page_ext.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. #include <linux/page_owner.h>
  9. #include <linux/page_idle.h>
  10. /*
  11. * struct page extension
  12. *
  13. * This is the feature to manage memory for extended data per page.
  14. *
  15. * Until now, we must modify struct page itself to store extra data per page.
  16. * This requires rebuilding the kernel and it is really time consuming process.
  17. * And, sometimes, rebuild is impossible due to third party module dependency.
  18. * At last, enlarging struct page could cause un-wanted system behaviour change.
  19. *
  20. * This feature is intended to overcome above mentioned problems. This feature
  21. * allocates memory for extended data per page in certain place rather than
  22. * the struct page itself. This memory can be accessed by the accessor
  23. * functions provided by this code. During the boot process, it checks whether
  24. * allocation of huge chunk of memory is needed or not. If not, it avoids
  25. * allocating memory at all. With this advantage, we can include this feature
  26. * into the kernel in default and can avoid rebuild and solve related problems.
  27. *
  28. * To help these things to work well, there are two callbacks for clients. One
  29. * is the need callback which is mandatory if user wants to avoid useless
  30. * memory allocation at boot-time. The other is optional, init callback, which
  31. * is used to do proper initialization after memory is allocated.
  32. *
  33. * The need callback is used to decide whether extended memory allocation is
  34. * needed or not. Sometimes users want to deactivate some features in this
  35. * boot and extra memory would be unneccessary. In this case, to avoid
  36. * allocating huge chunk of memory, each clients represent their need of
  37. * extra memory through the need callback. If one of the need callbacks
  38. * returns true, it means that someone needs extra memory so that
  39. * page extension core should allocates memory for page extension. If
  40. * none of need callbacks return true, memory isn't needed at all in this boot
  41. * and page extension core can skip to allocate memory. As result,
  42. * none of memory is wasted.
  43. *
  44. * When need callback returns true, page_ext checks if there is a request for
  45. * extra memory through size in struct page_ext_operations. If it is non-zero,
  46. * extra space is allocated for each page_ext entry and offset is returned to
  47. * user through offset in struct page_ext_operations.
  48. *
  49. * The init callback is used to do proper initialization after page extension
  50. * is completely initialized. In sparse memory system, extra memory is
  51. * allocated some time later than memmap is allocated. In other words, lifetime
  52. * of memory for page extension isn't same with memmap for struct page.
  53. * Therefore, clients can't store extra data until page extension is
  54. * initialized, even if pages are allocated and used freely. This could
  55. * cause inadequate state of extra data per page, so, to prevent it, client
  56. * can utilize this callback to initialize the state of it correctly.
  57. */
  58. static struct page_ext_operations *page_ext_ops[] = {
  59. &debug_guardpage_ops,
  60. #ifdef CONFIG_PAGE_POISONING
  61. &page_poisoning_ops,
  62. #endif
  63. #ifdef CONFIG_PAGE_OWNER
  64. &page_owner_ops,
  65. #endif
  66. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  67. &page_idle_ops,
  68. #endif
  69. };
  70. static unsigned long total_usage;
  71. static unsigned long extra_mem;
  72. static bool __init invoke_need_callbacks(void)
  73. {
  74. int i;
  75. int entries = ARRAY_SIZE(page_ext_ops);
  76. bool need = false;
  77. for (i = 0; i < entries; i++) {
  78. if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  79. page_ext_ops[i]->offset = sizeof(struct page_ext) +
  80. extra_mem;
  81. extra_mem += page_ext_ops[i]->size;
  82. need = true;
  83. }
  84. }
  85. return need;
  86. }
  87. static void __init invoke_init_callbacks(void)
  88. {
  89. int i;
  90. int entries = ARRAY_SIZE(page_ext_ops);
  91. for (i = 0; i < entries; i++) {
  92. if (page_ext_ops[i]->init)
  93. page_ext_ops[i]->init();
  94. }
  95. }
  96. static unsigned long get_entry_size(void)
  97. {
  98. return sizeof(struct page_ext) + extra_mem;
  99. }
  100. static inline struct page_ext *get_entry(void *base, unsigned long index)
  101. {
  102. return base + get_entry_size() * index;
  103. }
  104. #if !defined(CONFIG_SPARSEMEM)
  105. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  106. {
  107. pgdat->node_page_ext = NULL;
  108. }
  109. struct page_ext *lookup_page_ext(struct page *page)
  110. {
  111. unsigned long pfn = page_to_pfn(page);
  112. unsigned long index;
  113. struct page_ext *base;
  114. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  115. #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
  116. /*
  117. * The sanity checks the page allocator does upon freeing a
  118. * page can reach here before the page_ext arrays are
  119. * allocated when feeding a range of pages to the allocator
  120. * for the first time during bootup or memory hotplug.
  121. *
  122. * This check is also necessary for ensuring page poisoning
  123. * works as expected when enabled
  124. */
  125. if (unlikely(!base))
  126. return NULL;
  127. #endif
  128. index = pfn - round_down(node_start_pfn(page_to_nid(page)),
  129. MAX_ORDER_NR_PAGES);
  130. return get_entry(base, index);
  131. }
  132. static int __init alloc_node_page_ext(int nid)
  133. {
  134. struct page_ext *base;
  135. unsigned long table_size;
  136. unsigned long nr_pages;
  137. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  138. if (!nr_pages)
  139. return 0;
  140. /*
  141. * Need extra space if node range is not aligned with
  142. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  143. * checks buddy's status, range could be out of exact node range.
  144. */
  145. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  146. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  147. nr_pages += MAX_ORDER_NR_PAGES;
  148. table_size = get_entry_size() * nr_pages;
  149. base = memblock_virt_alloc_try_nid_nopanic(
  150. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  151. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  152. if (!base)
  153. return -ENOMEM;
  154. NODE_DATA(nid)->node_page_ext = base;
  155. total_usage += table_size;
  156. return 0;
  157. }
  158. void __init page_ext_init_flatmem(void)
  159. {
  160. int nid, fail;
  161. if (!invoke_need_callbacks())
  162. return;
  163. for_each_online_node(nid) {
  164. fail = alloc_node_page_ext(nid);
  165. if (fail)
  166. goto fail;
  167. }
  168. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  169. invoke_init_callbacks();
  170. return;
  171. fail:
  172. pr_crit("allocation of page_ext failed.\n");
  173. panic("Out of memory");
  174. }
  175. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  176. struct page_ext *lookup_page_ext(struct page *page)
  177. {
  178. unsigned long pfn = page_to_pfn(page);
  179. struct mem_section *section = __pfn_to_section(pfn);
  180. #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
  181. /*
  182. * The sanity checks the page allocator does upon freeing a
  183. * page can reach here before the page_ext arrays are
  184. * allocated when feeding a range of pages to the allocator
  185. * for the first time during bootup or memory hotplug.
  186. *
  187. * This check is also necessary for ensuring page poisoning
  188. * works as expected when enabled
  189. */
  190. if (!section->page_ext)
  191. return NULL;
  192. #endif
  193. return get_entry(section->page_ext, pfn);
  194. }
  195. static void *__meminit alloc_page_ext(size_t size, int nid)
  196. {
  197. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  198. void *addr = NULL;
  199. addr = alloc_pages_exact_nid(nid, size, flags);
  200. if (addr) {
  201. kmemleak_alloc(addr, size, 1, flags);
  202. return addr;
  203. }
  204. if (node_state(nid, N_HIGH_MEMORY))
  205. addr = vzalloc_node(size, nid);
  206. else
  207. addr = vzalloc(size);
  208. return addr;
  209. }
  210. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  211. {
  212. struct mem_section *section;
  213. struct page_ext *base;
  214. unsigned long table_size;
  215. section = __pfn_to_section(pfn);
  216. if (section->page_ext)
  217. return 0;
  218. table_size = get_entry_size() * PAGES_PER_SECTION;
  219. base = alloc_page_ext(table_size, nid);
  220. /*
  221. * The value stored in section->page_ext is (base - pfn)
  222. * and it does not point to the memory block allocated above,
  223. * causing kmemleak false positives.
  224. */
  225. kmemleak_not_leak(base);
  226. if (!base) {
  227. pr_err("page ext allocation failure\n");
  228. return -ENOMEM;
  229. }
  230. /*
  231. * The passed "pfn" may not be aligned to SECTION. For the calculation
  232. * we need to apply a mask.
  233. */
  234. pfn &= PAGE_SECTION_MASK;
  235. section->page_ext = (void *)base - get_entry_size() * pfn;
  236. total_usage += table_size;
  237. return 0;
  238. }
  239. #ifdef CONFIG_MEMORY_HOTPLUG
  240. static void free_page_ext(void *addr)
  241. {
  242. if (is_vmalloc_addr(addr)) {
  243. vfree(addr);
  244. } else {
  245. struct page *page = virt_to_page(addr);
  246. size_t table_size;
  247. table_size = get_entry_size() * PAGES_PER_SECTION;
  248. BUG_ON(PageReserved(page));
  249. kmemleak_free(addr);
  250. free_pages_exact(addr, table_size);
  251. }
  252. }
  253. static void __free_page_ext(unsigned long pfn)
  254. {
  255. struct mem_section *ms;
  256. struct page_ext *base;
  257. ms = __pfn_to_section(pfn);
  258. if (!ms || !ms->page_ext)
  259. return;
  260. base = get_entry(ms->page_ext, pfn);
  261. free_page_ext(base);
  262. ms->page_ext = NULL;
  263. }
  264. static int __meminit online_page_ext(unsigned long start_pfn,
  265. unsigned long nr_pages,
  266. int nid)
  267. {
  268. unsigned long start, end, pfn;
  269. int fail = 0;
  270. start = SECTION_ALIGN_DOWN(start_pfn);
  271. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  272. if (nid == -1) {
  273. /*
  274. * In this case, "nid" already exists and contains valid memory.
  275. * "start_pfn" passed to us is a pfn which is an arg for
  276. * online__pages(), and start_pfn should exist.
  277. */
  278. nid = pfn_to_nid(start_pfn);
  279. VM_BUG_ON(!node_state(nid, N_ONLINE));
  280. }
  281. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  282. if (!pfn_present(pfn))
  283. continue;
  284. fail = init_section_page_ext(pfn, nid);
  285. }
  286. if (!fail)
  287. return 0;
  288. /* rollback */
  289. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  290. __free_page_ext(pfn);
  291. return -ENOMEM;
  292. }
  293. static int __meminit offline_page_ext(unsigned long start_pfn,
  294. unsigned long nr_pages, int nid)
  295. {
  296. unsigned long start, end, pfn;
  297. start = SECTION_ALIGN_DOWN(start_pfn);
  298. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  299. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  300. __free_page_ext(pfn);
  301. return 0;
  302. }
  303. static int __meminit page_ext_callback(struct notifier_block *self,
  304. unsigned long action, void *arg)
  305. {
  306. struct memory_notify *mn = arg;
  307. int ret = 0;
  308. switch (action) {
  309. case MEM_GOING_ONLINE:
  310. ret = online_page_ext(mn->start_pfn,
  311. mn->nr_pages, mn->status_change_nid);
  312. break;
  313. case MEM_OFFLINE:
  314. offline_page_ext(mn->start_pfn,
  315. mn->nr_pages, mn->status_change_nid);
  316. break;
  317. case MEM_CANCEL_ONLINE:
  318. offline_page_ext(mn->start_pfn,
  319. mn->nr_pages, mn->status_change_nid);
  320. break;
  321. case MEM_GOING_OFFLINE:
  322. break;
  323. case MEM_ONLINE:
  324. case MEM_CANCEL_OFFLINE:
  325. break;
  326. }
  327. return notifier_from_errno(ret);
  328. }
  329. #endif
  330. void __init page_ext_init(void)
  331. {
  332. unsigned long pfn;
  333. int nid;
  334. if (!invoke_need_callbacks())
  335. return;
  336. for_each_node_state(nid, N_MEMORY) {
  337. unsigned long start_pfn, end_pfn;
  338. start_pfn = node_start_pfn(nid);
  339. end_pfn = node_end_pfn(nid);
  340. /*
  341. * start_pfn and end_pfn may not be aligned to SECTION and the
  342. * page->flags of out of node pages are not initialized. So we
  343. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  344. */
  345. for (pfn = start_pfn; pfn < end_pfn;
  346. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  347. if (!pfn_valid(pfn))
  348. continue;
  349. /*
  350. * Nodes's pfns can be overlapping.
  351. * We know some arch can have a nodes layout such as
  352. * -------------pfn-------------->
  353. * N0 | N1 | N2 | N0 | N1 | N2|....
  354. *
  355. * Take into account DEFERRED_STRUCT_PAGE_INIT.
  356. */
  357. if (early_pfn_to_nid(pfn) != nid)
  358. continue;
  359. if (init_section_page_ext(pfn, nid))
  360. goto oom;
  361. }
  362. }
  363. hotplug_memory_notifier(page_ext_callback, 0);
  364. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  365. invoke_init_callbacks();
  366. return;
  367. oom:
  368. panic("Out of memory");
  369. }
  370. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  371. {
  372. }
  373. #endif