  861. spin_unlock(&vbq->lock);
  862. }
  863. spin_unlock(&vb->lock);
  864. break;
  865. }
  866. put_cpu_var(vmap_block_queue);
  867. rcu_read_unlock();
  868. /* Allocate new block if nothing was found */
  869. if (!vaddr)
  870. vaddr = new_vmap_block(order, gfp_mask);
  871. return vaddr;
  872. }
  873. static void vb_free(const void *addr, unsigned long size)
  874. {
  875. unsigned long offset;
  876. unsigned long vb_idx;
  877. unsigned int order;
  878. struct vmap_block *vb;
  879. BUG_ON(offset_in_page(size));
  880. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  881. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  882. order = get_order(size);
  883. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  884. offset >>= PAGE_SHIFT;
  885. vb_idx = addr_to_vb_idx((unsigned long)addr);
  886. rcu_read_lock();
  887. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  888. rcu_read_unlock();
  889. BUG_ON(!vb);
  890. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  891. spin_lock(&vb->lock);
  892. /* Expand dirty range */
  893. vb->dirty_min = min(vb->dirty_min, offset);
  894. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  895. vb->dirty += 1UL << order;
  896. if (vb->dirty == VMAP_BBMAP_BITS) {
  897. BUG_ON(vb->free);
  898. spin_unlock(&vb->lock);
  899. free_vmap_block(vb);
  900. } else
  901. spin_unlock(&vb->lock);
  902. }
  903. /**
  904. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  905. *
  906. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  907. * to amortize TLB flushing overheads. What this means is that any page you
  908. * have now, may, in a former life, have been mapped into kernel virtual
  909. * address by the vmap layer and so there might be some CPUs with TLB entries
  910. * still referencing that page (additional to the regular 1:1 kernel mapping).
  911. *
  912. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  913. * be sure that none of the pages we have control over will have any aliases
  914. * from the vmap layer.
  915. */
  916. void vm_unmap_aliases(void)
  917. {
  918. unsigned long start = ULONG_MAX, end = 0;
  919. int cpu;
  920. int flush = 0;
  921. if (unlikely(!vmap_initialized))
  922. return;
  923. for_each_possible_cpu(cpu) {
  924. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  925. struct vmap_block *vb;
  926. rcu_read_lock();
  927. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  928. spin_lock(&vb->lock);
  929. if (vb->dirty) {
  930. unsigned long va_start = vb->va->va_start;
  931. unsigned long s, e;
  932. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  933. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  934. start = min(s, start);
  935. end = max(e, end);
  936. flush = 1;
  937. }
  938. spin_unlock(&vb->lock);
  939. }
  940. rcu_read_unlock();
  941. }
  942. __purge_vmap_area_lazy(&start, &end, 1, flush);
  943. }
  944. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  945. /**
  946. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  947. * @mem: the pointer returned by vm_map_ram
  948. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  949. */
  950. void vm_unmap_ram(const void *mem, unsigned int count)
  951. {
  952. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  953. unsigned long addr = (unsigned long)mem;
  954. BUG_ON(!addr);
  955. BUG_ON(addr < VMALLOC_START);
  956. BUG_ON(addr > VMALLOC_END);
  957. BUG_ON(!PAGE_ALIGNED(addr));
  958. debug_check_no_locks_freed(mem, size);
  959. vmap_debug_free_range(addr, addr+size);
  960. if (likely(count <= VMAP_MAX_ALLOC))
  961. vb_free(mem, size);
  962. else
  963. free_unmap_vmap_area_addr(addr);
  964. }
  965. EXPORT_SYMBOL(vm_unmap_ram);
  966. /**
  967. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  968. * @pages: an array of pointers to the pages to be mapped
  969. * @count: number of pages
  970. * @node: prefer to allocate data structures on this node
  971. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  972. *
  973. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  974. * faster than vmap so it's good. But if you mix long-life and short-life
  975. * objects with vm_map_ram(), it could consume lots of address space through
  976. * fragmentation (especially on a 32bit machine). You could see failures in
  977. * the end. Please use this function for short-lived objects.
  978. *
  979. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  980. */
  981. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  982. {
  983. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  984. unsigned long addr;
  985. void *mem;
  986. if (likely(count <= VMAP_MAX_ALLOC)) {
  987. mem = vb_alloc(size, GFP_KERNEL);
  988. if (IS_ERR(mem))
  989. return NULL;
  990. addr = (unsigned long)mem;
  991. } else {
  992. struct vmap_area *va;
  993. va = alloc_vmap_area(size, PAGE_SIZE,
  994. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  995. if (IS_ERR(va))
  996. return NULL;
  997. addr = va->va_start;
  998. mem = (void *)addr;
  999. }
  1000. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  1001. vm_unmap_ram(mem, count);
  1002. return NULL;
  1003. }
  1004. return mem;
  1005. }
  1006. EXPORT_SYMBOL(vm_map_ram);
  1007. static struct vm_struct *vmlist __initdata;
  1008. /**
  1009. * vm_area_add_early - add vmap area early during boot
  1010. * @vm: vm_struct to add
  1011. *
  1012. * This function is used to add fixed kernel vm area to vmlist before
  1013. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1014. * should contain proper values and the other fields should be zero.
  1015. *
  1016. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1017. */
  1018. void __init vm_area_add_early(struct vm_struct *vm)
  1019. {
  1020. struct vm_struct *tmp, **p;
  1021. BUG_ON(vmap_initialized);
  1022. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1023. if (tmp->addr >= vm->addr) {
  1024. BUG_ON(tmp->addr < vm->addr + vm->size);
  1025. break;
  1026. } else
  1027. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1028. }
  1029. vm->next = *p;
  1030. *p = vm;
  1031. }
  1032. /**
  1033. * vm_area_register_early - register vmap area early during boot
  1034. * @vm: vm_struct to register
  1035. * @align: requested alignment
  1036. *
  1037. * This function is used to register kernel vm area before
  1038. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1039. * proper values on entry and other fields should be zero. On return,
  1040. * vm->addr contains the allocated address.
  1041. *
  1042. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1043. */
  1044. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1045. {
  1046. static size_t vm_init_off __initdata;
  1047. unsigned long addr;
  1048. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1049. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1050. vm->addr = (void *)addr;
  1051. vm_area_add_early(vm);
  1052. }
  1053. void __init vmalloc_init(void)
  1054. {
  1055. struct vmap_area *va;
  1056. struct vm_struct *tmp;
  1057. int i;
  1058. for_each_possible_cpu(i) {
  1059. struct vmap_block_queue *vbq;
  1060. struct vfree_deferred *p;
  1061. vbq = &per_cpu(vmap_block_queue, i);
  1062. spin_lock_init(&vbq->lock);
  1063. INIT_LIST_HEAD(&vbq->free);
  1064. p = &per_cpu(vfree_deferred, i);
  1065. init_llist_head(&p->list);
  1066. INIT_WORK(&p->wq, free_work);
  1067. }
  1068. /* Import existing vmlist entries. */
  1069. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1070. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1071. va->flags = VM_VM_AREA;
  1072. va->va_start = (unsigned long)tmp->addr;
  1073. va->va_end = va->va_start + tmp->size;
  1074. va->vm = tmp;
  1075. __insert_vmap_area(va);
  1076. }
  1077. vmap_area_pcpu_hole = VMALLOC_END;
  1078. vmap_initialized = true;
  1079. }
  1080. /**
  1081. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1082. * @addr: start of the VM area to map
  1083. * @size: size of the VM area to map
  1084. * @prot: page protection flags to use
  1085. * @pages: pages to map
  1086. *
  1087. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1088. * specify should have been allocated using get_vm_area() and its
  1089. * friends.
  1090. *
  1091. * NOTE:
  1092. * This function does NOT do any cache flushing. The caller is
  1093. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1094. * before calling this function.
  1095. *
  1096. * RETURNS:
  1097. * The number of pages mapped on success, -errno on failure.
  1098. */
  1099. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1100. pgprot_t prot, struct page **pages)
  1101. {
  1102. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1103. }
  1104. /**
  1105. * unmap_kernel_range_noflush - unmap kernel VM area
  1106. * @addr: start of the VM area to unmap
  1107. * @size: size of the VM area to unmap
  1108. *
  1109. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1110. * specify should have been allocated using get_vm_area() and its
  1111. * friends.
  1112. *
  1113. * NOTE:
  1114. * This function does NOT do any cache flushing. The caller is
  1115. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1116. * before calling this function and flush_tlb_kernel_range() after.
  1117. */
  1118. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1119. {
  1120. vunmap_page_range(addr, addr + size);
  1121. }
  1122. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1123. /**
  1124. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1125. * @addr: start of the VM area to unmap
  1126. * @size: size of the VM area to unmap
  1127. *
  1128. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1129. * the unmapping and tlb after.
  1130. */
  1131. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1132. {
  1133. unsigned long end = addr + size;
  1134. flush_cache_vunmap(addr, end);
  1135. vunmap_page_range(addr, end);
  1136. flush_tlb_kernel_range(addr, end);
  1137. }
  1138. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1139. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1140. {
  1141. unsigned long addr = (unsigned long)area->addr;
  1142. unsigned long end = addr + get_vm_area_size(area);
  1143. int err;
  1144. err = vmap_page_range(addr, end, prot, pages);
  1145. return err > 0 ? 0 : err;
  1146. }
  1147. EXPORT_SYMBOL_GPL(map_vm_area);
  1148. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1149. unsigned long flags, const void *caller)
  1150. {
  1151. spin_lock(&vmap_area_lock);
  1152. vm->flags = flags;
  1153. vm->addr = (void *)va->va_start;
  1154. vm->size = va->va_end - va->va_start;
  1155. vm->caller = caller;
  1156. va->vm = vm;
  1157. va->flags |= VM_VM_AREA;
  1158. spin_unlock(&vmap_area_lock);
  1159. }
  1160. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1161. {
  1162. /*
  1163. * Before removing VM_UNINITIALIZED,
  1164. * we should make sure that vm has proper values.
  1165. * Pair with smp_rmb() in show_numa_info().
  1166. */
  1167. smp_wmb();
  1168. vm->flags &= ~VM_UNINITIALIZED;
  1169. }
  1170. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1171. unsigned long align, unsigned long flags, unsigned long start,
  1172. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1173. {
  1174. struct vmap_area *va;
  1175. struct vm_struct *area;
  1176. BUG_ON(in_interrupt());
  1177. size = PAGE_ALIGN(size);
  1178. if (unlikely(!size))
  1179. return NULL;
  1180. if (flags & VM_IOREMAP)
  1181. align = 1ul << clamp_t(int, get_count_order_long(size),
  1182. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1183. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1184. if (unlikely(!area))
  1185. return NULL;
  1186. if (!(flags & VM_NO_GUARD))
  1187. size += PAGE_SIZE;
  1188. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1189. if (IS_ERR(va)) {
  1190. kfree(area);
  1191. return NULL;
  1192. }
  1193. setup_vmalloc_vm(area, va, flags, caller);
  1194. return area;
  1195. }
  1196. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1197. unsigned long start, unsigned long end)
  1198. {
  1199. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1200. GFP_KERNEL, __builtin_return_address(0));
  1201. }
  1202. EXPORT_SYMBOL_GPL(__get_vm_area);
  1203. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1204. unsigned long start, unsigned long end,
  1205. const void *caller)
  1206. {
  1207. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1208. GFP_KERNEL, caller);
  1209. }
  1210. /**
  1211. * get_vm_area - reserve a contiguous kernel virtual area
  1212. * @size: size of the area
  1213. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1214. *
  1215. * Search an area of @size in the kernel virtual mapping area,
  1216. * and reserved it for out purposes. Returns the area descriptor
  1217. * on success or %NULL on failure.
  1218. */
  1219. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1220. {
  1221. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1222. NUMA_NO_NODE, GFP_KERNEL,
  1223. __builtin_return_address(0));
  1224. }
  1225. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1226. const void *caller)
  1227. {
  1228. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1229. NUMA_NO_NODE, GFP_KERNEL, caller);
  1230. }
  1231. /**
  1232. * find_vm_area - find a continuous kernel virtual area
  1233. * @addr: base address
  1234. *
  1235. * Search for the kernel VM area starting at @addr, and return it.
  1236. * It is up to the caller to do all required locking to keep the returned
  1237. * pointer valid.
  1238. */
  1239. struct vm_struct *find_vm_area(const void *addr)
  1240. {
  1241. struct vmap_area *va;
  1242. va = find_vmap_area((unsigned long)addr);
  1243. if (va && va->flags & VM_VM_AREA)
  1244. return va->vm;
  1245. return NULL;
  1246. }
  1247. /**
  1248. * remove_vm_area - find and remove a continuous kernel virtual area
  1249. * @addr: base address
  1250. *
  1251. * Search for the kernel VM area starting at @addr, and remove it.
  1252. * This function returns the found VM area, but using it is NOT safe
  1253. * on SMP machines, except for its size or flags.
  1254. */
  1255. struct vm_struct *remove_vm_area(const void *addr)
  1256. {
  1257. struct vmap_area *va;
  1258. va = find_vmap_area((unsigned long)addr);
  1259. if (va && va->flags & VM_VM_AREA) {
  1260. struct vm_struct *vm = va->vm;
  1261. spin_lock(&vmap_area_lock);
  1262. va->vm = NULL;
  1263. va->flags &= ~VM_VM_AREA;
  1264. spin_unlock(&vmap_area_lock);
  1265. vmap_debug_free_range(va->va_start, va->va_end);
  1266. kasan_free_shadow(vm);
  1267. free_unmap_vmap_area(va);
  1268. return vm;
  1269. }
  1270. return NULL;
  1271. }
  1272. static void __vunmap(const void *addr, int deallocate_pages)
  1273. {
  1274. struct vm_struct *area;
  1275. if (!addr)
  1276. return;
  1277. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1278. addr))
  1279. return;
  1280. area = find_vmap_area((unsigned long)addr)->vm;
  1281. if (unlikely(!area)) {
  1282. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1283. addr);
  1284. return;
  1285. }
  1286. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1287. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1288. remove_vm_area(addr);
  1289. if (deallocate_pages) {
  1290. int i;
  1291. for (i = 0; i < area->nr_pages; i++) {
  1292. struct page *page = area->pages[i];
  1293. BUG_ON(!page);
  1294. __free_pages(page, 0);
  1295. }
  1296. kvfree(area->pages);
  1297. }
  1298. kfree(area);
  1299. return;
  1300. }
  1301. /**
  1302. * vfree - release memory allocated by vmalloc()
  1303. * @addr: memory base address
  1304. *
  1305. * Free the virtually continuous memory area starting at @addr, as
  1306. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1307. * NULL, no operation is performed.
  1308. *
  1309. * Must not be called in NMI context (strictly speaking, only if we don't
  1310. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1311. * conventions for vfree() arch-depenedent would be a really bad idea)
  1312. *
  1313. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1314. */
  1315. void vfree(const void *addr)
  1316. {
  1317. BUG_ON(in_nmi());
  1318. kmemleak_free(addr);
  1319. if (!addr)
  1320. return;
  1321. if (unlikely(in_interrupt())) {
  1322. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1323. if (llist_add((struct llist_node *)addr, &p->list))
  1324. schedule_work(&p->wq);
  1325. } else
  1326. __vunmap(addr, 1);
  1327. }
  1328. EXPORT_SYMBOL(vfree);
  1329. /**
  1330. * vunmap - release virtual mapping obtained by vmap()
  1331. * @addr: memory base address
  1332. *
  1333. * Free the virtually contiguous memory area starting at @addr,
  1334. * which was created from the page array passed to vmap().
  1335. *
  1336. * Must not be called in interrupt context.
  1337. */
  1338. void vunmap(const void *addr)
  1339. {
  1340. BUG_ON(in_interrupt());
  1341. might_sleep();
  1342. if (addr)
  1343. __vunmap(addr, 0);
  1344. }
  1345. EXPORT_SYMBOL(vunmap);
  1346. /**
  1347. * vmap - map an array of pages into virtually contiguous space
  1348. * @pages: array of page pointers
  1349. * @count: number of pages to map
  1350. * @flags: vm_area->flags
  1351. * @prot: page protection for the mapping
  1352. *
  1353. * Maps @count pages from @pages into contiguous kernel virtual
  1354. * space.
  1355. */
  1356. void *vmap(struct page **pages, unsigned int count,
  1357. unsigned long flags, pgprot_t prot)
  1358. {
  1359. struct vm_struct *area;
  1360. unsigned long size; /* In bytes */
  1361. might_sleep();
  1362. if (count > totalram_pages)
  1363. return NULL;
  1364. size = (unsigned long)count << PAGE_SHIFT;
  1365. area = get_vm_area_caller(size, flags, __builtin_return_address(0));
  1366. if (!area)
  1367. return NULL;
  1368. if (map_vm_area(area, prot, pages)) {
  1369. vunmap(area->addr);
  1370. return NULL;
  1371. }
  1372. return area->addr;
  1373. }
  1374. EXPORT_SYMBOL(vmap);
  1375. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1376. gfp_t gfp_mask, pgprot_t prot,
  1377. int node, const void *caller);
  1378. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1379. pgprot_t prot, int node)
  1380. {
  1381. struct page **pages;
  1382. unsigned int nr_pages, array_size, i;
  1383. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1384. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1385. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1386. array_size = (nr_pages * sizeof(struct page *));
  1387. area->nr_pages = nr_pages;
  1388. /* Please note that the recursion is strictly bounded. */
  1389. if (array_size > PAGE_SIZE) {
  1390. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1391. PAGE_KERNEL, node, area->caller);
  1392. } else {
  1393. pages = kmalloc_node(array_size, nested_gfp, node);
  1394. }
  1395. area->pages = pages;
  1396. if (!area->pages) {
  1397. remove_vm_area(area->addr);
  1398. kfree(area);
  1399. return NULL;
  1400. }
  1401. for (i = 0; i < area->nr_pages; i++) {
  1402. struct page *page;
  1403. if (node == NUMA_NO_NODE)
  1404. page = alloc_page(alloc_mask);
  1405. else
  1406. page = alloc_pages_node(node, alloc_mask, 0);
  1407. if (unlikely(!page)) {
  1408. /* Successfully allocated i pages, free them in __vunmap() */
  1409. area->nr_pages = i;
  1410. goto fail;
  1411. }
  1412. area->pages[i] = page;
  1413. if (gfpflags_allow_blocking(gfp_mask))
  1414. cond_resched();
  1415. }
  1416. if (map_vm_area(area, prot, pages))
  1417. goto fail;
  1418. return area->addr;
  1419. fail:
  1420. warn_alloc(gfp_mask,
  1421. "vmalloc: allocation failure, allocated %ld of %ld bytes",
  1422. (area->nr_pages*PAGE_SIZE), area->size);
  1423. vfree(area->addr);
  1424. return NULL;
  1425. }
  1426. /**
  1427. * __vmalloc_node_range - allocate virtually contiguous memory
  1428. * @size: allocation size
  1429. * @align: desired alignment
  1430. * @start: vm area range start
  1431. * @end: vm area range end
  1432. * @gfp_mask: flags for the page level allocator
  1433. * @prot: protection mask for the allocated pages
  1434. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1435. * @node: node to use for allocation or NUMA_NO_NODE
  1436. * @caller: caller's return address
  1437. *
  1438. * Allocate enough pages to cover @size from the page level
  1439. * allocator with @gfp_mask flags. Map them into contiguous
  1440. * kernel virtual space, using a pagetable protection of @prot.
  1441. */
  1442. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1443. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1444. pgprot_t prot, unsigned long vm_flags, int node,
  1445. const void *caller)
  1446. {
  1447. struct vm_struct *area;
  1448. void *addr;
  1449. unsigned long real_size = size;
  1450. size = PAGE_ALIGN(size);
  1451. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1452. goto fail;
  1453. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1454. vm_flags, start, end, node, gfp_mask, caller);
  1455. if (!area)
  1456. goto fail;
  1457. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1458. if (!addr)
  1459. return NULL;
  1460. /*
  1461. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1462. * flag. It means that vm_struct is not fully initialized.
  1463. * Now, it is fully initialized, so remove this flag here.
  1464. */
  1465. clear_vm_uninitialized_flag(area);
  1466. /*
  1467. * A ref_count = 2 is needed because vm_struct allocated in
  1468. * __get_vm_area_node() contains a reference to the virtual address of
  1469. * the vmalloc'ed block.
  1470. */
  1471. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1472. return addr;
  1473. fail:
  1474. warn_alloc(gfp_mask,
  1475. "vmalloc: allocation failure: %lu bytes", real_size);
  1476. return NULL;
  1477. }
  1478. /**
  1479. * __vmalloc_node - allocate virtually contiguous memory
  1480. * @size: allocation size
  1481. * @align: desired alignment
  1482. * @gfp_mask: flags for the page level allocator
  1483. * @prot: protection mask for the allocated pages
  1484. * @node: node to use for allocation or NUMA_NO_NODE
  1485. * @caller: caller's return address
  1486. *
  1487. * Allocate enough pages to cover @size from the page level
  1488. * allocator with @gfp_mask flags. Map them into contiguous
  1489. * kernel virtual space, using a pagetable protection of @prot.
  1490. */
  1491. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1492. gfp_t gfp_mask, pgprot_t prot,
  1493. int node, const void *caller)
  1494. {
  1495. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1496. gfp_mask, prot, 0, node, caller);
  1497. }
  1498. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1499. {
  1500. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1501. __builtin_return_address(0));
  1502. }
  1503. EXPORT_SYMBOL(__vmalloc);
  1504. static inline void *__vmalloc_node_flags(unsigned long size,
  1505. int node, gfp_t flags)
  1506. {
  1507. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1508. node, __builtin_return_address(0));
  1509. }
  1510. /**
  1511. * vmalloc - allocate virtually contiguous memory
  1512. * @size: allocation size
  1513. * Allocate enough pages to cover @size from the page level
  1514. * allocator and map them into contiguous kernel virtual space.
  1515. *
  1516. * For tight control over page level allocator and protection flags
  1517. * use __vmalloc() instead.
  1518. */
  1519. void *vmalloc(unsigned long size)
  1520. {
  1521. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1522. GFP_KERNEL | __GFP_HIGHMEM);
  1523. }
  1524. EXPORT_SYMBOL(vmalloc);
  1525. /**
  1526. * vzalloc - allocate virtually contiguous memory with zero fill
  1527. * @size: allocation size
  1528. * Allocate enough pages to cover @size from the page level
  1529. * allocator and map them into contiguous kernel virtual space.
  1530. * The memory allocated is set to zero.
  1531. *
  1532. * For tight control over page level allocator and protection flags
  1533. * use __vmalloc() instead.
  1534. */
  1535. void *vzalloc(unsigned long size)
  1536. {
  1537. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1538. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1539. }
  1540. EXPORT_SYMBOL(vzalloc);
  1541. /**
  1542. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1543. * @size: allocation size
  1544. *
  1545. * The resulting memory area is zeroed so it can be mapped to userspace
  1546. * without leaking data.
  1547. */
  1548. void *vmalloc_user(unsigned long size)
  1549. {
  1550. struct vm_struct *area;
  1551. void *ret;
  1552. ret = __vmalloc_node(size, SHMLBA,
  1553. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1554. PAGE_KERNEL, NUMA_NO_NODE,
  1555. __builtin_return_address(0));
  1556. if (ret) {
  1557. area = find_vm_area(ret);
  1558. area->flags |= VM_USERMAP;
  1559. }
  1560. return ret;
  1561. }
  1562. EXPORT_SYMBOL(vmalloc_user);
  1563. /**
  1564. * vmalloc_node - allocate memory on a specific node
  1565. * @size: allocation size
  1566. * @node: numa node
  1567. *
  1568. * Allocate enough pages to cover @size from the page level
  1569. * allocator and map them into contiguous kernel virtual space.
  1570. *
  1571. * For tight control over page level allocator and protection flags
  1572. * use __vmalloc() instead.
  1573. */
  1574. void *vmalloc_node(unsigned long size, int node)
  1575. {
  1576. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1577. node, __builtin_return_address(0));
  1578. }
  1579. EXPORT_SYMBOL(vmalloc_node);
  1580. /**
  1581. * vzalloc_node - allocate memory on a specific node with zero fill
  1582. * @size: allocation size
  1583. * @node: numa node
  1584. *
  1585. * Allocate enough pages to cover @size from the page level
  1586. * allocator and map them into contiguous kernel virtual space.
  1587. * The memory allocated is set to zero.
  1588. *
  1589. * For tight control over page level allocator and protection flags
  1590. * use __vmalloc_node() instead.
  1591. */
  1592. void *vzalloc_node(unsigned long size, int node)
  1593. {
  1594. return __vmalloc_node_flags(size, node,
  1595. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1596. }
  1597. EXPORT_SYMBOL(vzalloc_node);
  1598. #ifndef PAGE_KERNEL_EXEC
  1599. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1600. #endif
  1601. /**
  1602. * vmalloc_exec - allocate virtually contiguous, executable memory
  1603. * @size: allocation size
  1604. *
  1605. * Kernel-internal function to allocate enough pages to cover @size
  1606. * the page level allocator and map them into contiguous and
  1607. * executable kernel virtual space.
  1608. *
  1609. * For tight control over page level allocator and protection flags
  1610. * use __vmalloc() instead.
  1611. */
  1612. void *vmalloc_exec(unsigned long size)
  1613. {
  1614. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1615. NUMA_NO_NODE, __builtin_return_address(0));
  1616. }
  1617. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1618. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1619. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1620. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1621. #else
  1622. #define GFP_VMALLOC32 GFP_KERNEL
  1623. #endif
  1624. /**
  1625. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1626. * @size: allocation size
  1627. *
  1628. * Allocate enough 32bit PA addressable pages to cover @size from the
  1629. * page level allocator and map them into contiguous kernel virtual space.
  1630. */
  1631. void *vmalloc_32(unsigned long size)
  1632. {
  1633. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1634. NUMA_NO_NODE, __builtin_return_address(0));
  1635. }
  1636. EXPORT_SYMBOL(vmalloc_32);
  1637. /**
  1638. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1639. * @size: allocation size
  1640. *
  1641. * The resulting memory area is 32bit addressable and zeroed so it can be
  1642. * mapped to userspace without leaking data.
  1643. */
  1644. void *vmalloc_32_user(unsigned long size)
  1645. {
  1646. struct vm_struct *area;
  1647. void *ret;
  1648. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1649. NUMA_NO_NODE, __builtin_return_address(0));
  1650. if (ret) {
  1651. area = find_vm_area(ret);
  1652. area->flags |= VM_USERMAP;
  1653. }
  1654. return ret;
  1655. }
  1656. EXPORT_SYMBOL(vmalloc_32_user);
  1657. /*
  1658. * small helper routine , copy contents to buf from addr.
  1659. * If the page is not present, fill zero.
  1660. */
  1661. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1662. {
  1663. struct page *p;
  1664. int copied = 0;
  1665. while (count) {
  1666. unsigned long offset, length;
  1667. offset = offset_in_page(addr);
  1668. length = PAGE_SIZE - offset;
  1669. if (length > count)
  1670. length = count;
  1671. p = vmalloc_to_page(addr);
  1672. /*
  1673. * To do safe access to this _mapped_ area, we need
  1674. * lock. But adding lock here means that we need to add
  1675. * overhead of vmalloc()/vfree() calles for this _debug_
  1676. * interface, rarely used. Instead of that, we'll use
  1677. * kmap() and get small overhead in this access function.
  1678. */
  1679. if (p) {
  1680. /*
  1681. * we can expect USER0 is not used (see vread/vwrite's
  1682. * function description)
  1683. */
  1684. void *map = kmap_atomic(p);
  1685. memcpy(buf, map + offset, length);
  1686. kunmap_atomic(map);
  1687. } else
  1688. memset(buf, 0, length);
  1689. addr += length;
  1690. buf += length;
  1691. copied += length;
  1692. count -= length;
  1693. }
  1694. return copied;
  1695. }
  1696. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1697. {
  1698. struct page *p;
  1699. int copied = 0;
  1700. while (count) {
  1701. unsigned long offset, length;
  1702. offset = offset_in_page(addr);
  1703. length = PAGE_SIZE - offset;
  1704. if (length > count)
  1705. length = count;
  1706. p = vmalloc_to_page(addr);
  1707. /*
  1708. * To do safe access to this _mapped_ area, we need
  1709. * lock. But adding lock here means that we need to add
  1710. * overhead of vmalloc()/vfree() calles for this _debug_
  1711. * interface, rarely used. Instead of that, we'll use
  1712. * kmap() and get small overhead in this access function.
  1713. */
  1714. if (p) {
  1715. /*
  1716. * we can expect USER0 is not used (see vread/vwrite's
  1717. * function description)
  1718. */
  1719. void *map = kmap_atomic(p);
  1720. memcpy(map + offset, buf, length);
  1721. kunmap_atomic(map);
  1722. }
  1723. addr += length;
  1724. buf += length;
  1725. copied += length;
  1726. count -= length;
  1727. }
  1728. return copied;
  1729. }
  1730. /**
  1731. * vread() - read vmalloc area in a safe way.
  1732. * @buf: buffer for reading data
  1733. * @addr: vm address.
  1734. * @count: number of bytes to be read.
  1735. *
  1736. * Returns # of bytes which addr and buf should be increased.
  1737. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1738. * includes any intersect with alive vmalloc area.
  1739. *
  1740. * This function checks that addr is a valid vmalloc'ed area, and
  1741. * copy data from that area to a given buffer. If the given memory range
  1742. * of [addr...addr+count) includes some valid address, data is copied to
  1743. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1744. * IOREMAP area is treated as memory hole and no copy is done.
  1745. *
  1746. * If [addr...addr+count) doesn't includes any intersects with alive
  1747. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1748. *
  1749. * Note: In usual ops, vread() is never necessary because the caller
  1750. * should know vmalloc() area is valid and can use memcpy().
  1751. * This is for routines which have to access vmalloc area without
  1752. * any informaion, as /dev/kmem.
  1753. *
  1754. */
  1755. long vread(char *buf, char *addr, unsigned long count)
  1756. {
  1757. struct vmap_area *va;
  1758. struct vm_struct *vm;
  1759. char *vaddr, *buf_start = buf;
  1760. unsigned long buflen = count;
  1761. unsigned long n;
  1762. /* Don't allow overflow */
  1763. if ((unsigned long) addr + count < count)
  1764. count = -(unsigned long) addr;
  1765. spin_lock(&vmap_area_lock);
  1766. list_for_each_entry(va, &vmap_area_list, list) {
  1767. if (!count)
  1768. break;
  1769. if (!(va->flags & VM_VM_AREA))
  1770. continue;
  1771. vm = va->vm;
  1772. vaddr = (char *) vm->addr;
  1773. if (addr >= vaddr + get_vm_area_size(vm))
  1774. continue;
  1775. while (addr < vaddr) {
  1776. if (count == 0)
  1777. goto finished;
  1778. *buf = '\0';
  1779. buf++;
  1780. addr++;
  1781. count--;
  1782. }
  1783. n = vaddr + get_vm_area_size(vm) - addr;
  1784. if (n > count)
  1785. n = count;
  1786. if (!(vm->flags & VM_IOREMAP))
  1787. aligned_vread(buf, addr, n);
  1788. else /* IOREMAP area is treated as memory hole */
  1789. memset(buf, 0, n);
  1790. buf += n;
  1791. addr += n;
  1792. count -= n;
  1793. }
  1794. finished:
  1795. spin_unlock(&vmap_area_lock);
  1796. if (buf == buf_start)
  1797. return 0;
  1798. /* zero-fill memory holes */
  1799. if (buf != buf_start + buflen)
  1800. memset(buf, 0, buflen - (buf - buf_start));
  1801. return buflen;
  1802. }
  1803. /**
  1804. * vwrite() - write vmalloc area in a safe way.
  1805. * @buf: buffer for source data
  1806. * @addr: vm address.
  1807. * @count: number of bytes to be read.
  1808. *
  1809. * Returns # of bytes which addr and buf should be incresed.
  1810. * (same number to @count).
  1811. * If [addr...addr+count) doesn't includes any intersect with valid
  1812. * vmalloc area, returns 0.
  1813. *
  1814. * This function checks that addr is a valid vmalloc'ed area, and
  1815. * copy data from a buffer to the given addr. If specified range of
  1816. * [addr...addr+count) includes some valid address, data is copied from
  1817. * proper area of @buf. If there are memory holes, no copy to hole.
  1818. * IOREMAP area is treated as memory hole and no copy is done.
  1819. *
  1820. * If [addr...addr+count) doesn't includes any intersects with alive
  1821. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1822. *
  1823. * Note: In usual ops, vwrite() is never necessary because the caller
  1824. * should know vmalloc() area is valid and can use memcpy().
  1825. * This is for routines which have to access vmalloc area without
  1826. * any informaion, as /dev/kmem.
  1827. */
  1828. long vwrite(char *buf, char *addr, unsigned long count)
  1829. {
  1830. struct vmap_area *va;
  1831. struct vm_struct *vm;
  1832. char *vaddr;
  1833. unsigned long n, buflen;
  1834. int copied = 0;
  1835. /* Don't allow overflow */
  1836. if ((unsigned long) addr + count < count)
  1837. count = -(unsigned long) addr;
  1838. buflen = count;
  1839. spin_lock(&vmap_area_lock);
  1840. list_for_each_entry(va, &vmap_area_list, list) {
  1841. if (!count)
  1842. break;
  1843. if (!(va->flags & VM_VM_AREA))
  1844. continue;
  1845. vm = va->vm;
  1846. vaddr = (char *) vm->addr;
  1847. if (addr >= vaddr + get_vm_area_size(vm))
  1848. continue;
  1849. while (addr < vaddr) {
  1850. if (count == 0)
  1851. goto finished;
  1852. buf++;
  1853. addr++;
  1854. count--;
  1855. }
  1856. n = vaddr + get_vm_area_size(vm) - addr;
  1857. if (n > count)
  1858. n = count;
  1859. if (!(vm->flags & VM_IOREMAP)) {
  1860. aligned_vwrite(buf, addr, n);
  1861. copied++;
  1862. }
  1863. buf += n;
  1864. addr += n;
  1865. count -= n;
  1866. }
  1867. finished:
  1868. spin_unlock(&vmap_area_lock);
  1869. if (!copied)
  1870. return 0;
  1871. return buflen;
  1872. }
  1873. /**
  1874. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1875. * @vma: vma to cover
  1876. * @uaddr: target user address to start at
  1877. * @kaddr: virtual address of vmalloc kernel memory
  1878. * @size: size of map area
  1879. *
  1880. * Returns: 0 for success, -Exxx on failure
  1881. *
  1882. * This function checks that @kaddr is a valid vmalloc'ed area,
  1883. * and that it is big enough to cover the range starting at
  1884. * @uaddr in @vma. Will return failure if that criteria isn't
  1885. * met.
  1886. *
  1887. * Similar to remap_pfn_range() (see mm/memory.c)
  1888. */
  1889. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1890. void *kaddr, unsigned long size)
  1891. {
  1892. struct vm_struct *area;
  1893. size = PAGE_ALIGN(size);
  1894. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1895. return -EINVAL;
  1896. area = find_vm_area(kaddr);
  1897. if (!area)
  1898. return -EINVAL;
  1899. if (!(area->flags & VM_USERMAP))
  1900. return -EINVAL;
  1901. if (kaddr + size > area->addr + get_vm_area_size(area))
  1902. return -EINVAL;
  1903. do {
  1904. struct page *page = vmalloc_to_page(kaddr);
  1905. int ret;
  1906. ret = vm_insert_page(vma, uaddr, page);
  1907. if (ret)
  1908. return ret;
  1909. uaddr += PAGE_SIZE;
  1910. kaddr += PAGE_SIZE;
  1911. size -= PAGE_SIZE;
  1912. } while (size > 0);
  1913. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1914. return 0;
  1915. }
  1916. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1917. /**
  1918. * remap_vmalloc_range - map vmalloc pages to userspace
  1919. * @vma: vma to cover (map full range of vma)
  1920. * @addr: vmalloc memory
  1921. * @pgoff: number of pages into addr before first page to map
  1922. *
  1923. * Returns: 0 for success, -Exxx on failure
  1924. *
  1925. * This function checks that addr is a valid vmalloc'ed area, and
  1926. * that it is big enough to cover the vma. Will return failure if
  1927. * that criteria isn't met.
  1928. *
  1929. * Similar to remap_pfn_range() (see mm/memory.c)
  1930. */
  1931. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1932. unsigned long pgoff)
  1933. {
  1934. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1935. addr + (pgoff << PAGE_SHIFT),
  1936. vma->vm_end - vma->vm_start);
  1937. }
  1938. EXPORT_SYMBOL(remap_vmalloc_range);
  1939. /*
  1940. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1941. * have one.
  1942. */
  1943. void __weak vmalloc_sync_all(void)
  1944. {
  1945. }
  1946. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1947. {
  1948. pte_t ***p = data;
  1949. if (p) {
  1950. *(*p) = pte;
  1951. (*p)++;
  1952. }
  1953. return 0;
  1954. }
  1955. /**
  1956. * alloc_vm_area - allocate a range of kernel address space
  1957. * @size: size of the area
  1958. * @ptes: returns the PTEs for the address space
  1959. *
  1960. * Returns: NULL on failure, vm_struct on success
  1961. *
  1962. * This function reserves a range of kernel address space, and
  1963. * allocates pagetables to map that range. No actual mappings
  1964. * are created.
  1965. *
  1966. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1967. * allocated for the VM area are returned.
  1968. */
  1969. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1970. {
  1971. struct vm_struct *area;
  1972. area = get_vm_area_caller(size, VM_IOREMAP,
  1973. __builtin_return_address(0));
  1974. if (area == NULL)
  1975. return NULL;
  1976. /*
  1977. * This ensures that page tables are constructed for this region
  1978. * of kernel virtual address space and mapped into init_mm.
  1979. */
  1980. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1981. size, f, ptes ? &ptes : NULL)) {
  1982. free_vm_area(area);
  1983. return NULL;
  1984. }
  1985. return area;
  1986. }
  1987. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1988. void free_vm_area(struct vm_struct *area)
  1989. {
  1990. struct vm_struct *ret;
  1991. ret = remove_vm_area(area->addr);
  1992. BUG_ON(ret != area);
  1993. kfree(area);
  1994. }
  1995. EXPORT_SYMBOL_GPL(free_vm_area);
  1996. #ifdef CONFIG_SMP
  1997. static struct vmap_area *node_to_va(struct rb_node *n)
  1998. {
  1999. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  2000. }
  2001. /**
  2002. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  2003. * @end: target address
  2004. * @pnext: out arg for the next vmap_area
  2005. * @pprev: out arg for the previous vmap_area
  2006. *
  2007. * Returns: %true if either or both of next and prev are found,
  2008. * %false if no vmap_area exists
  2009. *
  2010. * Find vmap_areas end addresses of which enclose @end. ie. if not
  2011. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  2012. */
  2013. static bool pvm_find_next_prev(unsigned long end,
  2014. struct vmap_area **pnext,
  2015. struct vmap_area **pprev)
  2016. {
  2017. struct rb_node *n = vmap_area_root.rb_node;
  2018. struct vmap_area *va = NULL;
  2019. while (n) {
  2020. va = rb_entry(n, struct vmap_area, rb_node);
  2021. if (end < va->va_end)
  2022. n = n->rb_left;
  2023. else if (end > va->va_end)
  2024. n = n->rb_right;
  2025. else
  2026. break;
  2027. }
  2028. if (!va)
  2029. return false;
  2030. if (va->va_end > end) {
  2031. *pnext = va;
  2032. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2033. } else {
  2034. *pprev = va;
  2035. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2036. }
  2037. return true;
  2038. }
  2039. /**
  2040. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2041. * @pnext: in/out arg for the next vmap_area
  2042. * @pprev: in/out arg for the previous vmap_area
  2043. * @align: alignment
  2044. *
  2045. * Returns: determined end address
  2046. *
  2047. * Find the highest aligned address between *@pnext and *@pprev below
  2048. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2049. * down address is between the end addresses of the two vmap_areas.
  2050. *
  2051. * Please note that the address returned by this function may fall
  2052. * inside *@pnext vmap_area. The caller is responsible for checking
  2053. * that.
  2054. */
  2055. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2056. struct vmap_area **pprev,
  2057. unsigned long align)
  2058. {
  2059. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2060. unsigned long addr;
  2061. if (*pnext)
  2062. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2063. else
  2064. addr = vmalloc_end;
  2065. while (*pprev && (*pprev)->va_end > addr) {
  2066. *pnext = *pprev;
  2067. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2068. }
  2069. return addr;
  2070. }
  2071. /**
  2072. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2073. * @offsets: array containing offset of each area
  2074. * @sizes: array containing size of each area
  2075. * @nr_vms: the number of areas to allocate
  2076. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2077. *
  2078. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2079. * vm_structs on success, %NULL on failure
  2080. *
  2081. * Percpu allocator wants to use congruent vm areas so that it can
  2082. * maintain the offsets among percpu areas. This function allocates
  2083. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2084. * be scattered pretty far, distance between two areas easily going up
  2085. * to gigabytes. To avoid interacting with regular vmallocs, these
  2086. * areas are allocated from top.
  2087. *
  2088. * Despite its complicated look, this allocator is rather simple. It
  2089. * does everything top-down and scans areas from the end looking for
  2090. * matching slot. While scanning, if any of the areas overlaps with
  2091. * existing vmap_area, the base address is pulled down to fit the
  2092. * area. Scanning is repeated till all the areas fit and then all
  2093. * necessary data structres are inserted and the result is returned.
  2094. */
  2095. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2096. const size_t *sizes, int nr_vms,
  2097. size_t align)
  2098. {
  2099. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2100. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2101. struct vmap_area **vas, *prev, *next;
  2102. struct vm_struct **vms;
  2103. int area, area2, last_area, term_area;
  2104. unsigned long base, start, end, last_end;
  2105. bool purged = false;
  2106. /* verify parameters and allocate data structures */
  2107. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2108. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2109. start = offsets[area];
  2110. end = start + sizes[area];
  2111. /* is everything aligned properly? */
  2112. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2113. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2114. /* detect the area with the highest address */
  2115. if (start > offsets[last_area])
  2116. last_area = area;
  2117. for (area2 = 0; area2 < nr_vms; area2++) {
  2118. unsigned long start2 = offsets[area2];
  2119. unsigned long end2 = start2 + sizes[area2];
  2120. if (area2 == area)
  2121. continue;
  2122. BUG_ON(start2 >= start && start2 < end);
  2123. BUG_ON(end2 <= end && end2 > start);
  2124. }
  2125. }
  2126. last_end = offsets[last_area] + sizes[last_area];
  2127. if (vmalloc_end - vmalloc_start < last_end) {
  2128. WARN_ON(true);
  2129. return NULL;
  2130. }
  2131. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2132. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2133. if (!vas || !vms)
  2134. goto err_free2;
  2135. for (area = 0; area < nr_vms; area++) {
  2136. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2137. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2138. if (!vas[area] || !vms[area])
  2139. goto err_free;
  2140. }
  2141. retry:
  2142. spin_lock(&vmap_area_lock);
  2143. /* start scanning - we scan from the top, begin with the last area */
  2144. area = term_area = last_area;
  2145. start = offsets[area];
  2146. end = start + sizes[area];
  2147. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2148. base = vmalloc_end - last_end;
  2149. goto found;
  2150. }
  2151. base = pvm_determine_end(&next, &prev, align) - end;
  2152. while (true) {
  2153. BUG_ON(next && next->va_end <= base + end);
  2154. BUG_ON(prev && prev->va_end > base + end);
  2155. /*
  2156. * base might have underflowed, add last_end before
  2157. * comparing.
  2158. */
  2159. if (base + last_end < vmalloc_start + last_end) {
  2160. spin_unlock(&vmap_area_lock);
  2161. if (!purged) {
  2162. purge_vmap_area_lazy();
  2163. purged = true;
  2164. goto retry;
  2165. }
  2166. goto err_free;
  2167. }
  2168. /*
  2169. * If next overlaps, move base downwards so that it's
  2170. * right below next and then recheck.
  2171. */
  2172. if (next && next->va_start < base + end) {
  2173. base = pvm_determine_end(&next, &prev, align) - end;
  2174. term_area = area;
  2175. continue;
  2176. }
  2177. /*
  2178. * If prev overlaps, shift down next and prev and move
  2179. * base so that it's right below new next and then
  2180. * recheck.
  2181. */
  2182. if (prev && prev->va_end > base + start) {
  2183. next = prev;
  2184. prev = node_to_va(rb_prev(&next->rb_node));
  2185. base = pvm_determine_end(&next, &prev, align) - end;
  2186. term_area = area;
  2187. continue;
  2188. }
  2189. /*
  2190. * This area fits, move on to the previous one. If
  2191. * the previous one is the terminal one, we're done.
  2192. */
  2193. area = (area + nr_vms - 1) % nr_vms;
  2194. if (area == term_area)
  2195. break;
  2196. start = offsets[area];
  2197. end = start + sizes[area];
  2198. pvm_find_next_prev(base + end, &next, &prev);
  2199. }
  2200. found:
  2201. /* we've found a fitting base, insert all va's */
  2202. for (area = 0; area < nr_vms; area++) {
  2203. struct vmap_area *va = vas[area];
  2204. va->va_start = base + offsets[area];
  2205. va->va_end = va->va_start + sizes[area];
  2206. __insert_vmap_area(va);
  2207. }
  2208. vmap_area_pcpu_hole = base + offsets[last_area];
  2209. spin_unlock(&vmap_area_lock);
  2210. /* insert all vm's */
  2211. for (area = 0; area < nr_vms; area++)
  2212. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2213. pcpu_get_vm_areas);
  2214. kfree(vas);
  2215. return vms;
  2216. err_free:
  2217. for (area = 0; area < nr_vms; area++) {
  2218. kfree(vas[area]);
  2219. kfree(vms[area]);
  2220. }
  2221. err_free2:
  2222. kfree(vas);
  2223. kfree(vms);
  2224. return NULL;
  2225. }
  2226. /**
  2227. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2228. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2229. * @nr_vms: the number of allocated areas
  2230. *
  2231. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2232. */
  2233. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2234. {
  2235. int i;
  2236. for (i = 0; i < nr_vms; i++)
  2237. free_vm_area(vms[i]);
  2238. kfree(vms);
  2239. }
  2240. #endif /* CONFIG_SMP */
  2241. #ifdef CONFIG_PROC_FS
  2242. static void *s_start(struct seq_file *m, loff_t *pos)
  2243. __acquires(&vmap_area_lock)
  2244. {
  2245. loff_t n = *pos;
  2246. struct vmap_area *va;
  2247. spin_lock(&vmap_area_lock);
  2248. va = list_first_entry(&vmap_area_list, typeof(*va), list);
  2249. while (n > 0 && &va->list != &vmap_area_list) {
  2250. n--;
  2251. va = list_next_entry(va, list);
  2252. }
  2253. if (!n && &va->list != &vmap_area_list)
  2254. return va;
  2255. return NULL;
  2256. }
  2257. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2258. {
  2259. struct vmap_area *va = p, *next;
  2260. ++*pos;
  2261. next = list_next_entry(va, list);
  2262. if (&next->list != &vmap_area_list)
  2263. return next;
  2264. return NULL;
  2265. }
  2266. static void s_stop(struct seq_file *m, void *p)
  2267. __releases(&vmap_area_lock)
  2268. {
  2269. spin_unlock(&vmap_area_lock);
  2270. }
  2271. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2272. {
  2273. if (IS_ENABLED(CONFIG_NUMA)) {
  2274. unsigned int nr, *counters = m->private;
  2275. if (!counters)
  2276. return;
  2277. if (v->flags & VM_UNINITIALIZED)
  2278. return;
  2279. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2280. smp_rmb();
  2281. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2282. for (nr = 0; nr < v->nr_pages; nr++)
  2283. counters[page_to_nid(v->pages[nr])]++;
  2284. for_each_node_state(nr, N_HIGH_MEMORY)
  2285. if (counters[nr])
  2286. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2287. }
  2288. }
  2289. static int s_show(struct seq_file *m, void *p)
  2290. {
  2291. struct vmap_area *va = p;
  2292. struct vm_struct *v;
  2293. /*
  2294. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2295. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2296. */
  2297. if (!(va->flags & VM_VM_AREA))
  2298. return 0;
  2299. v = va->vm;
  2300. seq_printf(m, "0x%pK-0x%pK %7ld",
  2301. v->addr, v->addr + v->size, v->size);
  2302. if (v->caller)
  2303. seq_printf(m, " %pS", v->caller);
  2304. if (v->nr_pages)
  2305. seq_printf(m, " pages=%d", v->nr_pages);
  2306. if (v->phys_addr)
  2307. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2308. if (v->flags & VM_IOREMAP)
  2309. seq_puts(m, " ioremap");
  2310. if (v->flags & VM_ALLOC)
  2311. seq_puts(m, " vmalloc");
  2312. if (v->flags & VM_MAP)
  2313. seq_puts(m, " vmap");
  2314. if (v->flags & VM_USERMAP)
  2315. seq_puts(m, " user");
  2316. if (is_vmalloc_addr(v->pages))
  2317. seq_puts(m, " vpages");
  2318. show_numa_info(m, v);
  2319. seq_putc(m, '\n');
  2320. return 0;
  2321. }
  2322. static const struct seq_operations vmalloc_op = {
  2323. .start = s_start,
  2324. .next = s_next,
  2325. .stop = s_stop,
  2326. .show = s_show,
  2327. };
  2328. static int vmalloc_open(struct inode *inode, struct file *file)
  2329. {
  2330. if (IS_ENABLED(CONFIG_NUMA))
  2331. return seq_open_private(file, &vmalloc_op,
  2332. nr_node_ids * sizeof(unsigned int));
  2333. else
  2334. return seq_open(file, &vmalloc_op);
  2335. }
  2336. static const struct file_operations proc_vmalloc_operations = {
  2337. .open = vmalloc_open,
  2338. .read = seq_read,
  2339. .llseek = seq_lseek,
  2340. .release = seq_release_private,
  2341. };
  2342. static int __init proc_vmalloc_init(void)
  2343. {
  2344. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2345. return 0;
  2346. }
  2347. module_init(proc_vmalloc_init);
  2348. #endif