clock.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current cpu.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include <linux/spinlock.h>
  56. #include <linux/hardirq.h>
  57. #include <linux/export.h>
  58. #include <linux/percpu.h>
  59. #include <linux/ktime.h>
  60. #include <linux/sched.h>
  61. #include <linux/static_key.h>
  62. #include <linux/workqueue.h>
  63. #include <linux/compiler.h>
  64. #include <linux/tick.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __weak sched_clock(void)
  71. {
  72. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  73. * (NSEC_PER_SEC / HZ);
  74. }
  75. EXPORT_SYMBOL_GPL(sched_clock);
  76. __read_mostly int sched_clock_running;
  77. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  78. static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
  79. static int __sched_clock_stable_early;
  80. int sched_clock_stable(void)
  81. {
  82. return static_key_false(&__sched_clock_stable);
  83. }
  84. static void __set_sched_clock_stable(void)
  85. {
  86. if (!sched_clock_stable())
  87. static_key_slow_inc(&__sched_clock_stable);
  88. tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
  89. }
  90. void set_sched_clock_stable(void)
  91. {
  92. __sched_clock_stable_early = 1;
  93. smp_mb(); /* matches sched_clock_init() */
  94. if (!sched_clock_running)
  95. return;
  96. __set_sched_clock_stable();
  97. }
  98. static void __clear_sched_clock_stable(struct work_struct *work)
  99. {
  100. /* XXX worry about clock continuity */
  101. if (sched_clock_stable())
  102. static_key_slow_dec(&__sched_clock_stable);
  103. tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
  104. }
  105. static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
  106. void clear_sched_clock_stable(void)
  107. {
  108. __sched_clock_stable_early = 0;
  109. smp_mb(); /* matches sched_clock_init() */
  110. if (!sched_clock_running)
  111. return;
  112. schedule_work(&sched_clock_work);
  113. }
  114. struct sched_clock_data {
  115. u64 tick_raw;
  116. u64 tick_gtod;
  117. u64 clock;
  118. };
  119. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  120. static inline struct sched_clock_data *this_scd(void)
  121. {
  122. return this_cpu_ptr(&sched_clock_data);
  123. }
  124. static inline struct sched_clock_data *cpu_sdc(int cpu)
  125. {
  126. return &per_cpu(sched_clock_data, cpu);
  127. }
  128. void sched_clock_init(void)
  129. {
  130. u64 ktime_now = ktime_to_ns(ktime_get());
  131. int cpu;
  132. for_each_possible_cpu(cpu) {
  133. struct sched_clock_data *scd = cpu_sdc(cpu);
  134. scd->tick_raw = 0;
  135. scd->tick_gtod = ktime_now;
  136. scd->clock = ktime_now;
  137. }
  138. sched_clock_running = 1;
  139. /*
  140. * Ensure that it is impossible to not do a static_key update.
  141. *
  142. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  143. * and do the update, or we must see their __sched_clock_stable_early
  144. * and do the update, or both.
  145. */
  146. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  147. if (__sched_clock_stable_early)
  148. __set_sched_clock_stable();
  149. else
  150. __clear_sched_clock_stable(NULL);
  151. }
  152. /*
  153. * min, max except they take wrapping into account
  154. */
  155. static inline u64 wrap_min(u64 x, u64 y)
  156. {
  157. return (s64)(x - y) < 0 ? x : y;
  158. }
  159. static inline u64 wrap_max(u64 x, u64 y)
  160. {
  161. return (s64)(x - y) > 0 ? x : y;
  162. }
  163. /*
  164. * update the percpu scd from the raw @now value
  165. *
  166. * - filter out backward motion
  167. * - use the GTOD tick value to create a window to filter crazy TSC values
  168. */
  169. static u64 sched_clock_local(struct sched_clock_data *scd)
  170. {
  171. u64 now, clock, old_clock, min_clock, max_clock;
  172. s64 delta;
  173. again:
  174. now = sched_clock();
  175. delta = now - scd->tick_raw;
  176. if (unlikely(delta < 0))
  177. delta = 0;
  178. old_clock = scd->clock;
  179. /*
  180. * scd->clock = clamp(scd->tick_gtod + delta,
  181. * max(scd->tick_gtod, scd->clock),
  182. * scd->tick_gtod + TICK_NSEC);
  183. */
  184. clock = scd->tick_gtod + delta;
  185. min_clock = wrap_max(scd->tick_gtod, old_clock);
  186. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  187. clock = wrap_max(clock, min_clock);
  188. clock = wrap_min(clock, max_clock);
  189. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  190. goto again;
  191. return clock;
  192. }
  193. static u64 sched_clock_remote(struct sched_clock_data *scd)
  194. {
  195. struct sched_clock_data *my_scd = this_scd();
  196. u64 this_clock, remote_clock;
  197. u64 *ptr, old_val, val;
  198. #if BITS_PER_LONG != 64
  199. again:
  200. /*
  201. * Careful here: The local and the remote clock values need to
  202. * be read out atomic as we need to compare the values and
  203. * then update either the local or the remote side. So the
  204. * cmpxchg64 below only protects one readout.
  205. *
  206. * We must reread via sched_clock_local() in the retry case on
  207. * 32bit as an NMI could use sched_clock_local() via the
  208. * tracer and hit between the readout of
  209. * the low32bit and the high 32bit portion.
  210. */
  211. this_clock = sched_clock_local(my_scd);
  212. /*
  213. * We must enforce atomic readout on 32bit, otherwise the
  214. * update on the remote cpu can hit inbetween the readout of
  215. * the low32bit and the high 32bit portion.
  216. */
  217. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  218. #else
  219. /*
  220. * On 64bit the read of [my]scd->clock is atomic versus the
  221. * update, so we can avoid the above 32bit dance.
  222. */
  223. sched_clock_local(my_scd);
  224. again:
  225. this_clock = my_scd->clock;
  226. remote_clock = scd->clock;
  227. #endif
  228. /*
  229. * Use the opportunity that we have both locks
  230. * taken to couple the two clocks: we take the
  231. * larger time as the latest time for both
  232. * runqueues. (this creates monotonic movement)
  233. */
  234. if (likely((s64)(remote_clock - this_clock) < 0)) {
  235. ptr = &scd->clock;
  236. old_val = remote_clock;
  237. val = this_clock;
  238. } else {
  239. /*
  240. * Should be rare, but possible:
  241. */
  242. ptr = &my_scd->clock;
  243. old_val = this_clock;
  244. val = remote_clock;
  245. }
  246. if (cmpxchg64(ptr, old_val, val) != old_val)
  247. goto again;
  248. return val;
  249. }
  250. /*
  251. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  252. *
  253. * See cpu_clock().
  254. */
  255. u64 sched_clock_cpu(int cpu)
  256. {
  257. struct sched_clock_data *scd;
  258. u64 clock;
  259. if (sched_clock_stable())
  260. return sched_clock();
  261. if (unlikely(!sched_clock_running))
  262. return 0ull;
  263. preempt_disable_notrace();
  264. scd = cpu_sdc(cpu);
  265. if (cpu != smp_processor_id())
  266. clock = sched_clock_remote(scd);
  267. else
  268. clock = sched_clock_local(scd);
  269. preempt_enable_notrace();
  270. return clock;
  271. }
  272. EXPORT_SYMBOL_GPL(sched_clock_cpu);
  273. void sched_clock_tick(void)
  274. {
  275. struct sched_clock_data *scd;
  276. u64 now, now_gtod;
  277. if (sched_clock_stable())
  278. return;
  279. if (unlikely(!sched_clock_running))
  280. return;
  281. WARN_ON_ONCE(!irqs_disabled());
  282. scd = this_scd();
  283. now_gtod = ktime_to_ns(ktime_get());
  284. now = sched_clock();
  285. scd->tick_raw = now;
  286. scd->tick_gtod = now_gtod;
  287. sched_clock_local(scd);
  288. }
  289. /*
  290. * We are going deep-idle (irqs are disabled):
  291. */
  292. void sched_clock_idle_sleep_event(void)
  293. {
  294. sched_clock_cpu(smp_processor_id());
  295. }
  296. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  297. /*
  298. * We just idled delta nanoseconds (called with irqs disabled):
  299. */
  300. void sched_clock_idle_wakeup_event(u64 delta_ns)
  301. {
  302. if (timekeeping_suspended)
  303. return;
  304. sched_clock_tick();
  305. touch_softlockup_watchdog_sched();
  306. }
  307. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  308. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  309. void sched_clock_init(void)
  310. {
  311. sched_clock_running = 1;
  312. }
  313. u64 sched_clock_cpu(int cpu)
  314. {
  315. if (unlikely(!sched_clock_running))
  316. return 0;
  317. return sched_clock();
  318. }
  319. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  320. /*
  321. * Running clock - returns the time that has elapsed while a guest has been
  322. * running.
  323. * On a guest this value should be local_clock minus the time the guest was
  324. * suspended by the hypervisor (for any reason).
  325. * On bare metal this function should return the same as local_clock.
  326. * Architectures and sub-architectures can override this.
  327. */
  328. u64 __weak running_clock(void)
  329. {
  330. return local_clock();
  331. }